Electric-Magnetic Duality for Periods and L-functions

David Ben-Zvi University of Texas at Austin

Western Hemisphere Colloquium on Geometry and Physics Western Hemisphere, March 2021

Overview

Describe a perspective on number theory (periods of automorphic forms) inspired by physics (boundaries in supersymmetric gauge theory).

Based on joint work with

- Yiannis Sakellaridis (Johns Hopkins U.) and
- Akshay Venkatesh (IAS)

Arithmetic and Quantum Field Theory

Periods and L-functions

Relative Langlands Duality

Outline

Arithmetic and Quantum Field Theory

Periods and L-functions

Relative Langlands Duality

Arithmetic Quantum Mechanics

Automorphic forms: QM on arithmetic locally symmetric spaces

e.g.,
$$\Gamma=\mathit{SL}_2(\mathbb{Z}) \circlearrowright \mathbb{H}=\mathit{SL}_2(\mathbb{R})/\mathit{SO}(2)$$
, study

 $\Delta \circlearrowright L^2(\Gamma ackslash \mathbb{H})$

(+ twisted variants)

Arithmetic Quantum Mechanics

General story:

G reductive (e.g.,
$$GL_n$$
, Sp_n , E_8 ,...)

 $\sim \rightarrow$

study QM (e.g. spectral decomposition of L^2) on arithmetic locally symmetric space

$$[G] = G(\mathbb{Z}) \backslash G(\mathbb{R}) / K$$

(and variants)

Structure in Arithmetic Quantum Mechanics

Very special QM problem:

• Hecke operators

Huge commutative algebra of symmetries ("quantum integrable system"): Hecke operators T_p , p prime

General G: Hecke operators at $p \leftrightarrow$ reps of Langlands dual group $G_{\mathbb{C}}^{\vee} \circlearrowright V$

- Can vary ramification:
- $\Gamma = SL_2(\mathbb{Z}) \rightsquigarrow$ subgroups defined by congruences mod N, study

$$\Gamma_N \backslash \mathbb{H}$$

• Can vary number field: F/\mathbb{Q} finite \rightsquigarrow

$$[SL_2]_F = SL_2(\mathcal{O}_F) \backslash SL_2(F \otimes \mathbb{R}) / K$$

(e.g., $F = \mathbb{Q}(\sqrt{-d}) \rightsquigarrow$ arithmetic quotients of \mathbb{H}^3)

Structure in Arithmetic Quantum Mechanics

• Langlands correspondence:

Automorphic forms \leftrightarrow Galois representations

representation varieties of Galois groups $\{Gal(\overline{F}/F) \rightarrow G^{\vee}\}$

Spectral side "solves" quantum integrable system on $[G]_F$:

Hecke operators at p

 \leftrightarrow

trace functions of Frobenius at p

```
[both labeled by reps of G^{\vee}]
```

Automorphic forms as gauge theory

Much richer paradigm for automorphic forms:

arithmetic 4d quantum field theory

Specifically: 4d $\mathcal{N} = 4$ super-Yang-Mills, gauge group G_c in "A-type" topological twist¹

Arithmetic extension of Kapustin-Witten interpretation of Geometric Langlands Program

Arithmetic gauge theory

• Arithmetic Topology: ²

F number field (or $Spec(\mathcal{O}_F)$)

 \leftrightarrow

3-manifold M

Primes in \mathcal{O}_F

 \leftrightarrow

Knots in M

²Mazur, Morishita, Kapranov, Reznikov. M. Kim: arithmetic Chern-Simons

Arithmetic gauge theory

```
Vague idea: QM on [G]_F
```

 \leftrightarrow

```
Hilbert space of QFT on M \times \mathbb{R} – QM on space of connections on M
```

```
Better ansatz – Topological twist:
Pass from QM L^2([G]_F) \Longrightarrow Topological QM H^*([G]_F), <sup>3</sup>
```

 \leftrightarrow

Hilbert space of TQFT on $M \times \mathbb{R}$ – topology of space of connections on M ⁴

³i.e., study *cohomological* automorphic forms, e.g., classical modular forms ⁴Or, symplectic topology of space of Higgs bundles

Arithmetic gauge theory: Hecke and Loop Operators

- Hecke operators at prime p
- \leftrightarrow

1d defects: 't Hooft loop operators along a knot K:

insert magnetic monopole along $K \times \frac{1}{2} \subset M \times [0, 1]$ singularity measured by rep of dual group $G_{\mathbb{C}}^{\vee}$.

Arithmetic gauge theory: Ramification and Surface Operators

• Ramification mod N

 \leftrightarrow

2d defects⁵: solenoids along a link $L \times \mathbb{R} \subset M \times \mathbb{R}$

⁵Gukov-Witten

Arithmetic gauge theory

• Langlands correspondence \leftrightarrow Electric-Magnetic Duality 6 for twisted $\mathcal{N}=4$ SUSY Yang-Mills theory

4d A-model $\mathcal{A}_G \sim$ topology of spaces of connections \leftrightarrow 4d B-model $\mathcal{B}_{G^{\vee}} \sim$ algebraic geometry of spaces of flat connections / monodromy representations

 ${\pi_1(M) \to G^{\vee}}$

⁶Montonen-Olive S-duality

Langlands / Electric-Magnetic Duality

automorphic	spectral
magnetic	electric
\mathcal{A}_{G}	${\mathcal B}_{{m G}^ee}$
topology:	algebraic geometry:
- of spaces of connections	- of flat connections
- of arith. loc. sym. spaces	- of Galois representations
1d defects (loops):	
Hecke / 't Hooft	Wilson / trace
2d defects (solenoids):	
congruence subgroups	singularities of flat connections
BZSV: 3d defects (bdry conditions)	
periods	L-functions

Arithmetic and Quantum Field Theory

Periods and L-functions

Relative Langlands Duality

Outline

Arithmetic and Quantum Field Theory

Periods and L-functions

Relative Langlands Duality

BZSV

• Our work (BZ-Sakellaridis-Venkatesh):

Apply paradigm to theory of integral representations of L-functions as periods :

understand using E-M duality for 3d defects (boundary conditions) in gauge theory 7 .

⁷Gaiotto-Witten

Integral representations

L-functions: fundamental invariants of Galois representations

$$L(\rho, s) := \prod_{p} \frac{1}{\det(1 - p^{-s}\rho(F_p))}$$

e.g. ρ trivial \rightsquigarrow Riemann ζ -function.

L-values (e.g. L(s, 0)) capture deep arithmetic information.

Integral representation: most important tool to access *L*-functions (analytic continuation, functional equation,...): e.g., Riemann:

$$\pi^{-s/2}\Gamma(s/2)\zeta(s) = \int_0^\infty y^{s/2} \sum_{n=0}^\infty e^{-n^2\pi y} dy$$

Hecke Period

Hecke period: φ cusp form on $\mathbb H$

$$\mathcal{P}_{\mathcal{T}}(\varphi) := \int_0^\infty \varphi(iy) y^s \frac{dy}{y}$$

 $T \subset SL_2\mathbb{R}$ torus⁸ \rightsquigarrow **T-period** – integral over $[T] \subset [G]$

 ${}^{8}N \subset SL_{2}\mathbb{R} \rightsquigarrow$ integral over $[N] \subset [G]$, constant term/Eisenstein period

Arithmetic and Quantum Field Theory

Periods and L-functions

Relative Langlands Duality

Hecke Period as L-function

$$\mathcal{P}_{\mathcal{T}}(\varphi) = rac{\Gamma(s)}{(2\pi)^s} L(\varphi, s)$$

produces L-function of modular form:

If $\varphi \leftrightarrow \rho$ 2d Galois representation \Rightarrow

$$L(\varphi, s) = L(\rho, s) := \prod \frac{1}{\det(1 - \rho^{-s}\rho(F_p))}$$

More general periods

 $H \subset G$ subgroup \Rightarrow define \mathcal{P}_H as integral over $[H]_F \subset [G]_F$

More generally, \mathcal{P}_X function of *G*-space *X* (e.g., $G/H \rightsquigarrow \mathcal{P}_H$)

Iwasawa, Tate express abelian L-functions⁹ as periods for $G = GL_1 \circlearrowright X = \mathbb{A}^1$:

Riemann's integral of Θ -series \rightsquigarrow Integrate over $[GL_1]_F$ against push-forward from (adèlic) \mathbb{A}^1

⁹Riemann and Dedekind ζ -, Dirichlet and Hecke L-functions

Spherical varieties

Finiteness condition: X needs to be spherical G-variety Spherical variety: nonabelian version of toric variety

 $G \circlearrowright X$ is a spherical variety if Borel $B \subset G$ has finitely many orbits.

- "Tate": Toric varieties
- "Eisenstein": Flag varieties
- Symmetric spaces
- "Group" $G = H \times H \circlearrowright X = H$
- "Whittaker" $G \circlearrowright (G/N, \psi)$
- "Branching laws" ¹⁰ $GL_{n+1} \times GL_n \circlearrowright GL_{n+1}$, $SO_{2n+1} \times SO_{2n} \circlearrowright SO_{2n+1}$, ...

¹⁰Gan-Gross-Prasad

Periods vs. L-functions

Problem: Basic mismatch of data!

L-functions of ρ : $Gal \rightarrow G^{\vee}$ naturally labeled by representations *V* of G^{\vee} (product of inverted char. polys of Frobenius $\rho_V(F_p)$)

Completely unrelated to data of spherical varieties $G \circlearrowright X$

$$\mathcal{P}_{X=??}(\varphi) \longleftrightarrow L(s,\rho,V)?$$

Huge collection of examples of integral formulas, lack coherent theory

Arithmetic and Quantum Field Theory

Periods and L-functions

Relative Langlands Duality

Outline

Arithmetic and Quantum Field Theory

Periods and L-functions

Relative Langlands Duality

Relative Langlands Program

Sakellaridis-Venkatesh: tie global theory of periods with local theory: harmonic analysis of $G
ightharpoonup L^2(X)$ over local fields

Extract from X algebraic data (subgroup¹¹ $G_X^{\vee} \subset G^{\vee}$ and representation¹² $G_X^{\vee} \circlearrowright V_X$) controlling X-relative Langlands program:

- when $\mathcal{P}_X(arphi)
 eq 0$,
- which G-reps appear on X,
- X-Plancherel measure, etc.

¹¹cf. also Knop, Gaitsgory-Nadler
¹²cf. Sakellaridis

Boundary conditions

BZSV: Periods, L-functions \subset richer structure of boundary theories for \mathcal{A}_G , $\mathcal{B}_{G^{\vee}}$:

QFT on $M \times [0,1]$ with local boundary condition produces state on any M

 $\mathcal{A}_{\textit{G}}$ boundary theory uniformly encodes relative Langlands:

- global (period \mathcal{P}_X , Θ -series, Relative Trace Formula)
- local (rep $L^2(X)$, Plancherel measure)

E-M duality of boundary conditions

Duality $\mathcal{A}_{\mathcal{G}} \simeq \mathcal{B}_{\mathcal{G}^{\vee}}$ identifies boundary theories on two sides.

Gaiotto-Witten: SUSY boundary in $\mathcal{N}=4$ SYM for G

 \longleftrightarrow

holomorphic Hamiltonian G-spaces¹³

(\sim couple to SUSY 3d σ -models with *G*-symmetry)

identify Hamiltonian actions of Langlands dual groups!
 Discover symmetry between automorphic and spectral periods

(L-functions)

 $^{^{13}}$ Roughly.. Also have e.g. Nahm pole \leftrightarrow Arthur SL_2

Boundary conditions from periods

```
Subgroups H (spherical)

\rightsquigarrow X = G/H

\subset

G-varieties X (spherical)

\rightsquigarrow M = T^*X
```

```
QM on X really microlocal.
e.g. Tate: fun. eqn. for \zeta(s) \leftarrow Fourier transform on \mathbb{A}^1.
\subset
Hamiltonian G-varieties M (hyperspherical)
```

Many more examples: Whittaker periods¹⁴, Θ -correspondence...

```
\rightsquigarrow \sigma-model into M
```

Boundary theories for $\mathcal{A}_{\mathcal{G}}$

 14 \leftrightarrow principal Nahm pole

Boundary conditions from L-functions

```
G^{\vee} representations V
                    \frac{1}{\det(1-t\rho(F))} = Tr_{gr}(F, Sym^{\bullet}V = \mathcal{O}(V^{\vee}))
\rightsquigarrow X^{\vee} = V^{\vee}
\subset
G^{\vee}-varieties X^{\vee}
\rightsquigarrow M^{\vee} = T^* X^{\vee}
\subset
Hamiltonian G^{\vee}-varieties M^{\vee}
\rightsquigarrow \sigma-model into M^{\vee}
\subset
Boundary theories for \mathcal{B}_{G^{\vee}}
```

Duality for boundary conditions

How to see duality?

Build moment map

$$M^{\vee}/G^{\vee} \stackrel{\mu}{\longrightarrow} \mathfrak{g}^{\vee *}/G^{\vee}$$

directly out of $G \circlearrowright M$

as "moduli space of vacua¹⁵ for boundary theory"

[Geometrization of Plancherel measure for $L^2(X)$]

• create algebra (bulk) and module (boundary) out of line operators in extended TFT,

• describe spectrally

¹⁵Coulomb branch, cf. Braverman-Finkelberg-Nakajima

Reconstructing the dual

OPE of line defects on boundary ($\sim Shv(LX/LG_+)$) forms tensor category, linear over 't Hooft line defects ($\sim Shv(LG_+ \setminus LG/LG_+)$)

 G^{\vee} -equivariant sheaves $QC(M^{\vee}/G^{\vee})$ form tensor category, linear over Wilson line defects¹⁶ $QC(\mathfrak{g}^{\vee*}/G^{\vee})$

¹⁶Mirkovic-Vilonen, ..., Bezrukavnikov-Finkelberg

Relative Langlands Duality

Comparison with Sakellaridis-Venkatesh data¹⁷ $X \mapsto (G_X^{\vee} \circlearrowright V_X)$

 \Rightarrow precise conjectures for duality:

$$M^{\vee} = G^{\vee} \times^{G_X^{\vee}} V_X$$

 \Rightarrow local and global predictions identifying

- *M*-relative automorphic theory (periods, harmonic analysis,..) and
- M^{\vee} -relative spectral theory (L-functions, alg.geom. of M^{\vee})

 $^{^{17}}$ More general form includes Arthur SL₂ / Nahm pole

Thank You!

¹⁸Image by Rok Gregoric: Scylla (Number Theory) and Charybdis (Physics)