1. Find the prime factorization of 111111.
 \textit{Solution:} 111111 = 3 \cdot 7 \cdot 11 \cdot 13 \cdot 37

2. (a) Which positive integers have exactly three positive divisors?
 \textit{Solution:} \(n = p^2 \), where \(p \) is prime.

 (b) Which positive integers have exactly four positive divisors?
 \textit{Solution:} \(n = p_1p_2 \), where \(p_1 \) and \(p_2 \) are distinct primes, and \(n = q^3 \), where \(q \) is prime.

 (c) Suppose \(n \geq 2 \) is an integer with the property that whenever a prime \(p \) divides \(n \), \(p^2 \) also divides \(n \) (i.e. all primes in the prime factorization of \(n \) appear at least to the power 2). Prove that \(n \) can be written as the product of a square and a cube.

 \textit{Proof.} Let \(n = p_1^{a_1}p_2^{a_2} \cdots p_m^{a_m} \) be the prime factorization of \(n \), where each \(p_i \) is a distinct prime and \(a_i \geq 2 \) for all \(i \). It suffices to prove that we can find a factorization of \(n \) in which the exponent of each factor is either a multiple of 2 or a multiple of 3. So, if every exponent \(a_i \) is already either a multiple of 2 or a multiple of 3, then we are happy and done! Therefore, we suppose there is some exponent \(a_k \) that is neither a multiple of 2 nor a multiple of 3 (5 is an example of such a positive integer). Note that \(a_k \) is an odd integer greater than 3. Hence \(a_k - 3 \) is even. Thus, if there is any prime power \(p_k^{a_k} \) in the factorization above, where \(a_k \) is neither a multiple of 2 nor 3, we write \(p_k^{a_k} = p_k^{a_k - 3}p_k^3 \). Therefore, the prime factorization of \(n \) can be written in such a way that each exponent is either a multiple of 2 or a multiple of 3 (and note that now this factorization may not have each prime distinct). \(\Box \)

4. Prove that \(\text{lcm}(a, b) = \frac{ab}{\gcd(a, b)} \) for any positive integers \(a, b \) without using prime factorization.

 \textit{Proof.} This is a sketch of the proof. You are left to fill in the details.

 Let’s start with basic notation. Let \(m = \text{lcm}(a, b) \) and \(d = \gcd(a, b) \). We want to show that \(ab = dm \).

 (a) First show that since \(d \) divides \(a \) and \(d \) divides \(b \), then \(d \) must also divide the product \(ab \).

 (b) Once you’ve shown the above, this means (by definition) that we can write \(ab = dn \) for some integer \(n \). Now the goal of the problem is to show that \(n \) must actually be equal to \(m \).

 (c) Next, show that \(n \) is a common multiple of \(a \) and \(b \). That is, show \(a \) divides \(n \) and \(b \) divides \(n \).

 (d) Finally, show that \(n \) divides \(m \).
(e) Note that the previous two steps yield $n = m$. From item (c), we can conclude that $m \leq n$ (since m is the LEAST common multiple of a and b it must be less than or equal to every common multiple of a and b). From item (d) we can conclude that $n \leq m$. Thus, these two inequalities yield $n = m$. \qed

6. On your own or discuss in section.

8. Find all solutions $x, y \in \mathbb{Z}$ to the following Diophantine equations:

(a) $x^2 = y^3$
 Solution: Any integer that is both a square and a cube is a 6th power, and conversely, every integer that is a 6th power is both a square and a cube. So the solutions are $x = a^3$ and $y = a^2$ for every integer a.

(b) $x^2 - x = y^3$
 Solution: Factor the left hand side as $x(x - 1)$. The two integers x and $x - 1$ are coprime, and their product is a cube. Thus, by Proposition 12.4, both x and $x - 1$ are cubes, and in particular, their difference is 1. The only integers x that make this true are $x = 0, 1$. Hence the solutions are $x = 0, y = 0$ and $x = 1, y = 0$.

(c) $x^2 = y^4 - 77$
 Solution: $x = 4, y = 3$ is one solution. Are there any others?

(d) $x^3 = 4y^2 + 4y - 3$
 Solution: Factor the right hand side to obtain $x^3 = (2y - 1)(2y + 3)$ now mimic Example 12.1.