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I will talk about the paper “Gravity and the Crossed Product”
(arXiv:2112.12828) and “An Algebra of Observables for de Sitter
Space” (arXiv:2206.10780) with V. Chandrasekharan, R. Longo,
and G. Penington.



I will start with a motivating example from the field of affine Lie
algebras.

An affine Lie algebra is a central extension of the Lie
algebra of maps of a circle C to an ordinary Lie algebra g (usually
simple or semi-simple)

If a Hilbert space H furnishes a representation of an affine Lie
algebra ĝ, then to every g∗-valued function f : S1 → g∗, there is an
operator J(f ) on H that physicists denote as

J(f ) =

∮
C

(J, f ),

where J is the “‘current.” Bounded functions of operators J(f )
generate the Type I von Neumann algebra of all bounded operators
on H.
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Suppose however that we divide the circle into two pieces A and B

and consider only functions f with support in, say, region A.
Operators J(f ) for such f generate what is called a von Neumann
algebra of Type III. In case this notion is not familiar, I will explain
enough later to make the talk understandable.
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This is actually a special case of a much more general
phenomenon, which holds for quantum field theory in any
dimension.

A quantum field theory in D spacetime dimensions –
therefore d = D − 1 space dimensions – has a Hilbert space H, and
if we consider all of the quantum fields anywhere in space, they
generate a Type I von Neumann algebra of all bounded operators
on H. But if we divide space into two disjoint regions A and B

and consider only operators in region A, then we get an algebra of
Type III. This was shown by H. Araki in the 1960’s (for the case of
free field theory).
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Why would one care about this as a physicist?

The basic
motivation comes from black holes. In this application

region A corresponds to the region of space that is “outside the
horizon,” causally accessible to an outside observer, and region B
is the “interior” of the black hole, the region “behind the horizon.”
Thus, the operators available to us if we live outside the black hole
horizon are the operators in region A. As I have just explained, in
ordinary quantum field theory, this is a Type III algebra.
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Gravity, however, does not fit into the framework of ordinary
quantum field theory.

Trying to provide a framework that in some
sense extends or refines quantum field theory and in which gravity
can fit is the main goal of string theory. The main point that I
want to convey in this talk is that there are reasons to believe that
when gravity is taken into account, the operators outside the black
hole horizon actually generate an algebra of Type II, and that this
helps resolve some of the puzzles about quantum black holes.
Again, I will try to say a little about what is a Type II algebra.
First we have to review the idea of “black hole thermodynamics,”
a subject that is by now 50 years old.
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Jacob Bekenstein (1972), inspired by questions from his advisor
John Wheeler, asked what the Second Law of Thermodynamics
means in the presence of a black hole.

The Second Law says that, for an ordinary system, the “entropy”
can only increase. However, if we toss a cup of tea into a black
hole, the entropy seems to disappear. Bekenstein wanted to
“generalize” the concept of entropy so that the Second Law would
hold even in the presence of a black hole. For this, he wanted to
assign an entropy to the black hole.
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He needed a property of a black hole that can only increase.

It is
actually not true that the mass or energy of a black hole can only
increase. But at the time that Bekenstein was working, Stephen
Hawking had just proved the “area theorem,” which says that in
classical General Relativity, the area of a black hole horizon can
only increase. It was therefore fairly natural for Bekenstein to
propose that the area A of the black hole horizon should represent,
in some sense, a contribution to the entropy. To be more exact,
since entropy is dimensionless but A of course has dimensions of
area (or length2 if we are in three space dimensions), Bekenstein
proposed that a multiple of

A

G~

should be viewed as a contribution to the entropy (here G is
Newton’s constant and ~ is Planck’s constant). Hawking later
showed that this should actually be A/4G~.
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Bekenstein proposed that the quantity that satisfies the second law
and always increases is not the ordinary entropy of matter and
radiation outside a black hole, which I will call Sout, but rather a
“generalized entropy” which is the sum of A/4G~ and Sout:

Sgen =
A

4G~
+ Sout.

The idea is that the “correct” quantity to which the second law
applies should really be the generalized entropy. When we toss a
cup of tea into a black hole Sout goes down but A/4G~ goes up by
more.
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Supposedly, Stephen Hawking was skeptical of Bekenstein’s idea
and set out to disprove it by studying the behavior of a quantum
field interacting with a black hole.

But he ended up proving that Bekenstein was right, by finding that
at the quantum level a black hole is not really black but has a
temperature of order ~.
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For an ordinary system, the “entropy” is a measure of the number
of degrees of freedom – or more precisely, the number of degrees of
freedom that are relevant at a given temperature.

Many
researchers have thought that, somehow, the entropy S = A/4G
means that the black hole horizon can be described by some sort
of degrees of freedom that live at its surface – one bit or qubit for
every 4G of area. For example, in a famous article in 1992, John
Wheeler illustrated that idea with this picture:312 JOHN ARCHIBALD WHEELER THE SEARCH FOR LINKS 313

Fig. 19.1. Symbolic representation of the "telephone number" of the particular one of the
2" conceivable, but by now indistinguishable, configurations out of which this particular
blackhole, of Bekenstein number N and horizon area 4NHlogs2, was put together. Symbol,
also, in a broader sense, of the theme that every physical entity, every it, derives from bits.
Reproduced from JGST, p.220.

a magnetic field B that runs perpendicular to it. In consequence the piece of copper
receives in the time t a transfer of momentum p in a direction z perpendicular to
the directions of the wire and of the field,

p - Blit
= (flux per unit z) x (charge, e, of the elementary carrier of current)

x (number, N,of carriers that pass in the time t)
(19.2)

This impulse is the source of the force that displaces the indicator needle of the
magnetometer and gives us an instrument reading. We deal with bits wholesale
rather than bits retail when we run the fiducial current through the magnetometer
coil, but the definition of field founds itself no less decisively on bits.

As third and final example of it from bit we recall the wonderful quantum
finding of Bekenstein [58-60] — totally unexpected denouement of earlier classical
work of Penrose [61] Christodoulou [62] and Ruffini [63] — refined by Hawking [64,
65] that the surface area of the horizon of a blackhole, rotating or not, measures
the entropy of the blackhole. Thus this surface area, partitioned in imagination
(Fig. 19.1) into domains each of size 4fUoge2, that is, 2.77... times the Planck area,

yields the Bekenstein number, N; and the Bekenstein number, so Thorne and Zurek
explain [66] tells us the number of binary digits, the number of bits, that would be
required to specify in all detail the configuration of the constituents out of which
the blackhole was put together. Entropy is a measure of lost information. To no
community of newborn outside observers can the blackhole be made to reveal out
of which particular one of 2N configurations it was put together. Its size, an it, is
fixed by the number, N, of bits of information hidden within it.

The quantum, H, in whatever correct physics formula it appears, thus serves as
lamp. It lets us see horizon area as information lost, understand wave number of
light as photon momentum and think of field flux as bit-registered fringe shift.

Giving us its as bits, the quantum presents us with physics as information.

How come a value for the quantum so small as H = 2.612 x 10~66 cm2? As well
as ask why the speed of light is so great as c = 3 x 1010 cm/s! No such constant
as the speed of light ever makes an appearance in a truly fundamental account
of special relativity or Einstein geometrodynamics, and for a simple reason: Time
and space are both tools to measure interval. We only then properly conceive
them when we measure them in the same units [4, 16]. The numerical value of
the ratio between the second and the centimeter totally lacks teaching power. It
is an historical accident. Its occurrence in equations obscured for decades one of
Nature's great simplicities. Likewise with H\y equation that contains an H
floats a banner, "It from bit". The formula displays a piece of physics that we
have learned to translate into information-theoretic terms. Tomorrow we will have
learned to understand and express all of physics in the language of information. At
that point we will revalue H = 2.612 x 10~66 cm2 — as we downgrade c = 3 x 1010

cm/s today — from constant of Nature to artifact of history, and from foundation
of truth to enemy of understanding.

19.3 Four No's

To the question, "How come the quantum?" we thus answer, "Because what we
call existence is an information-theoretic entity." But how come existence? Its
as bits, yes; and physics as information, yes; but whose information? How does
the vision of one world arise out of the information-gathering activities of many
observer-participants? In the consideration of these issues we adopt for guidelines
four no's.

First no: "No tower of turtles," advised William James. Existence is not a globe
supported by an elephant, supported by a turtle, supported by yet another turtle,
and so on. In other words, no infinite regress. No structure, no plan of organization,
no framework of ideas underlaid by another structure or level of ideas, underlaid
by yet another level, by yet another, ad infinitum, down to a bottomless night. To
endlessness no alternative is evident but loop [47, 67], such a loop as this: Physics
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observer-participants? In the consideration of these issues we adopt for guidelines
four no's.

First no: "No tower of turtles," advised William James. Existence is not a globe
supported by an elephant, supported by a turtle, supported by yet another turtle,
and so on. In other words, no infinite regress. No structure, no plan of organization,
no framework of ideas underlaid by another structure or level of ideas, underlaid
by yet another level, by yet another, ad infinitum, down to a bottomless night. To
endlessness no alternative is evident but loop [47, 67], such a loop as this: Physics



For an ordinary system, the “entropy” is a measure of the number
of degrees of freedom – or more precisely, the number of degrees of
freedom that are relevant at a given temperature. Many
researchers have thought that, somehow, the entropy S = A/4G
means that the black hole horizon can be described by some sort
of degrees of freedom that live at its surface – one bit or qubit for
every 4G of area. For example, in a famous article in 1992, John
Wheeler illustrated that idea with this picture:312 JOHN ARCHIBALD WHEELER THE SEARCH FOR LINKS 313

Fig. 19.1. Symbolic representation of the "telephone number" of the particular one of the
2" conceivable, but by now indistinguishable, configurations out of which this particular
blackhole, of Bekenstein number N and horizon area 4NHlogs2, was put together. Symbol,
also, in a broader sense, of the theme that every physical entity, every it, derives from bits.
Reproduced from JGST, p.220.

a magnetic field B that runs perpendicular to it. In consequence the piece of copper
receives in the time t a transfer of momentum p in a direction z perpendicular to
the directions of the wire and of the field,

p - Blit
= (flux per unit z) x (charge, e, of the elementary carrier of current)

x (number, N,of carriers that pass in the time t)
(19.2)

This impulse is the source of the force that displaces the indicator needle of the
magnetometer and gives us an instrument reading. We deal with bits wholesale
rather than bits retail when we run the fiducial current through the magnetometer
coil, but the definition of field founds itself no less decisively on bits.

As third and final example of it from bit we recall the wonderful quantum
finding of Bekenstein [58-60] — totally unexpected denouement of earlier classical
work of Penrose [61] Christodoulou [62] and Ruffini [63] — refined by Hawking [64,
65] that the surface area of the horizon of a blackhole, rotating or not, measures
the entropy of the blackhole. Thus this surface area, partitioned in imagination
(Fig. 19.1) into domains each of size 4fUoge2, that is, 2.77... times the Planck area,

yields the Bekenstein number, N; and the Bekenstein number, so Thorne and Zurek
explain [66] tells us the number of binary digits, the number of bits, that would be
required to specify in all detail the configuration of the constituents out of which
the blackhole was put together. Entropy is a measure of lost information. To no
community of newborn outside observers can the blackhole be made to reveal out
of which particular one of 2N configurations it was put together. Its size, an it, is
fixed by the number, N, of bits of information hidden within it.

The quantum, H, in whatever correct physics formula it appears, thus serves as
lamp. It lets us see horizon area as information lost, understand wave number of
light as photon momentum and think of field flux as bit-registered fringe shift.

Giving us its as bits, the quantum presents us with physics as information.

How come a value for the quantum so small as H = 2.612 x 10~66 cm2? As well
as ask why the speed of light is so great as c = 3 x 1010 cm/s! No such constant
as the speed of light ever makes an appearance in a truly fundamental account
of special relativity or Einstein geometrodynamics, and for a simple reason: Time
and space are both tools to measure interval. We only then properly conceive
them when we measure them in the same units [4, 16]. The numerical value of
the ratio between the second and the centimeter totally lacks teaching power. It
is an historical accident. Its occurrence in equations obscured for decades one of
Nature's great simplicities. Likewise with H\y equation that contains an H
floats a banner, "It from bit". The formula displays a piece of physics that we
have learned to translate into information-theoretic terms. Tomorrow we will have
learned to understand and express all of physics in the language of information. At
that point we will revalue H = 2.612 x 10~66 cm2 — as we downgrade c = 3 x 1010
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Black hole thermodynamics has been spectacularly successful – it
turns out that subtle properties of classical General Relativity work
out in such a way as to ensure that the generalized entropy does
behave like a thermodynamic entropy.

For example, the Hawking
area theorem motivated Bekenstein’s idea in a way I already
explained, and is a key step in proving that Sgen (if Sout is properly
defined) does obey the second law

dSgen
dt

≥ 0.

(The most complete proof is by A. Wall (2011) and makes use of
Tomita-Takesaki theory of von Neumann algebras.) Other subtle
properties of classical General Relativity work out in such a way
that the first law of thermodynamics is also satisfied

dE = TdS + ΦdQ + ΩdJ.
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There is much more besides.

There is abundant evidence that Sgen
behaves as an entropy. But is it an entropy of something? This
has been a mystery since the early days of black hole
thermodynamics. In today’s talk, I will explain a slightly abstract
answer: with gravity taken into account, the operators outside a
black hole horizon form a Type II algebra, and generalized entropy
is the entropy of a state of this algebra.
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Let me first explain a little about the meaning of “entropy” in
quantum mechanics.

When we are making an observation or
analyzing an experiment, we usually study not the whole universe
but a small subsystem, consisting possibly of the experimental
apparatus or possibly (if we are doing astronomy) the Milky Way
galaxy. Let me refer generically to the system we are studying as
system A, and refer to the rest of the universe as B. So the
combined system AB is the whole universe.
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Usually in quantum mechanics, one can assume that the
subsystems A and B can be described by Hilbert spaces HA and
HB ; the Hilbert space of the combined system is then a tensor
product

HAB = HA ⊗HB .

In such a situation, one can define an algebra A of operators of
system A – that is, operators on HA – and an algebra B of
operators of system B – that is, operators on HB .

These are Type
I von Neumann algebras (the algebra of all bounded operators on a
Hilbert space, here HA or HB). The property of a Type I algebra
that we will use is that there is a nondegenerate bilinear form on A
given by

(a, a′) = TrHA
aa′.
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Consider any state of the whole universe, meaning any vector
Ψ ∈ HAB .

We want to define the entropy of system A when the
whole universe is in the state Ψ. Consider the linear function
F : A → C defined by

F (a) = 〈Ψ|a|Ψ〉.

Remembering that algebra A has a nondegenerate bilinear form,
we see that the function F (a) is

F (a) = Tr aρ

for some unique ρ ∈ A. It is not hard to show that ρ is self-adjoint
and nonnegative. Moreover, if Ψ is a unit vector, meaning that
〈Ψ|Ψ〉 = 1, then

Tr ρ = Tr 1 · ρ = 〈Ψ|1|Ψ〉 = 〈Ψ|Ψ〉 = 1.

An element ρ ∈ A that is self-adjoint, non-negative and has trace
1 is called a density matrix. So we have learned that any state Ψ of
the whole universe determines a density matrix for the subsystem A.
Conversely, if ρ ∈ A is a density matrix, it is not hard to show that it is
the density matrix of some Ψ (assuming that system B is big enough).
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When system A is described by a density matrix ρ, its entropy is
defined to be

S(ρ) = −Tr ρ log ρ.

This formula is due to von Neumann and is called the von
Neumann entropy; in the limit of classical mechanics, it goes over
to a classical formula for entropy due to Gibbs (extending earlier
work of Boltzmann).

It is not hard to prove that S(ρ) is zero if
and only if ρ is of rank 1; otherwise it is positive. Under
appropriate definitions, when thermodynamics is valid, the von
Neumann entropy is equivalent to thermodynamic entropy;
however, it is defined universally.
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For any density matrix ρ, the function

F (a) = Tr aρ

satisfies
F (a†a) ≥ 0, a ∈ A.

It defines what is called a “state” of the algebra A. A state is
called “pure” if it is not a convex linear combination of other states

ρ 6= tρ1 + (1− t)ρ2

where ρ1, ρ2 are density matrices and 0 < t < 1. It is not hard to
prove that ρ is a pure state by that definition if and only if it has
rank 1, equivalently, if it has entropy 0. Thus pure states have
entropy 0 and “mixed” states (states that are not pure) have
positive entropy.
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Ψ = ΨA ⊗ΨB , ΨA ∈ HA, ΨB ∈ HB .

Such a Ψ is called a product state. Thus, system A has zero
entropy if and only if the state of the whole universe is the tensor
product of a state ΨA of system A and a state ΨB of the rest of
the universe. This is a possible but atypical state of affairs.
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The idea that the Bekenstein-Hawking entropy of a black hole should be
understood in terms of von Neumann entropy was apparently first put
forward by R. Sorkin in 1983 (in a paper that attracted only modest
attention at the time).

The idea was just the following. In a quantum
field theory, divide space into two regions A and B

Let Ψ be a state of the system, and ρ the corresponding density matrix
for the algebra A of operators in region region A. (This is a naive
formulation and we will be more critical later.) One can try to calculate
the entropy −Tr ρ log ρ. One finds that it is infinite: it is ultraviolet
divergent (regardless of Ψ) and the coefficient of the leading divergence
is proportional to the area A of the boundary between regions A and B.
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Sorkin’s idea, in modern language, was that somehow gravity cuts off the
ultraviolet divergence, leaving an entanglement entropy in the vacuum
between the two regions that is the Bekenstein-Hawking entropy A/4G ,
where A is the area of the boundary between them.

This makes a lot of
intuitive sense, as it matches two ideas:

(1) A/4G is the irreducible entropy of the system for someone who has
access only to the region outside the horizon

(2) the divergence in the entanglement entropy is proportional to A
because it comes from short wavelength modes near the “horizon,” as if
(after cutting off the divergence) the density of quantum degrees of
freedom on the horizon per unit area is 4G as in Wheeler’s picture:312 JOHN ARCHIBALD WHEELER THE SEARCH FOR LINKS 313

Fig. 19.1. Symbolic representation of the "telephone number" of the particular one of the
2" conceivable, but by now indistinguishable, configurations out of which this particular
blackhole, of Bekenstein number N and horizon area 4NHlogs2, was put together. Symbol,
also, in a broader sense, of the theme that every physical entity, every it, derives from bits.
Reproduced from JGST, p.220.

a magnetic field B that runs perpendicular to it. In consequence the piece of copper
receives in the time t a transfer of momentum p in a direction z perpendicular to
the directions of the wire and of the field,

p - Blit
= (flux per unit z) x (charge, e, of the elementary carrier of current)

x (number, N,of carriers that pass in the time t)
(19.2)

This impulse is the source of the force that displaces the indicator needle of the
magnetometer and gives us an instrument reading. We deal with bits wholesale
rather than bits retail when we run the fiducial current through the magnetometer
coil, but the definition of field founds itself no less decisively on bits.

As third and final example of it from bit we recall the wonderful quantum
finding of Bekenstein [58-60] — totally unexpected denouement of earlier classical
work of Penrose [61] Christodoulou [62] and Ruffini [63] — refined by Hawking [64,
65] that the surface area of the horizon of a blackhole, rotating or not, measures
the entropy of the blackhole. Thus this surface area, partitioned in imagination
(Fig. 19.1) into domains each of size 4fUoge2, that is, 2.77... times the Planck area,

yields the Bekenstein number, N; and the Bekenstein number, so Thorne and Zurek
explain [66] tells us the number of binary digits, the number of bits, that would be
required to specify in all detail the configuration of the constituents out of which
the blackhole was put together. Entropy is a measure of lost information. To no
community of newborn outside observers can the blackhole be made to reveal out
of which particular one of 2N configurations it was put together. Its size, an it, is
fixed by the number, N, of bits of information hidden within it.

The quantum, H, in whatever correct physics formula it appears, thus serves as
lamp. It lets us see horizon area as information lost, understand wave number of
light as photon momentum and think of field flux as bit-registered fringe shift.

Giving us its as bits, the quantum presents us with physics as information.

How come a value for the quantum so small as H = 2.612 x 10~66 cm2? As well
as ask why the speed of light is so great as c = 3 x 1010 cm/s! No such constant
as the speed of light ever makes an appearance in a truly fundamental account
of special relativity or Einstein geometrodynamics, and for a simple reason: Time
and space are both tools to measure interval. We only then properly conceive
them when we measure them in the same units [4, 16]. The numerical value of
the ratio between the second and the centimeter totally lacks teaching power. It
is an historical accident. Its occurrence in equations obscured for decades one of
Nature's great simplicities. Likewise with H\y equation that contains an H
floats a banner, "It from bit". The formula displays a piece of physics that we
have learned to translate into information-theoretic terms. Tomorrow we will have
learned to understand and express all of physics in the language of information. At
that point we will revalue H = 2.612 x 10~66 cm2 — as we downgrade c = 3 x 1010

cm/s today — from constant of Nature to artifact of history, and from foundation
of truth to enemy of understanding.

19.3 Four No's

To the question, "How come the quantum?" we thus answer, "Because what we
call existence is an information-theoretic entity." But how come existence? Its
as bits, yes; and physics as information, yes; but whose information? How does
the vision of one world arise out of the information-gathering activities of many
observer-participants? In the consideration of these issues we adopt for guidelines
four no's.

First no: "No tower of turtles," advised William James. Existence is not a globe
supported by an elephant, supported by a turtle, supported by yet another turtle,
and so on. In other words, no infinite regress. No structure, no plan of organization,
no framework of ideas underlaid by another structure or level of ideas, underlaid
by yet another level, by yet another, ad infinitum, down to a bottomless night. To
endlessness no alternative is evident but loop [47, 67], such a loop as this: Physics
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Susskind and Uglum (1993) made a simple observation that
strongly supports this point of view.

If we interpret Sout as von
Neumann entropy, then the generalized entropy is better defined
than either term on the right hand side is separately:

Sgen =
A

4G~
+ Sout.

The second term has an ultraviolet divergence that Sorkin noted.
The first term has a similar problem, because there is an ultraviolet
divergence in the relation between the bare Newton constant G0

and the physical, observed Newton constant G :

1

G~
=

1

G0~
+ cΛ2 + · · · .

Here Λ is an ultraviolet cutoff and c is a constant (at 1-loop level,
c is independent of ~). Susskind and Uglum argued that the
ultraviolet divergences in Sout cancel those in 1/G (and these
arguments were refined later).
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Twenty-first century developments have strongly supported these
ideas, though leaving us with plenty of mysteries.

In the available
time, I am just going to talk about one aspect of the story. Why is
it that the entropy of the region outside the horizon is ill-defined in
quantum field theory (so that Sout has that quadratic divergence
that Sorkin pointed out) but well-defined once gravity is included?
I will explain a somewhat abstract answer.
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First of all, as I already explained, in ordinary quantum mechanics,
when one considers a system AB made from subsystems A and B,
one normally assumes at the start that each system has its own
Hilbert space HA or HB .

If the combined system is in a state
Ψ = ΨAB , the density matrix ρ of system A generically has a high
rank and a positive entropy, but ρ might – if Ψ is a product state –
be a pure state density matrix with zero entropy. Thus in ordinary
quantum mechanics, whether a subsystem A of a larger system AB
has a positive entropy or not depends on the choice of a state
Ψ ∈ HAB . In case of a generic Ψ, subsystem A has a positive
entropy, but if Ψ is a product state, the entropy vanishes.
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That is not the situation for the entropy of a region of space in
quantum field theory.

The divergence found by Sorkin was an ultraviolet divergence, so it
does not depend on the state: every state looks like the vacuum at
short distances.
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The root of the problem is that it is not true

that there are separate Hilbert spaces HA and HB for the
“outside” and “inside” regions. There is only a combined Hilbert
space H for the whole system. What the separate regions A and B
have are not Hilbert spaces HA and HB , but only algebras of
observables A and B. These algebras act on H so they can be
defined to be von Neumann algebras (a von Neumann algebra is an
algebra of bounded operators on a Hilbert space that is closed
under weak limits).
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There are three types of von Neumann algebra:

(I) A Type I algebra is the algebra of all operators on a Hilbert space. In
ordinary quantum mechanics, when we discuss a system A, it has a
Hilbert space HA and the algebra of observables of the system is the
algebra of all (bounded) operators on HA. One can define density
matrices and entropies for a system that has such an algebra of
observables and there are pure states that have zero entropy.

The other types may be less familiar. But first the bottom line:

(II) A Type II algebra does not have pure states, but there is a notion of
density matrix and entropy for a system in which the algebra of
observables is of Type II.

(iii) A Type III algebra is the “worst” type – a system whose observables
form a Type III algebra does not have pure states and also does not have
density matrices or entropies.
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By now you might anticipate the bad news:

In quantum field theory, the algebra of observables of a region of
spacetime

is always of Type III. So to a region, one can never associate a
pure state, or a density matrix or entropy. The Type III nature of
the algebra is the “reason” for the universal ultraviolet divergence
of the entanglement entropy.
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However, it turns out that including gravity in a semiclassical way
changes the picture: it changes the algebra of the region outside
the horizon from Type III to Type II.

So when gravity is turned on
(even semiclassically), the region outside the black hole horizon is
described by an algebra in which the notion of entropy is
well-defined, though there is no notion of a quantum mechanical
microstate (a pure state of the algebra). We can interpret that as
a somewhat abstract answer to the question of why including
gravity suddenly enabled us to convert the ill-defined (divergent)
Sout into the better defined

Sgen =
A

4G
+ Sout.
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But to understand how this works, we need to understand
something about these von Neumann algebras of Types II and III.

A Type II algebra was originally constructed by Murray and von
Neumann in the following way. A “qubit” is just a quantum
system described by a two-dimensional Hilbert space. Let A and B
be systems consisting of countably many qubits. Keeping only N
qubits of system A and N more of system B, consider the state

Ψ =
1

2N/2

N⊗
n=1

∑
i=1,2

|i〉A,n ⊗ |i〉B,n

 .

That is, the nth qubit of the system A is completely entangled with
the nth qubit of system B. Let a, a′ be operators that act only on
the first k spins of system A, for some k ≤ N. Define a function

F (a) = 〈Ψ|a|Ψ〉.
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The state Ψ was constructed so that the corresponding density
matrix is a multiple of the identity, ρ = 2−N · 1. So

F (a) = 〈Ψ|a|Ψ〉 = Tr aρ = 2−NTr a

from which we see that F (a) satisfies

F (1) = 1,

and
F (aa′) = F (a′a).

For any given a, F (a) is defined and independent of N as soon as
N is big enough (as soon as we include all qubits on which a acts)
so F (a) has a large N limit.
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For N →∞, the function F (a) can be defined for any operator a
that acts on any finite set of qubits in system A and of course it
still satisfies

F (1) = 1

and
F (aa′) = F (a′a).

F is also positive in the sense that

F (a†a) > 0 for all a 6= 0.



So far we have defined F on the whole algebra A0 of all operators
that act on only finitely many qubits in system A.

By taking weak
limits, we can complete A0 to a von Neumann algebra A, still with
a function F (a) that has the same properties I’ve stated. Since
F (aa′) = F (a′a) this function is usually called a trace: We formally
define

F (a) = Tr a

but Tr a is not the trace of a in any Hilbert space representation.
In the language of physicists, it is a renormalized trace with an
infinite factor 2−N

∣∣
N→∞ removed.
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There is a more elementary example of an infinite-dimensional
algebra with a trace – the Type I algebra B of all operators on an
infinite-dimensional Hilbert space H.

In this example, however,
while we can define a trace on elements of B, it is not defined for
all elements of B, only for those that are “trace class.” For
example, the identity element of B does not have a trace (unless
one wants to allow Tr 1 =∞). By contrast, from the infinite
system of qubits, we constructed an algebra A in which every
element has a trace. Clearly then it is an essentially new type of
algebra. This is, in fact, the simplest example of a Type II algebra
– it is the Type II1 factor of Murray and von Neumann.
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Small generalizations of this construction lead to algebras of Type
III (as shown by Powers, Araki, and Wood in the 1960’s).

We
modify the previous construction a little bit by putting the nth

qubit of system A and the nth qubit of system B in the state
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(1 + e−β/2)1/2

(
| ↑〉A| ↑〉B + e−β/2| ↓〉A| ↓〉B

)
.

We define a state Ψ in which, for large N, this is done for the nth

pair for n = 1, 2, · · · ,N. Then we can define the function
F (a) = 〈Ψ|a|Ψ〉 and as before it has an N →∞ limit. The
important difference is that now F (aa′) 6= F (a′a). For N →∞, we
can define an algebra A0 consisting of operators that act on any
finite set of qubits of the A system, and its completion is now a
von Neumann algebra of Type III.
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Algebras of Type II or Type III do not have an irreducible
representation in a Hilbert space; whenever such an algebra acts on
a Hilbert space H, it always commutes with another algebra of the
same type.

For example, we constructed our Type II and Type III
algebras as algebras of operators on the “A” part of a bipartite
system AB, so in that construction they commute with an
identical algebra that acts on system B.
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The difference between a Type II algebra and a Type III algebra is
that a Type II algebra has a trace, and a Type III algebra does not.

Moreover, in a Type II algebra, the trace is nondegenerate in the
sense that (a, a′) = Tr aa′ is a nondegenerate (and
positive-definite) bilinear form on the algebra (this follows from our
earlier result that Tr a†a > 0 for all a 6= 0). Hence if F (a) is any
linear function of a ∈ A, we have

F (a) = Tr aa′

for some unique a′ ∈ A.
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Now let us go back to the situation considered by Sorkin:

We consider some state Ψ of the whole universe. Suppose it were
true that physics in region A is described by a Type II algebra A.
Then the linear function a→ 〈Ψ|a|Ψ〉 would be equal to Tr aρA for
some ρA ∈ A:

〈Ψ|a|Ψ〉 = Tr aρA.

If the algebra were Type I, we would use this condition to define
the density matrix ρA of state Ψ for measurements in region A. So
it makes sense to call ρA the density matrix also in the Type II
situation. (I. Segal, 1962; R. Longo and EW, 2021.)
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Once we have density matrices, we can define entropies as well:

SA = −Tr ρA log ρA.

So if the region outside the horizon is described by a Type II
algebra, then we can define an entropy for this region.
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are Type III. But it turns out that when we include gravity, things
are different: gravitational effects even for very weak coupling
convert the Type III algebras into Type II algebras.
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The mathematical mechanism leading to this is quite simple and
was developed by Connes and Takesaki in the 1970’s; what is new
is only that this mechanism is actually implemented by gravity in
the field of a black hole.

The details are different in the two cases
and I really will only have time for very brief explanations.
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The motivation of Connes and Takesaki was simply that Type III
algebras are difficult to study.

It turns out that if A is a Type III1
algebra (the generic Type III algebra is of this type) then there is
an associated Type II∞ algebra Â that can be canonically
constructed from A and from which A can be reconstructed (“up
to multiplicity”). The existence of Â proved to be useful as a tool
for studying A.
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The definition is as follows.

Suppose that A is a von Neumann
algebra that acts on a Hilbert space H with a cyclic separating
vector Ψ. (A suitable H and Ψ always exist.) Let ∆Ψ be the
modular operator of Ψ in the sense of Tomita-Takesaki theory, and
set H = − log ∆Ψ. Let Ĥ = H⊗ L2(R), where we think of L2(R)
as the space of square-integrable functions of a “new” real variable
X . Then one defines the “crossed product” algebra

Â = {A,H + X}′′,

that is, the von Neumann algebra generated by A and (bounded
functions of) H + X . (It is called the crossed product of A with its
modular automorphism group.)
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This construction has many remarkable properties.

The definition
of Â made use of a cyclic separating vector Ψ ∈ H, but one can
show that Â is independent of Ψ, up to a canonical isomorphism.
If A is of Type III1 – the usual situation in quantum field theory –

then Â is of Type II∞ and there is an explicit formula for the trace
function on Â.



This construction has many remarkable properties. The definition
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So to get from ordinary quantum field theory where we cannot
define the entropy of a region (or we can define it and say that it is
+∞) to gravity where we can define such an entropy and get a
finite answer, we just need to know that gravity adds one variable
in the construction of the Hilbert space, namely what I called X ,
and one generator of the algebra of operators outside the black
hole, namely H + X .



Here is a Penrose diagram of the maximally extended Schwarzshild
black hole in asymptotically flat spacetime:

The black hole is a “wormhole” that connects two asymptotically
flat universes, which are our two systems A and B. The extra
operator that is accessible to the observer on the right and that
corresponds to what I called H + X earlier is HR , the ADM energy
measured at infinity on the right side. What I called X is (up to a
scalar multiple) HL, the ADM energy measured at infinity on the
right side.
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For the cyclic separating vector Ψ, we can take the Hartle-Hawking
state of the black hole. (This state depends on a choice of
temperature 1/β which determines the mass of the black hole we
are going to study.) The modular operator ∆Ψ of this state was
determined by Sewell (1982), reinterpreting classic results of Unruh
and of Bisognano and Wichman.

The result was that
H = − log ∆Ψ satisfies

βHR − βHL = H.
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Equivalently
βHR = H + βHL.

Thus setting X = βHL, we see that gravity is making the operator
H + X accessible to an observer in the right exterior region outside
the horizon.

The algebra of observables for this observer is thus
not the Type III algebra A that we would have in ordinary
quantum field theory, but is the “crossed product” algebra Â of
Type II∞. This gives a framework for interpreting black hole
entropy: it is just the entropy of a state of the Type II∞ algebra.
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There is a similar story for cosmological horizons; this is the topic
of the second paper with Chandrasekharan, Longo, and Penington.


