2-Manifolds, 3-Manifolds & SUSY gauge theories

(D. Morrison)

Starting point in physics: \(A_{n-1} \leftrightarrow SU(N) \)

Six-dimensional: \(N \) coincident M5-branes in M-theory in \(M^{10,1} \)

(\(M2 \)-branes)

Indirect study: \(M^{k,3} \times X^{5-d-k} \)

\(5-k=1 \) \(M^{4,3} \times S^1 \) map to gauge field theory \(G = SU(N) \)

Circumference \(\leftrightarrow \) coupling of gauge theory

\(M^{3,1} \times \Sigma \)

\(\Sigma \) Riemann surface (punctured allowed) \(\Rightarrow \) Complicated 4d physical theory

Wilson line operators

\(M2 \subset M5 \)

\(M5 \) on \(\Sigma \times R^{3,1} \)

\(M2 \) on \(Y \times R^{1,1} \)

For appropriate metric on \(\Sigma \)

\(SU(2) \)

\(SU(2) \) gauge theories

\(g \) -3 \(SU(2) \)'s (if no punctures, complex)
4D Theory: Witten- 't Hooft line operators

\[q = \text{electric charge} \]
\[p = \text{magnetic charge} \]

Fenchel - Nielsen

Hypothesis: \(\gamma \) is non-self-intersecting

Data: \# Crossing, \# winding near each separating geodesic

Dehn - Thurston Thm

\[\pi, \text{ even} \]
\[\pi, \pi, \pi > 0 \]

Lemma

\[H: \text{homotopy class of curves} \]
\[\# \text{of boundaries} \]
3-Manifolds

"quaternions", i.e., (hyperbolic) metrics with cusp in a knot/link in \mathbb{R}^3

decomposes 3-manifold into "ideal tetrahedra"

Cross ratios

3+1 dim

2+1 dim' l object

Coupling between 4D theory
3D boundary theory

Domain wall
other domain

Domain in \mathbb{R}^4