This is a study aid. It is meant to help increase your chances of success on the second midterm. Unlike the last study guide, this list IS comprehensive. Expect no surprises. I do not expect you to work every problem here, however working and understanding a sufficient sampling of these problems will GREATLY improve your chances of doing well on the midterm.

1) **Areas between curves**: Section 6.1 #1-30

2) **Volume of solids of revolution using disk or washer method**: Section 6.2 #1-30

3) **Volume of solids of revolution using cylindrical shell method**: Section 6.3 #3-26

4) **Various methods of integration**:
 (a) Integration by Parts Section 7.1 #3-38
 (b) Trigonometric Integrals Section 7.2 #1-49
 (c) Trigonometric Substitution Section 7.3 #1-30

5) **Additional Remarks**:
 (a) It goes without saying that you will be expected to know how to do the “regular” \(u \)-substitution problems.
 (b) It also goes without saying that you will be expected to know the antiderivatives that you should have already memorized (e.g. the antiderivatives of \(\sin x \), \(\cos x \), \(\sec^2 x \), \(\csc^2 x \), etc.)
 (c) Be prepared to know sine and cosine of the “special angles”: \(0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2} \). This information may be helpful in solving definite trigonometric and trigonometric substitution integrals.
 (d) Remember that I am providing the following formulas on the exam:
 (i) \(\sin A \cos B = \frac{1}{2} [\sin(A - B) + \sin(A + B)] \)
 In particular, this implies that \(\sin A \cos A = \frac{1}{2} \sin(2A) \)
 (ii) \(\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \)
 In particular, this implies that \(\sin^2(A) = \frac{1}{2} [1 - \cos(2A)] \)
 (iii) \(\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)] \)
 In particular, this implies that \(\cos^2(A) = \frac{1}{2} [1 + \cos(2A)] \)