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High-Level Overview

• Picard–Fuchs equations:

– Let V
π→ X 3 x be a family of n-dimensional algebraic varieties,

with smooth fibres over the complement of a finite set.
– Choose a holomorphic n-form ω on a smooth fibre V0 ∈ V, and
n-cycles γ1, . . . , γr that give a basis for its nth homology.

– Then ω can be extended to a meromorphic family of n-forms ω(x),
and the cycles (homology classes) to (multivalued!) functions of x.

– The periods
∫
γi(x)

ω(x) are multivalued too, but satisfy a Fuchsian
ODE on X (the P–F equation). They are special functions.

• When V → X is a family of elliptic curves, e.g., EN → X0(N),
for X0(N) ∼= P1(C), then covering and modular relations, e.g., the
coverings X0(MN)/X(N), induce relations among P–F equations
and their solutions. That is, they yield special function identities.
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Based On...

• Recent work of RM, e.g.,

– “On Rationally Parametrized Modular Equations,”
arXiv:math/0611041.

– “Algebraic Hypergeometric Transformations of Modular Origin,”
Trans. AMS 359 (2007), 3859–3885.

– “The 192 Solutions of the Heun Equation,”
Math. of Computation 76 (2007), 811–843.

• See also:

– Papers on ODEs and PDEs satisfied by automorphic forms on modular
subgroups, by H. Verrill.

– Modular parametrizations of lattice-polarized K3 surfaces, by C. Doran et al.
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One-Argument Special Functions

• Functions in the function field of an algebraic curve X/C.
(E.g., meromorphic functions on P1(C). Or on an elliptic curve E/C,
meromorphic functions such as Jacobi’s sn or Weierstraß’s ℘.

• Functions satisfying linear homogeneous ODEs on X/C, with
meromorphic coefficients.

� Scalar equations, e.g.,
[∑N

j=0Aj(x)Dx
j
]
y = 0, and

� Systems of 1st-order equations, e.g., Dxy
(i)−

∑N
j=1A

i
j(x)y(j) = 0,

intepretable in terms of a connection on a rank-N vector bundle
over X/C. Their solutions come ‘from geometry.’

• In particular, the case when X/C is the base of a family of algebraic
varieties V

π→ X. (E.g., a Picard–Fuchs equation.)
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The GHE and HE

• The GHE (Gauss hypergeometric equation) is the canonical linear
2nd-order ODE on P1(C) with three regular singular points, and the
GHE (Heun equation) is the one with four.

� The singular points are x = 0, 1,∞ by convention; and (for the
Heun equation) x = a, for some a ∈ C \ {0, 1}.

� Characteristic exponents (whence monodromy) are canonicalized.
� The HE has an extra degree of freedom: an accessory parameter.

• The standard solutions of the GHE and HE (analytic at x = 0,
normalized to unity there) are 2F1 and Hl .

� Their Taylor coefficients at x = 0 satisfy 2-term and 3-term
recurrences, respectively.
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The GHE E(a, b; c) and Its Series Solution

D2
x u+

[
c

x
+
a+ b− c+ 1

x− 1

]
Dxu+

[
ab

x(x− 1)

]
u = 0.

The characteristic exponents at x = 0, 1,∞ are:
0, 1− c; 0, c− a− b; a, b. Each has an associated Frobenius solution.

The zero-exponent solution at x = 0, normalized, is

2F1(a, b; c;x) :=
∞∑
n=0

cnx
n,

converging on |x| < 1, where c0 = 1 and

(n+ a)(n+ b) cn − (n+ 1)(n+ c) cn+1 = 0.
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The HE and Its Series Solution

D2
x u+

[
γ

x
+

δ

x− 1
+

ε

x− a

]
Dxu+

[
αβ x− q

x(x− 1)(x− a)

]
u = 0.

The characteristic exponents at x = 0, 1, a,∞ are:
0, 1−γ; 0, 1−δ; 0, 1−ε; α, β. Each has an associated Frobenius solution.

� By Fuchs’s relation, α+ β − γ − δ + ε+ 1 = 0.

� q ∈ C is an accessory (non-exponent-related) parameter.

The zero-exponent solution at x = 0, normalized, is

Hl(a, q; α, β, γ, δ; x) :=
∞∑
n=0

cnx
n.
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Heun Series

Hl(a, q; α, β, γ, δ; x) :=
∞∑
n=0

cnx
n,

converging on |x| < min(1, |a|), where c0 = 1, and (with c−1 := 0)

(n+ α− 1)(n+ β − 1) cn−1

−
{
n [ (n+ γ + δ − 1)a+ (n+ γ + ε− 1) ] + q

}
cn

+ (n+ 1)(n+ γ)a cn+1 = 0.

Claim: Any generic series
∑∞
n=0 cnx

n in which {cn}∞n=0 satisfy a 3-term
recurrence relation, with coefficients quadratic in n, is of Heun type.
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Some History

• Heun (1889) first wrote down and studied the HE.

� The Lamé equation is a special case of it.
∗ See RM, Philos. Trans. Roy. Soc. A 366 (2008), 1115–1153.

� Confluent HEs have also been studied (Slavyanov et al.).

• A long-term goal: deriving, for Hl, analogues of 2F1 identities. E.g.,

� Degree-1 rational transformations of Hl , arising from Möbius
automorphisms of P1(C). (Cf. Kummer’s 24 solutions of the GHE.)

� Higher-degree rational transformations (quadratic, etc.) of Hl .
(Cf. Kummer’s quadratic transformations of 2F1, Goursat’s, etc.)

� Algebraic transformations of Hl. (Not classified even for 2F1!).
� Contiguity relations (“Schlesinger transformations”), etc.
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Degree-1 Rational Transformations
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Kummer’s 24 Series Solutions of the GHE

Each of the 6 Frobenius solutions of the GHE can be written in
four equivalent ways, in terms of 2F1.

� Example: the zero-exponent solution at x = 0 can be written as

2F1(a, b; c; x), (1− x)−a−b+c 2F1(c− a, c− b; c; x),

(1− x)−a 2F1(a, c− b; c; x
x−1), (1− x)−b 2F1(c− a, b; c; x

x−1).

Cf. Euler’s transformation and Pfaff’s transformation of 2F1.

� Example: the zero-exponent solution at x = 1 can be written as

2F1(a, b; a+ b− c+ 1; 1− x), x
1−c

2F1(b− c+ 1, a− c+ 1; a+ b− c+ 1; 1− x),

x
−a

2F1(a, a− c+ 1; a+ b− c+ 1; x−1
x ), x

−b
2F1(b− c+ 1, b; a+ b− c+ 1; x−1

x ).
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The Kummer Transformations of the GHE

• The GHE E(a, b; c) is transformed to E(a′, b′; c′) by

À Möbius transformations of the independent variable x that
preserve the set of singular points {0, 1,∞}; i.e.,
x 7→ x, 1− x, x/(x− 1), 1/(1− x), x/(x− 1), 1/x.

Á Changes of the dependent variable: ‘index flips’,
i.e., characteristic exponent negations, such as

(1− x)
−θ1

8<:
0 1 ∞ x

0 0 a

θ0 θ1 b

9=; =

8<:
0 1 ∞ x

0 −θ1 a+ θ1

θ0 0 b+ θ1

9=;

• The 4 variants of each of the 6 Frobenius solutions, in terms of 2F1,
are transformed among by composite transformations that
(i) stabilize x = 0, 1, or ∞, and (ii) perform no F-homotopy there.
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The Kummer Automorphism Group of the GHE

• The subgroup of Möbius transformations is isomorphic to S3.

• It normalizes the subgroup of index flips, isomorphic to (Z2)3.
(Or merely to (Z2)2, since the interchange of exponents at x = ∞,
i.e., a↔ b, is trivial.)

=⇒ The Kummer group of composite transformations is isomorphic to
an order-48 group, the wreath product B3 = Z2 o S3 = (Z2)3o S3.
(Or merely to an index-2 subgroup D3 = [Z2 o S3]even, of order 24.)

=⇒ The Kummer group is the group of signed permutations of 3 objects.
(The index-2 subgroup is the even-signed subgroup: D3

∼= S4.)

(The 4 variants of each Frobenius solution are transformed among
by a Z2 × Z2 subgroup of D3.)
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The Indexing of Kummer’s 24 Series Solutions

• Example: The four equivalent expressions for the zero-exponent
solution at x = 0,

2F1(a, b; c; x), (1− x)−a−b+c 2F1(c− a, c− b; c; x),

(1− x)−a 2F1(a, c− b; c; x
x−1), (1− x)−b 2F1(c− a, b; c; x

x−1).

are indexed by [0+][1+][∞+], [0+][1−][∞−], [0+][1+∞+], [0+][1−∞−].

• Example: The four equivalent expressions for the zero-exponent
solution at x = 1,

2F1(a, b; a+ b− c+ 1; 1− x), x
1−c

2F1(b− c+ 1, a− c+ 1; a+ b− c+ 1; 1− x),

x
−a

2F1(a, a− c+ 1; a+ b− c+ 1; x−1
x ), x

−b
2F1(b− c+ 1, b; a+ b− c+ 1; x−1

x ).

are indexed by [1+0+][∞+], [1+0−][∞−], [1+0+∞+], [1+0−∞−].
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The Extension to the HE (4 Singular Points, Not 3)

• The HE E(a, q;α, β, γ, δ) is transformed to E(a′, q′;α′, β′, γ′, δ′) by

À Möbius transformations of the independent variable x that
‘preserve’ the singular points, i.e., take {0, 1, a,∞} to {0, 1, a′,∞}.
E.g., x 7→ x, 1− x, etc., and x/a, x/(x− a), (1− a)x/(x− a), etc.
These make up a subgroup isomorphic to S4.

Á Index flips, which are exponent negations at x = 0, 1, a. This
subgroup is isomorphic to (Z2)3. (If the α ↔ β exponent
interchange at x = ∞ is included, the group is (Z2)4.)

=⇒ The group of composite automorphisms is therefore isomorphic to
an order-384 group, the wreath product B4 = Z2 o S4 = (Z2)4o S4.
(Or merely to the even-signed subgroup D4 = [Z2 o S4]even,
of order 192, if α↔ β is dropped.)
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Algebraic Transformations
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#1: Landen’s Transformation [X0(8)/X0(4)]

• The (first) complete elliptic integral K2 = K2(α), defined by

Kr(α) ∝
∫ 1

0

t−1/r(1− t)−1+1/r(1− αt)−1/r dt

∝ 2F1(1/r, 1− 1/r; 1; α)
satisfies

K2(α) = (2/α)(1−
√

1− α) K2(β),
provided

α2(1− β)2 − 16(1− α)β = 0.
Here α, β are confined to a neighborhood of (0, 1) in P1(C).

• The algebraic α–β relation can be uniformized :

α = x(x+ 8)/(x+ 4)2, β = x2/(x+ 8)2.
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#2: Another Algebraic 2F1 Transformation [X0(25)/X0(5)]

Let f5(z) =
∑∞
n=0 cn(z/500)n, for |z| sufficiently small, where

500(2n− 1)2 cn−1 + 2(44n2 + 22n+ 5) cn + (n+ 1)2 cn+1 = 0,

with c−1 = 0, c0 = 1. Then for all x in a neighborhood of 0,

f5
(
x(x4 + 5x3 + 15x2 + 25x+ 25)

)
= 5

[
x4 + 5x3 + 15x2 + 25x+ 25

]−1/2
f5

(
x5

x4 + 5x3 + 15x2 + 25x+ 25

)
.

Claim:

f5(z) = Hl
“
−11∓2i
−11±2i,−

1
50(−11∓ 2i); 1

2,
1
2, 1; z/ [−11± 2i]

”
.

= [15(z
2
+ 10z + 5)]

−1/4
2F1

“
1
12,

5
12; 1; 12

3
z/(z

2
+ 10z + 5)

3
”
.
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#3: Combinatorial Functional Equations [X0(12), X0(18)/X0(6)]

Let F = F (z) =
∑∞
n=0 anz

n be the generating function of the
Franel numbers

an =
n∑
k=0

(
n

k

)3

, n ≥ 0.

Then F , which is defined on the disk |z| < 1/8, satisfies the quadratic
and cubic functional equations

F
(
x(x+6)
8(x+3)2

)
= 2

[
x+3
x+6

]
F

(
x2

8(x+3)(x+6)

)
,

F
(

x(x2+6x+12)
8(x+3)(x2+3x+3)

)
= 3

[
x2+3x+3
(x+3)2

]
F

(
x3

8(x+3)3

)
,

for |x| sufficiently small, and also for all x > 0.

Claim: F (z) = Hl(−8,−2; 1, 1, 1, 1; 8z) = Hl(−1
8,

1
4; 1, 1, 1, 1;−z).
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The Algebro–Geometric Infrastructure
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Elliptic Curves over C

• Any E/C

� has a projective Weierstraß model, the affine portion of which is

y2 = 4x3 − g2x− g3

in C2 3 (x, y), parametrized by g2, g3 ∈ C (not both zero).
� has periods τ1, τ2 ∈ C \ {0}, and period ratio τ := τ1/τ2 ∈ H.

• Any two E,E′ are isomorphic iff their period ratios τ, τ ′ are related by
some g ∈ Γ(1) := PSL(2,Z), i.e.,

τ ′ = (aτ + b)/(cτ + d), a, b, c, d ∈ Z, ad− bc = 1.
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The Universal Family E1 → X(1)

• The moduli space of elliptic curves over C up to isomorphism is
Y (1) := Γ(1) \H, with natural compactification
X(1) := Γ(1) \

[
H∗ = H ∪

(
Q ∪ {i∞} = P1(Q)

)]
.

� g2, g3 are (multivalued!) functions on X(1).

• The modular curve X(1) is of genus zero: X(1) ∼= P1(C)j, where
j is a Hauptmodul, e.g., the Klein invariant j := 123 g3

2/(g
3
2 − 27g2

3).

• Isomorphism classes of elliptic curves are bijective with P1(C)j\{∞}.
So, there is a universal family of elliptic curves: E1

π→ X(1).

� The fibre above j = 0 is equianharmonic: g2 = 0, e.g., τ = ζ3.
� The fibre above j = 123 is lemniscatic: g3 = 0, e.g., τ = i.
� The fibre above j = ∞ is singular, e.g., τ = i∞.
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For Concreteness: q-Series

Near τ = i∞ on X(1) = Γ(1) \H∗, one can expand in q := e2πiτ , where
0 < |q| < 1 corresponds to τ ∈ H. [Generators τ 7→ τ + 1, τ 7→ −1/τ
of Γ(1) correspond to q 7→ q, q 7→ exp(4π2/ log q).]

• The j-invariant: j = q−1 + 744 +O(q1).

• The invariants g2, g3 (“Eisenstein sums”):

g2 ∝ 1 + 240
∑∞
n=1 σ3(n)qn, g3 ∝ 1− 504

∑∞
n=1 σ5(n)qn.

• The Dedekind eta function:

η(τ) := q1/24
∞∏
m=1

(1− qm).
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Modular Forms and Functions

An entire function f : H → P1(C) is said to be a modular form
on a subgroup G 6 Γ(1), of weight k, if

f((aτ + b)/(cτ + d) = χ(a, b, c, d) · (cτ + d)kf(τ)

for all g = ± ( a bc d ) ∈ G, with c > 0.
Here χ : G→ U (1) is a character, e.g., a Dirichlet one (depends only on d).

• j is modular of weight 0, i.e., a modular function. (χ is trivial.)

• g2 is modular of weight 4. (χ is trivial.)

• g3 is modular of weight 6. (χ is trivial.)

• η is modular of weight 1/2. (χ is complicated.)
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Modular Subgroups: Γ0(N) < Γ(1)

If gN := (N 0
0 1 ), i.e., gN is the N -isogeny τ 7→ Nτ , then

• j = j(τ) is stable under Γ(1),
so j is a Hauptmodul for X(1) = Γ(1) \H∗;

• j′ = j′(τ) := j(Nτ) is stable under Γ(1)′ := gNΓ(1)g−1
N < PSL(2,R),

so j′ is a Hauptmodul for X(1)′ = Γ(1)′ \H∗;

• j, j′ are in the function field of X0(N) := H∗ \ Γ0(N), where
Γ0(N) := Γ(1) ∩ Γ(1)′ = {g ∈ Γ(1) : c ≡ 0 (mod N)}.

Assertion: j, j′ in fact generate the function field of X0(N),
which classifies elliptic curves (up to isomorphism), plus N -isogenies.
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Coverings X0(N)/X(1). [Refs.: Schoeneberg, McKean & Moll.]

The covering map X0(N) → X(1), induced by Γ0(N) < Γ(1),

• is a ψ(N)-sheeted covering, where ψ(N) := N
∏
p|N

(
1 + 1

p

)
.

• is branched only over j = 0, 123,∞, with known branching structure.

So if X0(N) like X(1) is a genus-zero complex curve, then

• the function field of X0(N) is generated by a Hauptmodul xN , and
X0(N) ∼= P1(C)xN .

• j = j(xN) is a degree-ψ(N) rational function, with known branching
structure.
[The cusps of X0(N) are the points mapped to j = ∞ (i.e., τ = i∞).]
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The Hauptmoduls xN , N > 2

Claim: For each N > 2 for which X0(N) is of genus zero, i.e.,

N = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25,

a Hauptmodul xN may be constructed as an eta quotient, e.g.,

x4 = 28 · [4]8/[1]8 := 28 · η(4τ)8/η(τ)8,

x̃4 = x4/(x4 + 16) = 24 · [1]8[4]16/[2]24.

Pedestrian Verification:

À Verify invariance of the alleged xN under Γ0(N).

Á Show the alleged xN has exactly one zero and one pole on X0(N).
(Each can be chosen to lie at a cusp.)
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Canonical Hauptmoduls as Eta Quotients

N xN(τ) = κN · x̂N(τ)

2 212 · [2]24/ [1]24

3 36 · [3]12/ [1]12

4 28 · [4]8/ [1]8

5 53 · [5]6/ [1]6

6 2332 · [2][6]5/ [1]5[3]

7 72 · [7]4/ [1]4

8 25 · [2]2[8]4/ [1]4[4]2

9 33 · [9]3/ [1]3

10 225 · [2] [10]3/ [1]3[5]

12 223 · [2]2[3] [12]3/ [1]3[4] [6]2

13 13 · [13]2/ [1]2

16 23 · [2] [16]2/ [1]2[8]

18 2 · 3 · [2] [3] [18]2/ [1]2[6] [9]

25 5 · [25] / [1]
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Covering Maps X0(N) → X(1)

N j(τ) as a function of xN(τ)

2 (x+16)3

x

= 123 + (x+64)(x−8)2

x

3 (x+27)(x+3)3

x

= 123 + (x2+18x−27)2

x

4 (x2+16x+16)3

x(x+16)

= 123 + (x+8)2(x2+16x−8)2

x(x+16)

5 (x2+10x+5)3

x

= 123 + (x2+22x+125)(x2+4x−1)2

x

6 (x+6)3(x3+18x2+84x+24)3

x(x+8)3(x+9)2

= 123 + (x2+12x+24)2(x4+24x3+192x2+504x−72)2

x(x+8)3(x+9)2
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The Dual Covering Maps

N j′(τ) := j(Nτ) as a function of xN(τ)

2 (x+256)3

x2

= 123 + (x+64)(x−512)2

x2

3 (x+27)(x+243)3

x3

= 123 + (x2−486x−19683)2

x3

4 (x2+256x+4096)3

x4(x+16)

= 123 + (x+32)2(x2−512x−8192)2

x4(x+16)

5 (x2+250x+3125)3

x5

= 123 + (x2+22x+125)(x2−500x−15625)2

x5

6 (x+12)3(x3+252x2+3888x+15552)3

x6(x+8)2(x+9)3

= 123 + (x2+36x+216)2(x4−504x3−13824x2−124416x−373248)2

x6(x+8)2(x+9)3
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The Elliptic Families EN → X0(N)

• For eachN > 2, there is a fibration EN → X0(N) → X(1) where each
fibre is, formally, an elliptic curve (iso. class), plus an N -isogeny.

• If the N -isogeny is forgotten, this becomes a conventional elliptic
family. (A rational one, if X0(N) has genus zero.)

– Any elliptic curve (iso. class) appears as ψ(N) fibres of EN .
– Singular fibres of EN include those above cusps

[points on X0(N) mapped to j = ∞ on X(1)], and elliptic points
[points on X0(N) mapped to j = 0 and j = 123 on X(1)].

• A Weierstraß model: if j = P 3(t)S(t)/R(t) = 123 + Q2(t)T (t)/R(t)
where t := xN , then EN → X0(N) has model
y2 = 4x3 − 3P (t)S(t)T (t)x−Q(t)S(t)T 2(t).
Cf. Herfurtner’s 1991 classification of certain elliptic families.
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Classical Modular Equations, Rationally Parametrized

Each Hauptmodul xN , a parameter for X0(N), rationally parametrizes
pairs of N -isogenous (iso. classes of) elliptic curves.
I.e., it parametrizes the order-N modular relation: the relation between
the transcendental functions j = j(τ) and j′ = j(Nτ) on H.

E.g., N = 2:

j = (x2 + 16)3/x2, j′ = (x2 + 256)3/x3
2.

Rational parametrization of pairs of fibres works at higher levels too.
E.g., the order-2 modular equation for x4, coming from X0(8)/X0(4):

x4(τ) = [x8(x8 + 8)] (τ), x4(2τ) =
[
x2

8/(x8 + 4)
]
(τ).

The rational function on each r.h.s. is of degree 2 because ψ(8)/ψ(4) = 2

is the index of Γ0(8) in Γ0(4), so X0(8)/X0(4) is 2-sheeted.
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From Hauptmoduls to Modular Forms

Theorem. If f = f(τ) is a weight-k modular form on Γ(1), with trivial
character, then f(Nτ)/f(τ), which is a single-valued function onX0(N),
will be of weight 0, i.e., an element of the function field of X0(N). So it
must be a rational function of the Hauptmodul xN .

Strengthened version. Even if the character is nontrivial, in ‘nice’ cases
(e.g., if it is Dirichlet), the quotient f(Nτ)/f(τ) will be a finite-valued
function on X0(N), i.e., an algebraic function of the Hauptmodul xN .

Both of these extend to higher levels (to modular forms on genus-zero
Γ0(M), yielding rational/algebraic functions of xNM).
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Bringing in the Differential Equations

Theorem (Stiller 1980s, et al.). Any weight-k modular form f on a
genus-zero modular subgroup Γ0(N) ∼= P1(C)xN , with trivial character,
viewed as a function of the Hauptmodul xN , satisfies a homogeneous
linear order-(k + 1) ODE: a Fuchsian differential equation.

A new perspective: independent variable=xN , dependent variable=f .

Strengthened version. The same occurs for modular forms with ‘nice’
nontrivial characters; and even for certain non-form functions, such as
roots of modular forms, which may not even be single-valued on H.
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An Example: g2 and g
1/4
2

• g2 = g2(τ) is a weight-4 form on Γ(1) and must satisfy an order-5
Fuchsian ODE “on X(1)”, with independent variable j.

• The fourth root g1/4
2 is not a weight-1 modular form, since it fails to be

single-valued on H 3 τ . But it ‘almost’ is one: each of its branches
satisfies an order-2 ODE. In particular,

g
1/4
2 (τ) = 2F1

(
1
12,

5
12; 1; Ĵ(τ)

)
,

where Ĵ := 123/j. As a function of an appropriate Hauptmodul, it is
a Gauss hypergeometric function! (Dedekind; Stiller 1988.)
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New Algebraic Hypergeometric Transformations

In consequence, for N = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25, there is
a rationally parametrized algebraic hypergeometric transformation

2F1

(
1
12,

5
12; 1; 123/j′(xN)

)
= PREFACTOR(xN) · 2F1

(
1
12,

5
12; 1; 123/j(xN)

)
,

coming from g
1/4
2 (123/j′(xN)) = PREFACTOR(xN) · g1/4

2 (123/j(xN)).
(Abuse of notation here...).

The prefactor is in general algebraic, not rational.
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Picard–Fuchs Equations and Modular Forms

• Suppose that

– E
π→ X = Γ \H∗ is an elliptic family, where Γ < Γ(1) := PSL(2,Z).

– ω = ω(x) is a meromorphic family of 1-forms, and cycles
(homology classes) γ1, γ2 are defined as (multivalued) functions
of x ∈ X.

• Then (cf. Stienstra–Beukers)

– the second-order P–F equation satisfied by the periods ∫γi ω(x)
has a weight-1 modular form f(x) for Γ among its solutions.
It may have a nontrivial [even, non-Dirichlet] character.

– The full solution space of the P–F equation is (Cτ(x)⊕ C)f(x).
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The Cases Γ = Γ(1) and Γ = Γ0(N)

• If Γ = Γ(1),

� the associated weight-1 modular form f1 is g
1/4
2 . (Not actually

single-valued.)
� the associated P–F equation satisfied by f1 = f1(Ĵ) is the GHE

satisfied by 2F1

(
1
12,

5
12; 1; Ĵ

)
. Here Ĵ := 123/j.

• If Γ = Γ0(N),

� the associated weight-1 form fN could be taken to be f1, but...
� an associated P–F equation can be obtained by pulling back the

GHE along X0(N) → X(1).
Result: a Fuchsian ODE with a singular point at each singular fibre.
And placing it in ‘normal form’ is best:
a GHE (if there are 3 singular fibres), a HE (if there are 4),...

Feb. 2008, UCSB 37



The P–F Equation LNfN = 0 for EN → X0(N)

N Operator LN , where x := xN

2 D2
x +

h
1
x + 1

2(x+64)

i
Dx + 1

16x(x+64)

3 D2
x +

h
1
x + 2

3(x+27)

i
Dx + 1

9x(x+27)

4 D2
x +

h
1
x + 1

x+16

i
Dx + 1

4x(x+16)

5 D2
x +

h
1
x + x+11

x2+22x+125

i
Dx + x+10

4x(x2+22x+125)

6 D2
x +

h
1
x + 1

x+8 + 1
x+9

i
Dx + x+6

x(x+8)(x+9)

7 D2
x +

h
1
x + 4x+26

3(x2+13x+49)

i
Dx + 4x+21

9x(x2+13x+49)

8 D2
x +

h
1
x + 1

x+4 + 1
x+8

i
Dx + 1

x(x+8)

9 D2
x +

h
1
x + 2x+9

x2+9x+27

i
Dx + x+3

x(x2+9x+27)

N.B.: The scalar P–F operator L9 is equivalent to
the 2× 2 matrix P–F operator computed by Dwork (1964).
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Canonical Weight-1 Modular Forms (with character)

N xN(τ) fN(xN(τ)) cond(χN)

2 212 · [2]24/ [1]24 [1]4/ [2]2 —
3 36 · [3]12/ [1]12 [1]3/ [3] —
4 28 · [4]8/ [1]8 [= f2(x2(τ))] —

5 53 · [5]6/ [1]6
{
[1]5/ [5]

}1/2 —
6 2332 · [2][6]5/ [1]5[3] [1]6[6] / [2]3[3]2 3
7 72 · [7]4/ [1]4

{
[1]7/ [7]

}1/3 —
8 25 · [2]2[8]4/ [1]4[4]2 [= f2(x2(τ))] 4
9 33 · [9]3/ [1]3 [= f3(x3(τ))] 3

N.B.: Fractional powers in f5, f7 are related to E5, E7 having a
singular fibre of Kodaira type III , II , rather than just I1 and I5, I7.

Feb. 2008, UCSB 39



The General Theorem

Let Γ < Γ(1) = PSL(2,Z), and choose M > 1.
Let Γ′ := gMΓg−1

M < PSL(2,R), and let Γ(M) := Γ ∩ Γ′.

If Γ,Γ(M) are of genus zero, with Hauptmoduls x, x(M), then x(τ), x(Mτ)
have rational representations φ(x(M)(τ)), φ′(x(M)(τ)), and...

If f = f(x) is the canonical weight-1 modular form from the
P–F equation for the elliptic family EΓ

π→ Γ \H∗, then

f
(
φ(x(M))

)
= PREFACTOR(x(M)) · f

(
φ′(x(M))

)
.

Example: Γ = Γ0(N), Γ(M) = Γ0(MN).

In this way, every (genus-zero) covering X0(MN)/X(N) yields an
algebraic transformation of a special function.
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Algebraic Transformations: Examples #1, 2, 3

À X0(8)/X0(4). Let f = 24 · [1]8[4]16/[2]24, a weight-1 form on X0(4);
view it as a function of the alternative H’modul x̃4 = 24 · [1]8[4]16/[2]24.
This is simply the complete elliptic integral, K2 = K2(α)! Parametrize
the relation between x̃4(τ), x̃4(2τ) by x8 to get Identity #1.

Á X0(25)/X0(5). Let f = f5 = {[1]/[5]}1/2, a weight-1 form on X0(5);
view it as a function of the Hauptmodul x5.
(This was the function “f5 = f5(z)”.) Parametrize the relation
between x5(τ), x5(5τ) by x25 to get Identity #2.

Â X0(12)/X0(6), X0(18)/X(6). Let f = [2]3[3]6/[1]2[6]3, a weight-1 form
on X0(6); view it as a function of the alt. Hauptmodul x6/(x6 + 9).
(This was the generating function “F = F (z)”.) Parametrize the
relation between x6(τ), x6(2τ) by x12 to get Identity #3a, etc.
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Ramanujan’s Elliptic Integrals

• Ramanujan’s complete elliptic integral

Kr(αr) ∝ 2F1(1/r, 1− 1/r; 1; αr)

when r = 2, 3, 4, is associated with families E4, E3, E2 (respectively).

It is simply a canonical weight-1 modular form on the base curve,
i.e., a period, written as a function of an (alternative) Hauptmodul.

• In consequence: many new algebraic transformations of K3 and K4,
e.g.,

K4

 
x(x+ 4)5

(x2 + 6x+ 4)2(x2 + 8x+ 20)

!
= 5

"
x2 + 6x+ 4

x2 + 30x+ 100

#1/2
K4

 
x5(x+ 4)

(x2 + 8x+ 20)(x2 + 30x+ 100)2

!

which comes from E10 → E2, i.e., from X0(10)/X0(2) or Γ(10) < Γ(2).
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Current and Future Work

• Treating more elliptic families.

� EΓ
π→ Γ \ H∗, where Γ is a general genus-zero congruence

subgroup of PSL(2,Z), other than an X0(N).
(Classified by Cummins–Pauli.)

� EΓ
π→ Γ \H∗, where Γ is a genus-zero non-congruence subgroup.

(Not yet classified.)
� Elliptic families that are not of this quotient form.

(Cf. Herfurtner’s classification, for 4 singular fibres.)

• Extending these computations to pencils of other algebraic varieties.
(E.g., lattice-polarized K3 surfaces; cf. Doran.)

• Treating multivariate families, discovering (perhaps) new algebraic
transformations of multivariate hypergeometric functions.
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