1. \(X \) is **not** Hausdorff. Hausdorff condition fails on \(x_1 = 0^+ \) and \(x_2 = 0^- \).

2. We showed in HW that \(A \subseteq X \) is open iff \(\exists A \subseteq X - A \), and \(A \subseteq X \) is closed iff \(\exists A \subseteq A \).

So \(A \) both open \& closed iff \(\exists A \subseteq X - A \) and \(\exists A \subseteq A \).

This can happen if and only if \(\exists A = \emptyset \).

(b) First, show \(\overline{A} \subseteq A \cup \exists A \).

Let \(x \in \overline{A} \).

We know \(\overline{A} = A \cup A' \).

So \(x \in \overline{A} \) implies that \(x \in A \) or \(x \in A' \).

If \(x \in A \), we are done.

Now suppose \(x \in A' \setminus A \).
We know that \(2A = \overline{A} \cap X-A \).

\(x \in X-A \) implies that \(x \in X-A \).

Since \(X-A \supseteq X-A \),

so \(x \in \overline{A} \cap X-A \) i.e. \(x \in 2A \).

Now show \(A \cup 2A \subseteq \overline{A} \).

Assume \(x \in A \cup 2A \).

If \(x \in A \), we are done since \(\overline{A} \supseteq A \).

Suppose \(x \notin A \) and \(x \in 2A \).

But \(2A = \overline{A} \cap X-A \), so \(x \in \overline{A} \).

3. Let \(U \in \overline{A}_x \), i.e. \(U \) is a subset of \(A \) which is open in \(X \). Know that

\(U = U \cap Y \), so \(U \) is also open in \(Y \).

\(\therefore U \subseteq \overline{A}_y \).
4. Recall that for $C \subseteq X$, a subset C of X, $x \in \overline{C}$ if and only if every nbhd of x intersects C.

First show $\overline{A \times B} \subseteq \overline{A} \times \overline{B}$.

Let $(x, y) \in \overline{A \times B}$, wts: $(x, y) \in \overline{A} \times \overline{B}$

That is, wts $x \in \overline{A}$ & $y \in \overline{B}$.

Let U be a nbhd of x & V be a nbhd of y. Then $U \times V$ is a nbhd of (x, y). By hypothesis, $U \times V$ intersects $A \times B$. Say $(c, d) \in (U \times V) \cap (A \times B)$.

But $(U \times V) \cap (A \times B) = (U \cap A) \times (V \cap B)$.

So $c \in U \cap A$ and $d \in V \cap B$.

Thus $x \in \overline{A} \times \overline{B}$.
Now show $\overline{A \times B} \subseteq \overline{A \times B}$.

Let $(x, y) \in \overline{A \times B}$, i.e. $x \in \overline{A}$ & $y \in \overline{B}$.

Wts: $(x, y) \in \overline{A \times B}$.

Let W be a nbhd of (x, y). By defn of product topology on $X \times Y$, there is a basis element $(U \times V)$ containing (x, y) sitting inside of W, where U is open in X & V is open in Y.

So U is a nbhd of x & V is a nbhd of y. Since $x \in \overline{A}$, $y \in \overline{B}$, we know that $A \cap U$ contains some point c & $B \cap V$ contains some point d.

So $(c, d) \in (A \cap U) \times (B \cap V) = (A \times B) \cap (U \times V)$.

Thus $(c, d) \in (A \times B) \cap W$, since $U \times V \subseteq W$. [\qed]
5. a. Let $U \subseteq Y$ be open.

Then $f^{-1}(U)$ is some subset of X. Since X has discrete topology, $f^{-1}(U)$ must be open in X.

\[\therefore f \text{ is continuous} \]

(b) Let Y be the topological space (X, J_d) where J_d is the discrete topology on X.

Let $f: X \to Y$ be the identity map.

Let $U \subseteq X$ be some subset of X which is not open in X. We know there is such a thing since X is not discrete.

We know that $U \subseteq Y$ is open, since Y is discrete. But $f^{-1}(U) = U$ is not open in X. Thus, f is not continuous.
Let X be the topological space that is (Y, J_i) when J_i is the indiscrete topology.

Let $f: X \rightarrow Y$ be the identity map.

Since Y is not indiscrete, we can find a set $U \subseteq Y$ which is open but $U \neq \emptyset$ and $U \neq Y$.

However, $f^{-1}(U) = U$ is not open in X because the only sets open in X are \emptyset & X.

\[\square\]