Electric-Magnetic Duality for Periods and L-functions

David Ben-Zvi
University of Texas at Austin

Western Hemisphere Colloquium on Geometry and Physics
Western Hemisphere, March 2021
Overview

Describe a perspective on number theory
(periods of automorphic forms)
inspired by physics
(boundaries in supersymmetric gauge theory).

Based on joint work with
• Yiannis Sakellaridis (Johns Hopkins U.) and
• Akshay Venkatesh (IAS)
Outline

Arithmetic and Quantum Field Theory

Periods and L-functions

Relative Langlands Duality
Automorphic forms: QM on arithmetic locally symmetric spaces

e.g., $\Gamma = SL_2(\mathbb{Z}) \circlearrowright \mathbb{H} = SL_2(\mathbb{R})/SO(2)$, study

$\Delta \circlearrowleft L^2(\Gamma \backslash \mathbb{H})$

(+ twisted variants)
Arithmetic Quantum Mechanics

General story:

G reductive (e.g., GL_n, Sp_n, E_8,..)

\mapsto

study QM (e.g. spectral decomposition of L^2) on arithmetic locally symmetric space

\[
[G] = G(\mathbb{Z}) \backslash G(\mathbb{R}) / K
\]

(and variants)
Structure in Arithmetic Quantum Mechanics

Very special QM problem:

- Hecke operators

Huge commutative algebra of symmetries ("quantum integrable system"): Hecke operators T_p, p prime

General G:
Hecke operators at $p \leftrightarrow$ reps of Langlands dual group $G_C^\vee \circlearrowleft V$
• Can vary ramification:
\[\Gamma = SL_2(\mathbb{Z}) \cong \text{subgroups defined by congruences mod } N, \text{ study} \]
\[\Gamma_N \backslash \mathbb{H} \]

• Can vary number field:
\[F/\mathbb{Q} \text{ finite} \cong \]
\[[SL_2]_F = SL_2(\mathcal{O}_F) \backslash SL_2(F \otimes \mathbb{R})/K \]
(e.g., \(F = \mathbb{Q}(\sqrt{-d}) \cong \text{arithmetic quotients of } \mathbb{H}^3 \))
Structure in Arithmetic Quantum Mechanics

- **Langlands correspondence:**

 Automorphic forms \leftrightarrow Galois representations

 representation varieties of Galois groups
 \[
 \{ \text{Gal}(\overline{F}/F) \to G^\vee \}
 \]

 Spectral side “solves” quantum integrable system on $[G]_F$:

 Hecke operators at p
 \leftrightarrow
 trace functions of Frobenius at p

 [both labeled by reps of G^\vee]
Automorphic forms as gauge theory

Much richer paradigm for automorphic forms:

arithmetic 4d quantum field theory

Specifically: 4d $\mathcal{N} = 4$ super-Yang-Mills, gauge group G_c in “A-type” topological twist1

Arithmetic extension of Kapustin-Witten interpretation of Geometric Langlands Program

1GL twist at $\Psi = 0$
Arithmetic gauge theory

- **Arithmetic Topology:**

 F number field (or $\text{Spec}(\mathcal{O}_F)$)

 \leftrightarrow

 3-manifold M

 Primes in \mathcal{O}_F

 \leftrightarrow

 Knots in M

2Mazur, Morishita, Kapranov, Reznikov. M. Kim: arithmetic Chern-Simons
Arithmetic gauge theory

Vague idea: QM on \([G]_F\)

\(\leftrightarrow\)

Hilbert space of QFT on \(M \times \mathbb{R}\) –
QM on space of connections on \(M\)

Better ansatz – **Topological twist**:
Pass from QM \(L^2([G]_F)\) \(\Longrightarrow\) Topological QM \(H^*([G]_F)\), \(^3\)

\(\leftrightarrow\)

Hilbert space of TQFT on \(M \times \mathbb{R}\) –
topology of space of connections on \(M\), \(^4\)

\(^3\)i.e., study *cohomological* automorphic forms, e.g., classical modular forms

\(^4\)Or, symplectic topology of space of Higgs bundles
Arithmetic gauge theory: Hecke and Loop Operators

- Hecke operators at prime p

\leftrightarrow

1d defects: 't Hooft loop operators along a knot K:

insert magnetic monopole along $K \times \frac{1}{2} \subset M \times [0, 1]$

singularity measured by rep of dual group G^\vee_C.
Arithmetic gauge theory: Ramification and Surface Operators

- **Ramification mod** N

 \leftrightarrow

 2d defects5: solenoids along a link $L \times \mathbb{R} \subset M \times \mathbb{R}$

5Gukov-Witten
Arithmetic gauge theory

- Langlands correspondence \leftrightarrow Electric-Magnetic Duality

for twisted $\mathcal{N} = 4$ SUSY Yang-Mills theory

4d A-model $\mathcal{A}_G \sim$ topology of spaces of connections
\leftrightarrow
4d B-model $\mathcal{B}_{G^\vee} \sim$ algebraic geometry of spaces of flat connections / monodromy representations

$\{\pi_1(M) \to G^\vee\}$

\[6\text{Montonen-Olive S-duality}\]
Langlands / Electric-Magnetic Duality

<table>
<thead>
<tr>
<th>automorphic</th>
<th>spectral</th>
</tr>
</thead>
<tbody>
<tr>
<td>magnetic</td>
<td>electric</td>
</tr>
<tr>
<td>\mathcal{A}_G</td>
<td>\mathcal{B}_G^\vee</td>
</tr>
<tr>
<td>topology:</td>
<td>algebraic geometry:</td>
</tr>
<tr>
<td>- of spaces of connections</td>
<td>- of flat connections</td>
</tr>
<tr>
<td>- of arith. loc. sym. spaces</td>
<td>- of Galois representations</td>
</tr>
</tbody>
</table>

| 1d defects (loops): | Wilson / trace |
| Hecke / ’t Hooft | |

| 2d defects (solenoids): | singularity of flat connections |
| congruence subgroups | |

| BZSV: 3d defects (bdry conditions) | L-functions |
| periods | |
Outline

Arithmetic and Quantum Field Theory

Periods and L-functions

Relative Langlands Duality
Our work (BZ-Sakellaridis-Venkatesh):

Apply paradigm to theory of integral representations of L-functions as periods:

understand using E-M duality for 3d defects (boundary conditions) in gauge theory\(^7\).

\(^7\)Gaiotto-Witten
Integral representations

L-functions: fundamental invariants of Galois representations

\[L(\rho, s) := \prod_p \frac{1}{\det(1 - p^{-s}\rho(F_p))} \]

e.g. \(\rho \) trivial \(\leadsto \) Riemann \(\zeta \)-function.

L-values (e.g. \(L(s, 0) \)) capture deep arithmetic information.

Integral representation: most important tool to access \(L \)-functions (analytic continuation, functional equation, ...):

e.g., Riemann:

\[
\pi^{-s/2} \Gamma(s/2) \zeta(s) = \int_0^{\infty} y^{s/2} \sum_{n=0}^{\infty} e^{-n^2 \pi y} dy
\]
Hecke period: \(\varphi \) cusp form on \(\mathbb{H} \)

\[
P_T(\varphi) := \int_0^\infty \varphi(iy)y^s \frac{dy}{y}
\]

\(T \subset SL_2\mathbb{R} \) torus\(^8 \) \(\mapsto \) T-period – integral over \([T] \subset [G]\)

\(^8 N \subset SL_2\mathbb{R} \mapsto \) integral over \([N] \subset [G]\), constant term/Eisenstein period
Hecke Period as L-function

\[P_T(\varphi) = \frac{\Gamma(s)}{(2\pi)^s} L(\varphi, s) \]

produces L-function of modular form:

If \(\varphi \leftrightarrow \rho \) 2d Galois representation

\[L(\varphi, s) = L(\rho, s) := \prod \frac{1}{\det(1 - p^{-s} \rho(F_p))} \]
More general periods

$H \subset G$ subgroup \Rightarrow
define \mathcal{P}_H as integral over $[H]_F \subset [G]_F$

More generally, \mathcal{P}_X function of G-space X (e.g., $G/H \leadsto \mathcal{P}_H$)

Iwasawa, Tate express abelian L-functions9 as periods for
$G = GL_1 \circlearrowleft X = \mathbb{A}^1$:

Riemann’s integral of Θ-series
\leadsto
Integrate over $[GL_1]_F$ against push-forward from (adèlic) \mathbb{A}^1

9Riemann and Dedekind ζ-, Dirichlet and Hecke L-functions
Spherical varieties

Finiteness condition: X needs to be spherical G-variety

Spherical variety: nonabelian version of toric variety

$G \circ X$ is a spherical variety if Borel $B \subset G$ has finitely many orbits.

- “Tate”: Toric varieties
- “Eisenstein”: Flag varieties
- Symmetric spaces
- “Group” $G = H \times H \circ X = H$
- “Whittaker” $G \circ (G/N, \psi)$
- “Branching laws”\(^{10}\) $GL_{n+1} \times GL_n \circ GL_{n+1}$,
 $SO_{2n+1} \times SO_{2n} \circ SO_{2n+1}$, \cdots

\(^{10}\)Gan-Gross-Prasad
Periods vs. L-functions

Problem: Basic mismatch of data!

L-functions of $\rho: Gal \rightarrow G^\vee$ naturally labeled by representations V of G^\vee

(product of inverted char. polys of Frobenius $\rho_V(F_p)$)

Completely unrelated to data of spherical varieties $G \bowtie X$

$\mathcal{P}_{X=??}(\varphi) \leftrightarrow L(s, \rho, V)$?

Huge collection of examples of integral formulas, lack coherent theory
Outline

Arithmetic and Quantum Field Theory

Periods and L-functions

Relative Langlands Duality
Relative Langlands Program

Sakellaridis-Venkatesh: tie global theory of periods with local theory: harmonic analysis of $G \otimes L^2(X)$ over local fields

Extract from X algebraic data (subgroup\(^{11}\) $G^\vee_X \subset G^\vee$ and representation\(^{12}\) $G^\vee_X \otimes V_X$) controlling X-relative Langlands program:

- when $\mathcal{P}_X(\varphi) \neq 0$,
- which G-reps appear on X,
- X-Plancherel measure, etc.

\(^{11}\) cf. also Knop, Gaitsgory-Nadler
\(^{12}\) cf. Sakellaridis
Boundary conditions

BZSV: Periods, L-functions \(\subset \) richer structure of boundary theories for \(\mathcal{A}_G, \mathcal{B}_G \):

QFT on \(M \times [0, 1] \) with local boundary condition produces state on any \(M \)

\(\mathcal{A}_G \) boundary theory uniformly encodes relative Langlands:

- global (period \(P_X \), \(\Theta \)-series, Relative Trace Formula)
- local (rep \(L^2(X) \), Plancherel measure)
E-M duality of boundary conditions

Duality $\mathcal{A}_G \simeq \mathcal{B}_G^\vee$ identifies boundary theories on two sides.

Gaiotto-Witten: SUSY boundary in $\mathcal{N} = 4$ SYM for G

\leftrightarrow

holomorphic Hamiltonian G-spaces13

(\sim couple to SUSY 3d σ-models with G-symmetry)

\mapsto identify Hamiltonian actions of Langlands dual groups!

Discover symmetry between automorphic and spectral periods (L-functions)

13Roughly. Also have e.g. Nahm pole \leftrightarrow Arthur SL_2
Boundary conditions from periods

Subgroups H (spherical)
$\leadsto X = G/H$
\subset

G-varieties X (spherical)
$\leadsto M = T^*X$

QM on X really microlocal.
e.g. Tate: fun. eqn. for $\zeta(s) \leftrightarrow$ Fourier transform on \mathbb{A}^1.

\subset

Hamiltonian G-varieties M (hyperspherical)
Many more examples: Whittaker periods14, Θ-correspondence...

$\leadsto \sigma$-model into M
\subset

Boundary theories for \mathcal{A}_G

$^{14} \leftrightarrow$ principal Nahm pole
Boundary conditions from L-functions

\[G^\vee \text{ representations } V \]

\[\frac{1}{\text{det}(1 - t \rho(F))} = \text{Tr}_{gr}(F, \text{Sym}^n V = \mathcal{O}(V^\vee)) \]

\[\leadsto X^\vee = V^\vee \]

\[\subset \]

\[G^\vee \text{-varieties } X^\vee \]

\[\leadsto M^\vee = T^* X^\vee \]

\[\subset \]

Hamiltonian \(G^\vee \)-varieties \(M^\vee \)

\[\leadsto \sigma\text{-model into } M^\vee \]

\[\subset \]

Boundary theories for \(B_{G^\vee} \)
Duality for boundary conditions

How to see duality?

Build moment map

$$M^\vee / G^\vee \xrightarrow{\mu} g^{\vee^*} / G^\vee$$

directly out of $G \circlearrowleft M$

as “moduli space of vacua\(^{15}\) for boundary theory”

[Geometrization of Plancherel measure for $L^2(X)$]

• create algebra (bulk) and module (boundary)
 out of line operators in extended TFT,

• describe spectrally

\(^{15}\)Coulomb branch, cf. Braverman-Finkelberg-Nakajima
Reconstructing the dual

OPE of line defects on boundary ($\sim \text{Shv}(LX/LG_+)$)
forms tensor category,
linear over 't Hooft line defects ($\sim \text{Shv}(LG_+\backslash LG/LG_+)$)

G^\vee-equivariant sheaves $\text{QC}(M^\vee/G^\vee)$
form tensor category,
linear over Wilson line defects\(^{16}\) $\text{QC}(g^\vee*/G^\vee)$

\(^{16}\text{Mirkovic-Vilonen, \ldots, Bezrukavnikov-Finkelberg}\)
Comparison with Sakellaridis-Venkatesh data17 $X \mapsto (G_X^\vee \circ V_X)$

\Rightarrow precise conjectures for duality:

$$M^\vee = G^\vee \times_{G_X^\vee} V_X$$

\Rightarrow local and global predictions identifying

- M-relative automorphic theory (periods, harmonic analysis,..)

and

- M^\vee-relative spectral theory (L-functions, alg.geom. of M^\vee)

17More general form includes Arthur SL_2 / Nahm pole
Thank You!

Image by Rok Gregoric: Scylla (Number Theory) and Charybdis (Physics)