Normal Functions & Disk Counting

Based on J. Walcher hep-th/0605162
DRH & J. Walcher

Quintic & Mirror

- quintic: $X = \Sigma F(x_1, \ldots, x_5) = 0 \subset \mathbb{C}P^4$ CY 3-fld
- "complexified Kähler moduli space:" $T \in H^2(X, \mathbb{C})$ w/ Im α Kähler class
- $q = e^{-\pi i \alpha} \in \mathcal{U} \subset H^2(X, \mathbb{C}/\mathbb{Z})$

- quintic-mirror singular
 - resolve $Y \rightarrow \tilde{Y} = \Sigma x_j^5 - 3t \prod x_j = 0 \subset \mathbb{C}P^2/(\mathbb{Z}_5)^3$
- ordinary ("cplx str") moduli spc has param $z = (-3t)^{-5}$
- Identification b/w two made w/ help of periods
 $\phi(z) = \int \Omega^2$, $\Gamma \in H_3(Y, \mathbb{Z})$, Ω_2 hol. 3-form on Y

Diagram:

$z = \infty$
$z = 0$
$z = (5)^{-5}$

$\phi(z)$ satisfies algebra diffeq $D\phi = 0$, D 4th order

Easy to find 1 power series soln near $z = 0$

$\phi_0(z) = \sum_{n=0}^{\infty} \frac{(5^n)!}{(n!)^5} z^n$

other 3 solns elusive
Formal power series
\[\phi(z, x) = \sum_{n=0}^{\infty} (\text{mess}) \cdot z^{x+n} \]

\[D(\phi(z, x)) = x^4 z^x \Rightarrow x^4 = 0 \text{ for soln} \]

\[\Rightarrow \text{soln depends on } \mathbb{C}[x]/(x^4) \]
\[\frac{(5x+1)(5x+2) \cdots (5x+4)}{(a+1)(a+2) \cdots (a+n)} \]
evaluated in winding poly of deg 5
\[z^x = 1 + x \log z + \cdots \]

\[\Rightarrow \phi(z, x) = \phi_0(z) + x \phi_1(z) + x^2 \phi_2(z) + x^3 \phi_3(z) \]

mirror map: \[t = \frac{1}{2\pi i} \cdot \frac{\phi(z)}{\phi_0(z)} \]
\[\Rightarrow z = \exp \left(\frac{\phi_0(z)}{\phi_0(z)} \right) \]

3 pt flat trilinear map on \(H^1(X, \mathbb{C}) \), \(H^1(Y, \mathbb{C}) \)

on \(X \): \(A, B, C \in H^1(X, \mathbb{C}) \)
\[\langle \Theta_A \Theta_B \Theta_C \rangle = A \cdot B \cdot C + \sum_{0 \neq \eta \in H_1(X)} A(\eta) B(\eta) C(\eta) \cdot \frac{Z^\eta}{1-z^\eta} \]

counts # curves in \(\eta \) related to genus 0 hole

\[\int_X A \wedge B \wedge C \]

Gromov-Witten

in \(\text{virt } \) of \(X \)
on mirror Y: $\alpha, \beta, \gamma \in H^i(Y, T^{(00)})$

$$\langle 0_\alpha \ 0_\beta \ 0_\gamma \rangle = \int \frac{\Omega_\alpha \Omega_\beta \Omega_\gamma}{\Omega_{\alpha+\beta+\gamma}} \text{ calc. from periods}$$

predictions of Candelas, de la Osa, Green, Parkes

2875 lines
609250 conics
317206375 twisted cubics

__Disk Counting__ so far, just closed strings, but w/ D-branes, open strings also important.

D-branes: $L \subseteq X$ special lagrangian submanifolds

instead of counting holo curves of fixed genus, should count even Riem. surf ending on L

$$X = \sum x_1^5 + x_2^5 + \cdots + x_5^5 = 0 \subseteq \mathbb{C}P^4$$

$$L = \sum x_1^5 + x_2^5 + \cdots + x_5^5 = 0 \subseteq \mathbb{R}P^4$$

L topology of $\mathbb{R}P^3$

this compact contains Fermat quintic

some holo $g=0$ curves on X, defined over \mathbb{R} these meet L, count these others in cplx conj. pairs

only do count for odd degree curves
actually need UC bundle on L w/ flat connection $H_1(L, \mathbb{Z}) = \mathbb{Z}_2 \Rightarrow 2$ choices $L_+, L_-
abla$ in (L_+) in $\text{Fuk}(X)$ same \Rightarrow normal for

$$J(t) = \frac{t}{\delta} \pm \left(\frac{1}{d} \sum_\text{all $\eta \neq g$} \delta t \right)$$

open qrs - worst invariants δ degree d

domain null

tension for
null-separating L_+ and L_- vacua boundary cond.

$L_+ - L_-$ trivial in $\text{Fuk}(X)$

$D^b(\text{Coh} Y) \rightarrow \text{Ker}$

Branes on Fermat quintic \xrightarrow{\text{mirror}} \text{Branes on Fermat minor} \xleftarrow{\text{mirror}}

$$(\sum_{i=1}^5 5g_i \Pi x_i) I_N = \begin{pmatrix} \text{matrix w/ entries} & \text{poly w/ entries} \\ \text{poly w/ entries} & \text{entries} \end{pmatrix}$$

\Rightarrow mirror of $L_+ - L_- = \text{element of } D^b(\text{Coh} Y)$

$\text{ch}_2 (Z) = 0$ in K-theory

$\text{ch}^{13} (X) \neq 0$, represented by $C_+ - C_-$

two hole curves on X.

\[\text{degree d in K-theory.}\]
\[C \subset C = \partial P \quad \text{3-chain} \]

\[y \in \{ x_3^5 + x_2^5 + \ldots + x_5^5 - 4x_1x_2x_3x_4 \} \]

\[0 = x_1^2 - 5x_2^2 - x_3^2 \]

\[\forall \{x_1, x_2, x_3, x_4, x_5\} \]

\[B \subset \text{well defined as element of } \text{Jacobi's over } \mathbb{Z}^3 \]

\[\text{this only works when Fermat point } \]

\[y = 2k \]

\[\text{J}(z) = \{ 0, 2 \} \]
\[\oint \omega_\pi = \frac{15}{16 \pi^2} \sqrt{z} \]

\[\oint \omega_r = 0 \]

\[\oint \omega_\pi = 0 \Rightarrow \oint \omega_r = 0 \quad \text{and} \quad \oint (t) = \ldots \]