Western Hemisphere Colloquium on Geometry & Physics

Hall-Littlewood Chiral Rings & Derived Higgs Branches

CHRISTOPHER BEEM
UNIVERSITY OF OXFORD

Based upon ongoing work w/ D. Berdeja-Suárez

02 November 2020
Supersymmetric, and especially superconformal, quantum field theories are algebraically & geometrically rich objects.

Many interesting things to study on both sides of this dichotomy. Ideally should enrich each other.

Today I'll talk about one development in this area that nicely illustrates this interplay.
Today I’m talking about 4d N=2 SCFTs and their Higgs branch of vacua M_H.

From the SCFT perspective, it is natural to study M_H as an affine variety (in terms of ring of functions \mathbb{R}_H).

I will point out that in some sense, this is not quite the "right" object to study.

Better is the Hall-Littlewood chiral ring.

Geometrically, this turns out to mean treating M_H as a derived scheme.

Physically, corresponds (roughly) to keeping track of residual Abelian gauge symmetry in generic Higgs branch vacua.

Some observations:

- \mathbb{R}_H enjoys extra symmetries.

- Hints of a relationship with structure of full moduli space of vacua, but some subtleties remain.

- Interesting relation to vertex algebras (v. technical point).
Outline

- 4d $N=2$ SUSY, Moduli Spaces, and Higgs branches.
- Hall-Littlewood index & chiral ring
- Hall-Littlewood cohomology & derived symplectic reduction
- Geometric & physical aspects of R_{HL}
- Examples: class S of type A_2
- Concluding remarks
4d $\mathcal{N} = 2$ SCFT Primer (Lagrangian perspective)

Lagrangian theories constructed using two types of supermultiplets:

- Vector multiplet \(\{ \Phi, \lambda^i_{\alpha}, A_\mu \} \) in adjoint rep. of gauge group \(G \).
- Hypermultiplets \(\{ q, \psi_\alpha \} \) in quaternionic \(G \)-rep: \(R \) (often \(R = R_\text{re} \oplus \overline{R_\text{re}} \)).

Conformal invariance restricts \((G, R)\):*

- Semi-simple gauge group \(G = G_1 \times G_2 \times \cdots \times G_n \).
- Vanishing beta-functions \(2 \beta^\vee(G_i) = \sum_\alpha n_\alpha c_2(R_\alpha) \).
- Only freedom in Lagrangian is values of \(c_2 \) gauge couplings.

In non-Lagrangian theories, restriction on \(c_2(R_\alpha) \) replaced by restriction on \(\langle U(1)_r G_i G_i \rangle \) - triangle anomaly.

* additional constraint for \(U(2n) \) gauge groups due to global anomalies.
My focus will be on the "moduli spaces of vacua" for these theories. These can be quite intricate.

Full moduli space is partitioned into "branches":

- **Coulomb branch**: \(\langle \phi \rangle \neq 0, \langle q \rangle = 0 \)
 - \(U(1)_r \) spontaneously broken
 - \(SU(2)_r \) unbroken
 - algebraically, \(\mathcal{M} = \mathbb{C}^r \) (\(r = \text{rank}(G) \))
 - metric has interesting coupling dependence
 - special-Kähler

- **Higgs branch**: \(\langle q \rangle \neq 0, \langle \phi \rangle = 0 \)
 - \(SU(2)_r \) spontaneously broken
 - \(U(1)_r \) unbroken
 - (analog) hyperkähler space
 - algebraically intricate
 - metric classically exact

- **Mixed branch**: \(\langle q \rangle \neq 0, \langle \phi \rangle \neq 0 \)
 - \(SU(2)_r \) spontaneously broken
 - \(U(1)_r \) spontaneously broken
 - locally product of "Higgs" and "Coulomb"
 - not so much work here
4d $\mathcal{N}=2$ Moduli Spaces (cartoons)

Simplest

```
\begin{tikzpicture}
  \draw (0,0) -- (2,2) -- (4,0) -- cycle;
  \draw (0,0) -- (2,2);
  \draw (2,2) -- (4,0);
  \node at (1,1) {\text{SCFT point}};
  \node at (2,2) {\mathcal{M}_H};
  \node at (0,0) {\mathcal{M}_C \cong \mathbb{C}^r};
\end{tikzpicture}
```


Generic

```
\begin{tikzpicture}
  \draw (0,0) -- (2,2) -- (4,0) -- cycle;
  \draw (0,0) -- (2,2);
  \draw (2,2) -- (4,0);
  \node at (1,1) {\text{SCFT pt.}};
  \node at (2,2) {\mathcal{M}_H};
  \node at (0,0) {\mathcal{M}_C \cong \mathbb{C}^r};
\end{tikzpicture}
```

"Enhanced Coulomb branch"

```
\begin{tikzpicture}
  \draw (0,0) -- (2,2) -- (4,0) -- cycle;
  \draw (0,0) -- (2,2);
  \draw (2,2) -- (4,0);
  \node at (1,1) {\text{SCFT point}};
  \node at (2,0) {\mathcal{M}_{\text{mixed}}};
  \node at (2,2) {\mathcal{M}_H};
  \node at (0,0) {\mathcal{M}_C \cong \mathbb{C}^r};
\end{tikzpicture}
```

"Enhanced Higgs branch"

```
\begin{tikzpicture}
  \draw (0,0) -- (2,2) -- (4,0) -- cycle;
  \draw (0,0) -- (2,2);
  \draw (2,2) -- (4,0);
  \node at (1,1) {\text{SCFT pt.}};
  \node at (2,0) {\mathcal{M}_{\text{mixed}}};
  \node at (2,2) {\mathcal{M}_H};
  \node at (0,0) {\mathcal{M}_C \cong \mathbb{C}^r};
\end{tikzpicture}
```
Higgs branches (Lagrangian perspective)

Higgs branches for gauge theories are realised as hyperkähler (HK) quotients.

Let V_{r} be vector space carrying quaternionic G-rep R:

- HK moment map $\mu : V_{r} \to g^* \oplus \mathbb{R}^3$ (i.e., triplet of real moment maps)
- HK quotient $M_{H} \cong V_{r} // G_{r} = \mu^*(0) / G$ (O-terms & F-terms $= \emptyset$ / gauge)
- More generally, for theory with Higgs branch $M_{H} \subseteq G$, can gauge $G_i : M_{H}^{G} = M_{H} // G_{i}$

From perspective of fixed $\mathfrak{c} \subset \mathfrak{str} / \mathfrak{n} = 1$ subalgebra, these are holomorphic-symplectic singularities (non-deg. $(2,0)$-form on smooth locus). Gauging becomes (\mathfrak{c})-symplectic quotient.

- $\mu_{e} = \mu_{2} + i \mu_{3}$ is holomorphic moment map for G_{e} action w.r.t. hole-symplectic form.
- $M_{H} \cong (\mu_{e}^{-1}(0))/G$

Remark: in $\text{SCFT}_{\mathbb{R}}$, O is always an irregular value of μ_{e}, so result is stratified (hole) symplectic space.
4d \(\mathcal{N}=2 \) SCFT Primer (algebraic perspective)

Primary protagonist: (Complexified) superconformal algebra: \(\text{su}(4|2) \)

- **Bosonic (even) subalgebra**: \(\text{su}(4) = \text{su}(2)_{\mathbb{R}} \times \text{su}(2)_{\mathbb{R}} = \text{so}(4,2) = \text{su}(2)^{\mathbb{R}} \times \text{su}(2)^{\mathbb{R}} \)

- **Fermionic (odd) generators**: \(\{ Q^I, \tilde{Q}^{\bar{I}}, S^I, \tilde{S}^{\bar{I}} \} \)

Local operators organised into unitary irreps (w.r.t. appropriate reality/Hermicity conditions)

Generically, can act w/ 8 \(Q \)'s. For certain short & semi-short \(\text{"BPS"} \) reps, some combinations of \(Q \)'s annihilate.

Collection of local ops forms intricate \(\text{"OPE algebra"} \), with \(\mathcal{O}_1(x) \mathcal{O}_2(x_\mathbb{R}) \) generically singular as \(x_\mathbb{R} \to x_2 \).
Higgs branches (algebraic perspective)

In an abstract SCFT, we encounter \mathcal{M}_H as a complex algebraic variety through its coordinate ring.

- Unitarity bounds imply for any operator $\Delta \geq 2R$.

- Operators with $\Delta = 2R$ necessarily have $r_i j_1 j_2 = 0$. These are superconformal primaries in $\hat{\mathcal{C}}_2$ multiplets. Annihilated by $Q^a & \bar{Q}^a$ (so $\frac{1}{2}$-BPS).

- These operators have non-singular OPEs; form a commutative, associative \mathcal{C}-algebra. Higgs chiral ring \mathcal{R}_H.

- In Lagrangian theories (conjecturally in general) $\mathcal{R}_H \cong \mathbb{C}[\mathcal{M}_H]$.

Here symplectic structure of \mathcal{M}_H is not manifest. Only algebraic derivation I know is very complicated.
Higgs branches (algebraic perspective)

Gauging realises HK quotient algebraically.

- G-symmetry \Rightarrow conserved current $\Rightarrow \hat{B}_4$ multiplet \Rightarrow cx. moment map $\mu_c = \mu_1 + \mu_2$ as primary.

- Upon gauging, $\mu_c \sim \delta Q \lambda'$. Further restricting to gauge invariants

$$R_H^G \equiv \left(\frac{R}{\langle \mu_c \rangle} \right)^G$$

- This reproduces HK quotient b/c symplectic quotient is GIT quotient.

$$\text{spec} \left(R_H^G \right) \cong \frac{\mathfrak{m}^{(0)}}{G} \cong \frac{\hat{\mu}^{\ast}(0)}{G}$$
An unnatural construction?

Interesting algebraic structures in SUSY QFT often arise as categorifications of numerical invariants computed by path integral. (e.g., BPS partition functions, superconformal indices,...)

For R_H, obvious decategorification is Hilbert series:

$$I_H(z) = \sum_{n=0}^{\infty} \dim(R_H^{(n)}) z^n$$

$R_H^{(n)} = \{ R\text{-charge homogeneous subspace} \}$ of R_H of degree n.

Though well-defined, does our SCFT "want" us to study this quantity? Is it computable as a path integral?

The place to look is in the world of superconformal indices.

Z counts states in Hilbert space assigned to S^3.

\approx local operators by operator/state correspondence.
An unnatural construction?

Interesting algebraic structures in SUSY QFT often arise as categorifications of numerical invariants computed by path integral.
(e.g., BPS partition functions, superconformal indices, ...)

For R_H, obvious decategorification is Hilbert series:

$$I_H(z) = \sum_{n=0}^{\infty} \dim(R_H^{(n)}) z^n \quad R_H^{(n)} = \{ R\text{-charge homogeneous subspace} \} \text{ of } R_H \text{ of degree } n.$$

Though well-defined, does our SCFT "want" us to study this quantity? Is it computable as a path integral?

The place to look is in the world of superconformal indices.

$$\mathcal{X}(\underbrace{s \ldots s}_s \underbrace{s \ldots s}_s) = I_{\mathcal{N}=2}(p, q, t; \Delta) = \text{STr}_{\bar{\mathcal{M}}[\mathcal{S}^3]}(p^{\frac{1}{2} \delta_i} q^{\frac{1}{2} \delta_i} t^{\sum_{i=1}^{\infty} \delta_i} x_i^{\alpha_i}) \begin{bmatrix} \widehat{\delta}_{\alpha_s} = \Delta - 2j_s - 2 \bar{\Gamma} + r \\ \widehat{\delta}_{\alpha_s} = \Delta + 2j_s - 2 \bar{\Gamma} - r \end{bmatrix}$$
An unnatural construction?

Generically, $I_{N=2}$ counts χ_0-bps states/operators up to cancellations. In special limits counts only more highly susy operators.

No index limit is guaranteed to return the Hilbert series of R_4.

This is in contrast to 3d $N=4$ theories. So one way out is to reduce to 3d $\&$ flow to IR. See [Raza & Willett (2014)].

Alternatively, R_4 isn't the "right" object to study in 4d.
An unnatural construction?

Generically, $I_{\mathbb{Z}_2}$ counts χ-BPS states/operators up to cancellations. In special limits counts only more highly SUSY operators.

$\mathcal{I}_{\text{HL}}(t)$

"Hall-Littlewood index"

\Rightarrow Hall-Littlewood chiral ring

$I_{\mathbb{Z}_2}(p,q,t)$

"Macdonald index"

\Rightarrow Macdonald VOA

$I_{\mathbb{Z}}(p,\sigma)$

"Coulomb index"

\Rightarrow Coulomb chiral ring

$I_\mathbb{C}(p,\sigma)$

"Schur index"

\Rightarrow associated VOA

\mathcal{I}_{HL} is almost counting Higgs chiral ring operators, but not quite:

$$\mathcal{I}_{\text{HL}}(t) = \text{trace over states with } \Delta = 2|\rho| - r, j_r = 0$$

$$\mathcal{I}_{\text{HL}}(t) = \text{Str}_{\text{HL}} t^{R-r} \prod_{i=1}^{\text{rank } G} x_i$$
The Hall–Littlewood Chiral Ring

I_{HL} counts (c/sgn) operators obeying several conditions:

- $E = 2R - r$ \((\geq 2R) \)

- $\mathcal{J}_2 = 0$

- $\mathcal{J}_1 = -r$ \(\rightarrow \) additional condition giving specialisation of chiral ring

It's an exercise in superconformal rep\(^*\) theory to find where such states can occur:

- $\hat{\mathcal{B}}_2$ multiplets (primary obeys $\Delta = 2R \& r = j_1, j_2 = 0$) \(\Rightarrow \) superconformal primary is Higgs chiral ring operator

- $\overline{\mathcal{D}}_{2(j,0)}$ multiplets (primary obeys $\Delta = 2R, j_1 = 1, j_2 = -r - 1$ \& $\mathcal{J}_2 = 0$) \(\Rightarrow \) Q_1^+ descendant is counted. Annihilated by \hat{Q}_2^+, \hat{Q}_1^-

Some intuition comes from (free) Lagrangian gauge theories.

$\overline{\mathcal{D}}_{2(n)}^{(j,0)} \leftrightarrow \mathcal{D}_{n(q)} \lambda^+ \cdots \lambda^+$

- hypermultiplet scalars.
- homogeneous degree-n polynomial.
- positive-helicity, right-handed gauginos.
The Hall-Littlewood Chiral Ring

These $\frac{3}{8}$-BPS operators have non-singular collisions and define (super-)commutative associative \mathbb{C}-algebra R_{HL}.

Structural properties:

- $\mathbb{Z}_{30} \times \mathbb{Z}_{30}$ graded by $(R, -r)$ w/ Grassmann parity $= r \mod 2$.

- $(R_{HL})^{r=0} \cong R_H$.

- Enriched with $(-1,0)$-Poisson bracket (extending symplectic PB on R_H).

- Coupling-independent (like R_H).

* These latter two properties follow from a slightly elaborate realisation of R_{HL} starting with VOA structure.
For a gauge theory, R_{HL} is determined classically (like Higgs branch).

Suppose we know R_{HL} for a theory T, want to gauge G-symmetry of T.

Nontrivial step is to account for recombination of \hat{D} and \bar{D} operators at non-zero coupling. Only possible recombination patterns are as follows:

Recombination encoded in cohomology of (corrected) Q_\perp action on zero-coupling ring.
RHL for gauge theories

This defines a Hall-Littlewood cohomology problem. Can formalize abstractly.

- $R_{HL}^G \text{ - vector-multiplet } \cong \{ \text{ Grassmann algebra generated by } (z^i)_{i=1,\ldots, \dim G} \} \cong \Lambda \cdot g$

- $HL^* \cong (R_{HL} \otimes \Lambda \cdot g)^G$

(When $R_{HL}^G \neq R_{HL}^T$, cohomological grading on HL^* is sum of $\Lambda \cdot g$ grading & (1^*)-grading on R_{HL}.)

Differential determined by Q^L, SUSY transformations of interacting gauge theory. Extends uniquely as differential on HL^*.

- $d_{HL}(x) = 0$ for $x \in R_{HL} (\Pi)$
- $d_{HL}(z^i) = \mu^i \in R_{HL} (\Pi)$

Corresponding cohomology is our objective: $R_{HL} [\Gamma G] \cong H^*(HL^*, d_{HL})$

(Poisson bracket inherited from $R_{HL} [\Gamma T]$; \(\lambda \)'s Poisson commute with everything.)
Relations to Koszul Homology/BRST

This cohomological story can be related to some familiar constructions.

- Before restricting to G-invariants, we have the Koszul complex/Koszul homology associated to the moment map.

- Tempting to introduce ghosts in $\Lambda^* g^*$ and complete classical BRST complex of Kostant-Sternberg. This isn't what physics dictates. If so inclined, we have cohomology of relative BRST complex defined by Poisson kernel of anti-ghosts.

- In contrast to plain vanilla applications of BRST in physics, we are especially interested in higher cohomology classes.

- This description of R_{HL} for gauge theories is natural in derived algebraic geometry. It is the coordinate ring of the derived symplectic quotient of the (pre-gauging) Higgs branch by G_e.

$$ R_{\text{HL}}[T^g] \cong \frac{\mathcal{M}_H[T]}{G_e} \quad \mathcal{M}_H[T^g] \cong \text{spec}(R_{\text{HL}}[T^g]) $$
(Non-)vanishing properties of Koszul homology of a ring R associated to elements $\{\mu_i\}_{i \in \mathbb{Z}}$:

1. $H_0(K_*(\{\mu_i\})) \cong R/\langle \mu_i \rangle$
2. $\{\mu_i\}$ form regular sequence in $R \implies H_i(K_*(\{\mu_i\})) = 0$ for $i > 1$

Non-vanishing higher homology $\implies \{\mu_i\}$ don't form regular sequence $\implies \mu_0(0)$ not a complete intersection.

By nature of HK quotient:

$$\left\{ \dim_{\mathbb{C}}(\mu_\ell(0)) = \dim_{\mathbb{C}}(M_\mu) - \dim(G) + n \right\} \iff \left\{ \text{H \in G of dimension } n \text{ stabilizes generic point in } \mu_\ell(0) \right\}$$

So higher HL cohomology detects unbroken gauge symmetry on M_μ.

* Scheme-theoretic subtlety here.
Shadows of the full moduli space?

Previous result suggests that there is higher HL cohomology when there is an enhanced Higgs branch.

M_H embedded smoothly in higher dimensional mixed branch: $M_H \hookrightarrow M_{\text{mixed}}$

R_{HL} may see something of this ambient mixed branch. There is even a natural conjecture:

$$R_{HL} \cong \mathbb{C}[\pi_1(N_i)\mathcal{M}_H]$$

This appears to be almost correct. What we know comes from examples.

In general, this conjecture is probably not well-defined here.
Examples in class S

A_i (2,0) SCFT e.g., $C_{3}=4$

$\begin{align*}
\mathcal{M}_4 & \equiv \mathbb{C}^2 / D_{3,1} \equiv \mathbb{C}[x,y,z] / \langle y^2 = x^2 z + 4 z^3 \rangle \\
& \text{Naively, dim}_M(M_4) = 4 \times \text{dim vertex} - 3 \times \text{dim gauge group} \\
& = 4 (7g-2) - 3 (3g-3) \\
& = 1 - 3 g \\
\text{true dimension} & - \text{residual symmetries}
\end{align*}$
Examples in class S

$A_1, (2,0)$ SCFT e.g., $G_{2\times 4}$

HL cohomology calculation somewhat elaborate; simplified by gauging $SU(2)$ factors in two stages

$\mathbb{Z}_2 \cong \mathbb{Z}_2$
Examples in class S

Observations

- $\mathcal{H}^1_{\text{HL}}$ decomposes as direct sum of g identical, indecomposable modules over $\mathcal{H}^0_{\text{HL}} \cong \mathbb{Z}_4$.

- $H^i_{\text{HL}} \neq 0$ for $i \leq g$, $H^i_{\text{HL}} = 0$ for $i > g$.

- "Outer" $U(g)$ symmetry that leaves $\mathcal{H}^0_{\text{HL}} \cong \mathbb{Z}_4$ invariant.
 Suggestive of 3d Coulomb branch symmetries.

Consider $\mathcal{C}^{2|g}/D_{g+1}$ where $D_{m+1}: \mathcal{C}^{2|g} \rightarrow \mathcal{C}^{2|g}$

\[
\begin{align*}
(x, y; \theta_i) &\mapsto (\frac{y}{-x}, \frac{-x}{y}; \theta_i) & (x, y; \theta_i) &\mapsto (\omega x, \omega^{-1} y; \theta_i)
\end{align*}
\]

\[
\begin{align*}
\{ &\text{corresponds to naive guess from previous slide.} \\
&\text{omit all invariants constructed only from } \theta_i \text{'s, as well as } \Theta_i \ldots \Theta_m(xy)^m \text{ where } m < n. \text{ Result matches } \mathcal{R}_{\text{HL}} \text{ exactly.}
\end{align*}
\]
Conclusions

- Higgs branches of 4d $\mathcal{N}=2$ SCFTs arise naturally as derived algebraic spaces. Captured by $\mathcal{Z}_{\text{Higgs}}[\mathcal{O}]$.

- When derived structure is included, extra symmetries emerge. These seem to be related to symmetries of 3d Coulomb branch obtained by S^1-reduction.

- Though undiscussed here, $\mathcal{Z}_{\text{Higgs}}$ plays a prominent role in the vertex operator algebras associated to these same 4d theories.

Open questions

- Importance of conformal invariance?

- Why is 4d the right place to see this derived structure?

- Clarify relationship to full moduli space geometry.

- Better uses of DAG formalism?
Thanks for your attention!