MATH 116

Midterm

50 points

Instructions: Read each question carefully. Each problem is worth **10 points**. Write your solutions on the colored paper. Do not turn in scratch work. Good luck.

1. There are \(n \) married couples at a party. Each person shakes hands with every person other than his or her spouse. Find the total number of handshakes.

2. Let \(S \) be the set \(S = \{1, 2, \ldots, 10\} \). Find the number of subsets of \(S \) that contain the number 1, 3, or 7.

3. We are to seat five boys, five girls, and one parent in at a circular table with eleven seats. In how many ways can this be done if no boy is to sit next to a boy and no girl is to sit next to a girl?

4. How many sets of three integers between 1 and 20 are possible if no two consecutive integers are to be in a set?

5. Let \(n \) be a positive integer, and let \(S \) be an \(n \)-element set. If \(A \) is a subset of \(S \), denote by \(o(A) \) the number of elements in \(A \) (in particular, \(o(S) = n \)). Say that \(A \) is odd if \(o(A) \) is odd, and \(A \) is even if \(o(A) \) is even (the integer 0 is considered even). Prove that the number of odd subsets of \(S \) equals the number of its even subsets. Hint: Consider the cases \(n \) odd and \(n \) even separately.