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The Quintic and its Mirror

I quintic: X = {F5(x1, . . . , x5) = 0} ⊂ CP4

I “complexified Kähler moduli space:” t ∈ H2(X ,C) with
Im t a Kähler class

I q = e2πit ∈ U ⊂ H2(X ,C/Z)

I quintic-mirror:
Y → Y = {

∑
x5
j − 5ψ

∏
xj = 0}/(Z5)

3 ⊂ CP4/(Z5)
3

I ordinary (“complex structure”) moduli space has
parameter z = (−5ψ)−5

I the identification between the two is made with the help
of periods Φ(z) =

∫
Γ Ωz , for Γ ∈ H3(Y ,Z) and Ωz a

holomorphic 3-form on Yz
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Periods and the Mirror Map

Φ(z) satisfies an algebraic differential equation DΦ = 0,
where, for an appropriate choice of Ωz ,

D =

(
z

d

dz

)4

− 5z

(
5z

d

dz
+ 1

)(
5z

d

dz
+ 2

)(
5z

d

dz
+ 3

)(
5z

d

dz
+ 4

)

It is easy to find a single power series solution near z = 0:

Φ0(z) =
∞∑

n=0

(5n)!

(n!)5
zn

but the other three solutions are elusive.
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The recursion relations implied by the equation lead one to a
formal power series of the form

Φ(z , α) =
∞∑

n=0

(5α+ 1)(5α+ 2) · · · (5α+ 5n)

[(α+ 1)(α+ 2) · · · (α+ n)]5
zα+n ;

one finds that D(Φ(z , α)) = α4zα and so we must have
α4 = 0 in order to obtain a solution.

In fact, the formal
solution can be interpreted with α taken from the ring
C[α]/(α4) as follows: each coefficient

(5α+ 1)(5α+ 2) · · · (5α+ 5n)

[(α+ 1)(α+ 2) · · · (α+ n)]5

can be evaluated in that ring, and written as a polynomial in
α of degree 3; moreover, zα can be expanded as
1 + α ln z + 1

2α
2(ln z)2 + 1

6α
3(ln z)3.
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Thus, we can write

Φ(z , α) = Φ0(z) + αΦ1(z) + α2Φ2(z) + α3Φ3(z),

where each Φj(z) is a polynomial in ln z of degree j whose
coefficients are formal power series in z ; by construction,
DΦj(z) = 0.

The mirror map is the identification of the
complexified Kähler moduli space of X with the complex
moduli space of Y via

t =
1

2πi

Φ1(z)

Φ0(z)
,

or
q = exp(Φ1(z)/Φ0(z)).
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Three-point Functions

A key aspect of the physics is captured by the so-called
topological correlation functions, among which is the
“three-point function,” a trilinear map on H1,1(X ,C), resp.

H1(Y ,T
(1,0)
Y ).

On the quintic X , given
A,B,C ∈ H1,1(X ,C), the three-point function has an
expansion of the form

〈OAOBOC 〉 = A·B ·C+
∑

0 6=η∈H2(X ,Z)

A(η)B(η)C (η)Nη
zη

1− zη
,

where Nη counts the number of genus zero holomorphic
curves in the class η, and is closely related to the
Gromov–Witten invariant of X .
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On the mirror quintic Y , given α, β, γ ∈ H1(Y ,T
(1,0)
Y ), the

three-point function takes the form

〈OαOβOγ〉 =

∫
Y
∇α(Ω β) ∧ (Ω γ),

and this can be readily calculated from the periods.

Comparing the two yields the famous predictions of
Candelas, de la Ossa, Green and Parkes: the generic quintic
threefold has 2875 lines, 609250 conics, 317206375 twisted
cubics, and so on.
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Disk Counting

The story so far has been about closed string theory. But in
the presence of D-branes, it is now understood that open
strings also play a rôle. The relevant D-branes on the quintic
threefold are special Lagrangian submanifolds L of X , and
open strings are expected to end on such a submanifold.
Instead of counting holomorphic curves of fixed genus, the
open string theory should count open Riemann surfaces
whose boundary lies on L (again, hopefully, of fixed genus).
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The specific special Lagrangian L which we use is the set of
real points of a quintic threefold defined over R. In, fact,
since there are many connected components of the moduli of
such real quintic threefolds (and many things about L,
including its topology, depend on the component), we
specialize further to the component containing the real
Fermat quintic:

X = {x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0} ⊂ CP4,

L = {x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0} ⊂ RP4.

This L is known to have the topology of RP3.

Some of the
holomorphic curves of genus zero on X are defined over R;
others come in complex conjugate pairs. The ones defined
over R meet L and are divided by it into a pair of disks: it is
these disks which we wish to count.
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Just to preview the results, we will be able to do the count
only for curves of odd degree, and the answer will be: for
degree 1, there are 1430 complex conjugate pairs and 15
invariant curves, leading to 30 disks; for degree 3 there are
158602805 complex conjugate pairs and 765 invariant
curves, leading to 1530 disks; and so on.
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The background for doing open string theory requires one
additional piece of data, in addition to the special Lagrangian
submanifold L: it requires a U(1) bundle to be specified on
L, with flat connection. Since H1(L,Z) = Z2, there are two
choices for this data; we will use L+ and L− to denote the
special Lagrangian, equipped with such a choice.

The
images of L± in the Fukaya category Fuk(X ) are the same,
and this leads to a normal function, which is represented by

T (t) =
t

2
±

(
1

4
+

1

2π2

∑
d odd

ndqd/2

)
,

where q = e2πit and nd are the open Gromov–Witten
invariants counting disks of degree d . Physically, T
represents the domain wall tension for a domain wall
separating vacua corresponding to L+ and L− boundary
conditions.
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