1. Metric spaces are Hausdorff, and compact subspaces of Hausdorff spaces are closed.

2. Let \(J \) be a topology on \(A \) and suppose that \(p: X \rightarrow A \) is continuous.

\[\text{wts: } J \subseteq J_0, \text{ where } J_0 \text{ is the quotient topology on } A \text{ induced by } p. \]

Let \(U \in J \). Since \(p \) is continuous, we know that \(p^{-1}(U) \) is open in \(X \). Thus, by defn of \(J_0 \), \(U \in J_0 \).
3. Suppose, on the contrary, that $A \not\subseteq B$.

Then $C = A \cap B$ is a proper, nonempty subset of A.

Also notice that C is both open & closed in A since B is both open & closed in X.

\longrightarrow A is connected

$A \subseteq C \subseteq B$
4. Let A be an open cover of (X, J). Since $J \subseteq J'$, every element of J is also open in (X, J'). Thus A is also an open cover of (X, J'). By compactness of (X, J') we can reduce A to a finite subcover of (X, J'). This is also a finite subcover of (X, J).

5. Suppose x, y are two points in A. Then there is a path from x to y since A is path-connected. Similarly, we can find a path from x to y for x, y in B. Now suppose $x \in A$ and $y \in B$. Since $A \cap B \neq \emptyset$, choose $z \in A \cap B$. There is a path from x to z (since A path-connected) and a path from z to y (since B path-connected). The composition of
these two paths is a path from x to y.