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BKM 
(super)algebras

BPS states Automorphic 
forms

infinite-dim’l generalization of Lie algebras, 
first introduced by Borcherds, where Cartan 

matrix can have imaginary simple roots

BKM=“Borcherds-Kac-Moody”



Broad Motivation

What are the symmetries underlying the structure of string theory?

More particularly, so-called BPS have played in important role in the physics of quantum 
field theories and string dualities and have been observed to have, e.g., interesting 

algebraic structure and connections to geometry

Moonshine—connection between finite groups and modular forms:
what is the role of the sporadic groups in physics & can we understand the 

beautiful properties inherent in moonshine physically?



Begin with this famous formula satisfied by the  function:J

J(σ) − J(τ) = p−1 ∏
m>0,n∈ℤ

(1 − pmqn)c(mn)

where  andp = e2πiσ, q = e2πiτ

J(τ) =
∞

∑
n=−1

c(n)qn = q−1 + 196884q + …

unique modular function for 
 with such Fourier 

exp. as 
SL(2,ℤ)

τ → i∞

 (dim. of smallest irrep. of , 
monster sporadic simple group)

= 1 + 196883 𝕄

What are “BKM algebras”?



Borcherds: this is the denominator formula for an infinite-
dimensional Lie algebra 𝔪

J(σ) − J(τ) = p−1 ∏
m>0,n∈ℤ

(1 − pmqn)c(mn)

(c.f. Weyl denominator formula for Lie algebras:

 )∑
w∈W

ϵ(w)ew(ρ) = ∏
α∈Δ+

(eα/2 − e−α/2)

This algebra has a natural action of the monster group 𝕄

This algebra is an example of a Borcherds-Kac-Moody (BKM) algebra—
infinite-dimensional generalizations Lie algebras which can have imaginary 
simple roots ; i.e. such that α ⟨α, α⟩ < 0

What are “Borcherds algebras”?



Borcherds’ motivation was his proof of the monstrous moonshine conjectures of Conway 
and Norton:

There exists -graded vector space  

such that  is a finite-dim’l rep of  and

Further, , the McKay-Thompson series:

is a hauptmodul for a genus zero group 

ℤ V♮ =
∞

⨁
n=−1

V♮
n

V♮
n 𝕄

J(τ) = TrV♮
n

qn

∀g ∈ 𝕄

Tg(τ) :=
∞

∑
n=−1

TrV♮
n

gqn

Γg < SL(2,ℝ)

Monstrous moonshine

biholomorphic map from 
Riemann sphereℍ/Γ →

 has topology of Riemann 
sphere

ℍ/Γ



Monstrous moonshine
A construction of  was furnished by Frenkel-Lepowsky-Meurmann as 
a chiral vertex operator algebra (VOA) of  from a  orbifold of 

chiral bosons on 

V♮

c = 24 ℤ2

ℝ24/ΛLeech

Borcherds’ proof involves constructing Lie algebra of physical states based on 
string-theory-inspired BRST reduction of vertex algebra

 
and considering “twisted denominator identities”

to prove hauptmodul property

V♮ ⊗ Vℝ2/Γ1,1 ⊗ Vghost

Tg(σ) − Tg(τ) ∼ p−1∏
m,n

(1 − pmqn)c̃g(mn)



Physics Motivation

d(P, Q) = ∮ dΩ
eπi(Ω,Λ)

Φ10(Ω)

degeneracy  of “1/4-BPS” black 
holes with magnetic and electric 

charges P, Q

Λ = (P, Q)

Ω = (σ z
z τ)

[Dijkgraaf, Verlinde, Verlinde]

Example 1: black holes from type II string theory on K3 × T2

 is the “denominator function” of a BKM superalgebra and a Siegel 
modular form of weight 10 for 
Φ10

Sp2(ℤ)

Proposal: this algebra governs physics of 1/4-BPS black holes in  
string theory, including, e.g. degeneracies and decay processes 

𝒩 = 4

[e.g. Cheng, Verlinde]



Example 2: threshold corrections in  string theory (heterotic string 
on ) 

d = 4, 𝒩 = 2
K3 × T2

1-loop renormalization of gauge coupling (coming from BPS states) contains term

where  are moduli of the compactification

1
g2

⊃ log[J(iT ) − J(iU)]

T, U

additive side of the denominator 
formula for 𝔪

[Harvey, Moore]

Proposal: BPS states in string theory may form an algebra which is often a 
BKM algebra or generalization



Monstrous BPS algebras

[Paquette, Persson, Volpato;
talk by N. Paquette]

A physical reinterpretation of results of Borcherds: consider heterotic 

string theory on asymmetric orbifold of the form , with 

worldsheet theory :

• similar BRST reduction shows space of physical BPS states in space 

time forms module over 

•  genus zero groups  interpreted as T-duality groups in closely 

related “CHL models”

T8/ℤ2

V♮ ⊗ Vf♮

𝔪

Γg

Are there other contexts in string theory where we can construct explicit 
relations between Borcherds algebras, BPS states, and dualities, and can 

this give us insight into physical interpretations for other instances of 
moonshine?
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BKM (super)algebras & chiral (S)VOAs
Beginning with chiral (S)VOA  of , one can construct an associated 

BKM (super)algebra  via a BRST reduction of chiral string theory with internal 
worldsheet theory :

V c = 24 (c = 12)
𝔤

V

1. Consider 

2. Perform GSO projection

3. Consider cohomology w.r.t nilpotent BRST supercharge , from which one 

can define Hilbert space of physical states 

4.  has structure of a BKM (super)algebra 

Vtot = V ⊗ VΓ1,1 ⊗ Vghost

Q

ℋphys

ℋphys 𝔤

Note: in this construction, theories are chiral, and all spacetime dimensions are compactified!

to prove, one checks  satisfies 
list of properties characterizing a 

BKM algebra

ℋphys



What  can we have?V

 (bosonic case):c = 24  (fermonic case):c = 12
3 unique self-dual SVOA of c = 12

[Creutzig, Duncan, 
Riedler]VfE8

Vf♮ F24

Orbifolds

as SVOAs, they can be related to each 
other in numerous ways by gauging 

symmetries

chiral bosons on  
+ 8 fermion superpartners

ℝ8/ΛE8

“Conway VOA”—unique 
theory with no fields of 
conformal weight 1/2

24 free chiral fermions

1. , monster VOA

2. , lattice VOA based on 24-

dim’l Niemeier lattice 

3.  any other  holomorphic 

bosonic VOA (conjecturally 71 

total) [Schellekens]

V♮

VΛN

ΛN

V c = 24

BKM (super)algebras & chiral (S)VOAs



Symmetries of these theories

 has a unique (up to isomorphism) choice of  supercurrent 

which is preserved by the sporadic simple group 

Vf♮ 𝒩 = 1

Co1

sTrVf ♮ qL0−c/24 =
η24(τ/2)
η24(τ)

+ 24 = q−1/2 + 0 + 276q1/2 − 2048q + …

=reps of Conway group
[Duncan]

Furthermore, there is a corresponding version of the genus zero 
property for the McKay-Thompson series of , such that we can 

think of it as the supersymmetric analogue of 
Vf♮

V♮

Is there a Conway (super)BKM and a physical explanation for the genus zero 
property of Conway moonshine?



gcijk𝒩 = 1F24

 admits 8 distinct  superconformal structures (up to iso.) of the form

where  are structure constants of semisimple Lie algebras  of dimension 24

F24

G(z) ∼ ∑
ijk

cijk : λiλjλk :

cijk g

The superconformal descendants of the 24 fermions are currents 
which generate an affine Kac-Moody algebra  based on :̂g g

when the Killing form is normalized as in (2.11).6 Comparing these equations, we see that if

g is the sum g = �igi of simple components of dual Coxeter number h_
gi , the a�ne algebra ĝ

is given by

ĝ = �i(ĝi)h_
gi

, (2.15)

i.e. the levels of the simple components equal the dual Coxeter numbers.7

For dim g = 24, there are eight distinct possibilities for g:

A8
1 , A3

2 , A3A
3
1 , A4 , B2G2 , B2A2A

2
1 , B3A1 , C3A1 . (2.16)

The corresponding a�ne algebras are,

Â8
1,2 , Â3

2,3 , Â3,4Â
3
1,2 , Â4,5 , B̂2,3Ĝ2,4 , B̂2,3Â2,3Â

2
1,2 , B̂3,5Â1,2 , Ĉ3,4Â1,2 ,(2.17)

that is,

(csu(2)2)�8 , (csu(3)3)�3 , csu(4)4 � (csu(2)2)�3 , csu(5)5 , bso(5)3 � ĝ2,4 , (2.18)

bso(5)3 �csu(3)3 � (csu(2)2)�2 , bso(7)5 �csu(2)2 , bsp(6)4 �csu(2)2 .

Finally, this SVOA admits a unique (up to isomorphism) canonically twisted module F tw
24 ,

which also admits an invariant non-degenerate bilinear form (·|·). Using the string theory

terminology, we will often refer to the SVOA F24 as the Neveu-Schwarz (NS) sector and to

its twisted module as the Ramond (R) sector. Recall that the even subalgebra of F24 is the

bosonic lattice VOA VD12 based on the D12 lattice. This VOA VD12 has four irreducible

modules which are in one-to-one correspondence with the cosets D⇤
12/D12. We can label the

four modules as ‘adjoint’, ‘vector’, ‘spinor’ and ‘conjugate spinor’ in terms of their so(24)

representations. While F24 is given by the direct sum of the adjoint and vector VD12 -modules,

the canonically twisted module can be identified with the direct sum of the two spinor VD12 -

modules, with opposite fermion number. This description immediately shows that the lowest

conformal weight in the Ramond sector is 3/2, and in particular there are no states of weight

1/2. For any choice of the N = 1 supercurrent G(z), the relation G2
0 = L0�

1
2 implies that the

zero mode G0 has zero kernel in the Ramond sector, and therefore establishes an isomorphism

between the components with positive and negative fermion number.

2.2 Partition functions

In this section, we compute the partition functions of the SVOA F24 (NS sector) and its

canonically twisted module F tw
24 (R sector).

6
More generally, the relations are

[tn, um] = k
|✓|2

2
(t|u)�ab�m,�n + (Ad(t).u)n+m ,

where |✓|2 is the length of the long roots. With the choice (2.11) for the normalization, one has |✓|2 =
2

h_
g0
, hence

the formula.
7
The same conclusion can be reached by noticing that, for a simple algebra g0, the dual Coxeter number is the

embedding index of g0 ⇢ so(dim g0). The embedding index is the ratio of the levels for the corresponding embedding

of a�ne algebras. Since dim g0 fermions generate an algebra ŝo(dim g0)q at level 1, we have that ĝ0 must have level

h_
g0 .

7

each choice of superconformal structure will lead to a distinct 
BKM superalgebra which contains the corresponding affine 

Kac-Moody algebra as a sub algebra

[Goddard and Olive]



There is an analogue of Borcherds construction and a corresponding super-BKM 
derived from worldsheet theories based on these  SVOAs:c = 12

1. : chiral superstring on  [Scheithauer]

2. : algebra of physical states in spacetime more directly related to  [SMH, 

Paquette, Volpato]

3. : 8 distinct algebras based on choice of  supercurrent [SMH, 

Paquette, Persson, Volpato]

VfE8 ℝ8/ΛE8

Vf♮ Vs♮

F24 𝒩 = 1

we will forego discussing the construction of these algebras in detail here; 
the method follows in a straightforward way from Borcherds’ original work



Theorem:  is a BKM superalgebra. 𝔤

Proof: Consider , ,  separately 

[see Scheithauer; SMH , Paquette, Volpato; SMH, Paquette, Persson, 

Volpato, respectively] 

Method: verify list of properties characterizing super-BKMs hold

VfE8 Vf♮ F24



Denominator formulas
For a BKM superalgebra of the form , sum of even and odd 

components, write  multiplicities of even/odd roots, we can write a 
(super)denominator formula, encoding info. about root spaces & real/imaginary 

simple roots:

𝔤 = 𝔤0 ⊕ 𝔤1
m0(α), m1(α)

5 The simple roots

In the previous section we established modularity of the product side of the denominator

formulas, one of which we had written down directly from the knowledge of the root system

of our BKM. In this section we will verify that the right hand side of equations (4.22), (4.21)

can be interpreted as the additive side of a (super-)denominator identity, and at the same

time we will determine the simple roots of the BKM superalgebra.

Let us first rewrite the denominator in algebraic language; the product side, which ap-

peared in §3.6, can be easily rewritten in this notation. For any super-BKM we can write its

denominator formula as [60]

e(−ρ)
∑

w∈W

det(w)w(T ) =

∏

α∈∆+
0
(1 − e(−α))m0(α)

∏

α∈∆+
1
(1 + e(−α))m1(α)

. (5.1)

and the super-denominator as

e(−ρ)
∑

w∈W

det(w)w(T ′) =

∏

α∈∆+
0
(1− e(−α))m0(α)

∏

α∈∆+
1
(1− e(−α))m1(α)

. (5.2)

In this formula, ρ denotes the Weyl vector, ∆+
0,1 denote the even and odd positive roots,

respectively, W denotes the Weyl group, m0,1(α) are the even and odd root multiplicities,

respectively. T is defined as follows. First, we define the heights of a root µ =
∑

i∈I kiαi

to be ht(µ) =
∑

I ki, ht0(µ) =
∑

I\S ki where we use I to denote the index set indexing the

simple roots and S ⊆ I indexes the odd generators only. Then we set T = e(ρ)
∑

ε(µ)e(−µ),

with ε(µ) = (−1)ht(µ). (One may similarly define a set T ′ using ht0). The sum is taken over

all sums of imaginary simple roots, and T is only nonvanishing if µ is the sum of pairwise

orthogonal imaginary simple roots. Each simple root appears at least once. In addition, the

Weyl group is generated by reflections with respect to the simple roots of positive norm.

The BKM that appears in our story is of rank 2. It follows from Corollary 2.3.7 of [60]

that, in addition to the rank of the Cartan matrix, all of the structure in a given BKM is

encoded in its set of roots, including their multiplicity, parity, and which among them are

simple. In §3.5 and §3.6 we have deduced the multiplicity and parity of the root spaces that

determine the product side of the denominator and superdenominator formulas. Thus, once

we find the simple roots from the additive side of the (super)denominator formulas we will

have completed our abstract characterization of the Conway BKM.

5.1 Simple roots of the Conway Lie superalgebra

We compute the additive side of the denominator identity for our BKM while concomitantly

identifying the simple roots of the algebra. This information will also complete our abstract

characterization of our BKM, by the remark at the end of the previous subsection.

Let us now find the additive side of the Weyl denominator identity conjectured in equation

(4.22). The corresponding super-denominator formula is given by (4.21).

As explained in §3, the roots are vectors in the even unimodular lattice Γ1,1, and therefore

can be labeled by a pair of integers (d, r) ∈ Z ⊕ Z, with the norm of the root being −2dr.

In particular, positive roots are of the form (d, r), d > 0 with even multiplicities given by

C00(rd) and odd multiplicities given by |C01(rd)|. Note that for rd %= 0, C00(rd) = −C01(rd).

26

5 The simple roots
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α∈∆+
1
(1− e(−α))m1(α)

. (5.2)

In this formula, ρ denotes the Weyl vector, ∆+
0,1 denote the even and odd positive roots,

respectively, W denotes the Weyl group, m0,1(α) are the even and odd root multiplicities,

respectively. T is defined as follows. First, we define the heights of a root µ =
∑

i∈I kiαi

to be ht(µ) =
∑

I ki, ht0(µ) =
∑

I\S ki where we use I to denote the index set indexing the

simple roots and S ⊆ I indexes the odd generators only. Then we set T = e(ρ)
∑

ε(µ)e(−µ),

with ε(µ) = (−1)ht(µ). (One may similarly define a set T ′ using ht0). The sum is taken over

all sums of imaginary simple roots, and T is only nonvanishing if µ is the sum of pairwise

orthogonal imaginary simple roots. Each simple root appears at least once. In addition, the

Weyl group is generated by reflections with respect to the simple roots of positive norm.

The BKM that appears in our story is of rank 2. It follows from Corollary 2.3.7 of [60]

that, in addition to the rank of the Cartan matrix, all of the structure in a given BKM is

encoded in its set of roots, including their multiplicity, parity, and which among them are
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identifying the simple roots of the algebra. This information will also complete our abstract

characterization of our BKM, by the remark at the end of the previous subsection.

Let us now find the additive side of the Weyl denominator identity conjectured in equation

(4.22). The corresponding super-denominator formula is given by (4.21).

As explained in §3, the roots are vectors in the even unimodular lattice Γ1,1, and therefore

can be labeled by a pair of integers (d, r) ∈ Z ⊕ Z, with the norm of the root being −2dr.
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where  is Weyl vector,  are even/odd positive root sets,  is Weyl gp,
and we define:

 ,  

where  ,  

for roots 

ρ Δ+
0 , Δ+

1 W

T := e−ρ ∑
μ

(−1)ht(μ)eμ T′ := e−ρ ∑
μ

(−1)ht0(μ)eμ

ht(α) = ∑
i∈{simples}

ki ht0(α) := ∑
i∈{even simples}

ki

α = ∑
i∈{simples}

kiαi



Example 1: The Conway BKM

• rank 2 Cartan subalgebra

• roots: vectors  where , with 

• positive roots: 

• simple roots: 

αd,r ∈ Γ1,1 (d, r) ∈ ℤ ⊕ ℤ (α, α) = − 2dr

{(d, r) |d > 0}

{(1,r) ∪ (d,0) |d > 0}

1
p [

∞

∏
d=1

1
(1 ± pd)24 ] (1 − pq)2048(1 − pq2)49152(1 − p2q)49152…

(1 ± pq)2048(1 ± pq2)49152(1 ± p2q)49152…

=
η24(σ)
η24(2σ)

− 212 η24(2τ)
η24(τ)

=
1

η24(σ)

(denominator)

(super-denominator)



Example 2:  with  structure corresponding to F24 𝒩 = 1 A8
1

• rank 10 Cartan subalgebra

• even roots: vectors  where  such that 

 (& similar for odd)

• Weyl vector: 

• real simple roots: vectors  such that  and 

• infinitely many real simple roots (all even, mult. 1)

• imaginary simple roots of the form , , all with mult. 8

α ⃗k
⃗k = (m, n, w) ∈ Γ1,1 ⊕ ΛA8

1

k2 = − 2mn + ⟨w, w⟩g=A8
1

ρ = (−1, − 1,ρA8
1
)

αk ⟨αk, αk⟩ = 1 ⟨αk, ρ⟩ = 1/2

−nρ n ∈ ℕ



Even roots: Fourier coefficients of the function 

Odd roots: Fourier coefficients of the function 

η(τ)8

η(τ/2)8η(2τ)8
= 1/ q + 8 + 36 q + 128q + …

8
η(τ)8

η(2τ)16
= 8 + 128q + 1152q2 + …

Example 2:  with  structure corresponding to F24 𝒩 = 1 A8
1

The function �R+ = �R� is obtained simply by dividing �R by two. The form above is already

a theta decomposition, so that the multiplicities of odd roots � = (m,n, ⇢+
P

i ki✓i) are the

Fourier coe�cients cR�(�h�|�i, [⇢]) = cR�(�h�|�i, [⇢+ v]) of the function

1

2

✓2(⌧)4

⌘(⌧)8
= 8

1Y

n=1

(1 + qn)8

(1� qn)8
= 8

⌘(2⌧)8

⌘(⌧)16
. (6.10)

This analysis shows that the BKM superalgebra associated to A8
1 is a superalgebra already

considered in [5], and discussed also in [6], in section 2 of [7], and in example 13.7 of [8].

Besides the real simple roots described above, the algebra contains imaginary simple roots

corresponding to negative integer multiples of the Weyl vector �n⇢̂, n 2 N, all of them with

multiplicity 8. The root �n⇢̂ is even or odd depending on n being even or odd. The additive

side of the denominator identity, therefore, in this case reads

X

w2W

det(w)e�w(⇢̂)
1Y

n=1

(1� e�nw(⇢̂))(�1)n8 . (6.11)

As discussed in [8], the denominator of the BKM algebra g admits an analytic continuation

to a holomorphic automorphic form for Aut(M), the group of automorphisms of the lattice M

which is the maximal even sublattice of the odd unimodular lattice of signature (2, 10). The

lattice M has two orbits of primitive norm zero vectors, which are associated to two di↵erent

expansions of the automorphic form into infinite (Borcherds) products. One of these infinite

products is the denominator of the algebra g considered in this section, while the other is the

denominator of the BKM superalgebra constructed in [48]. In [6], this automorphic form was

also interpreted as a non-vanishing function on the moduli space of Enriques surfaces.

7 Conclusions & Future Directions

In this note we studied some properties of the c = 12 SVOA (holomorphic SCFT) F24 of 24 free

fermions, as well as its role as the internal, “compactification” SCFT in a chiral superstring

worldsheet theory. The latter system is a super-analogue of Borcherds’ method for proving

the monstrous moonshine conjectures (see also [48, 31]). Using this construction, we produced

a new family of Borcherds-Kac-Moody superalgebras, and their corresponding denominators,

labeled by semisimple Lie algebras of dimension 24 and arbitrary rank.

As with our analogous study concerning the c = 12 Conway module V f\ [31], this note

should be viewed as a warm-up for producing complete (i.e. non-chiral) low-dimensional

string compactifications whose internal worldsheet SCFTS are given by products V ⌦ W̄ of

these c = 12 SVOAs, see [30].13 Such peculiar critical string vacua have proved relevant for

understanding aspects of moonshine, including the genus zero property, when the SVOAs used

are moonshine modules; this was illustrated for the Monster case in [42, 43]. We also believe

these vacua, viewed as machines to produce explicit BKM algebras, can serve as useful toy

systems for exploring and understanding BPS-algebras.

We conclude by highlighting a few outstanding questions raised by our study:

• In §3, we described how one can obtain F24, with a choice of supercurrent, from orbifolds

of V fE8 . It would also be interesting to understand what N = 1-preserving orbifolds

13
Related examples which are potentially relevant for this investigation are explored in [29, 34].
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The additive side of the denominator formula:



Full string theory constructions

We would like to explore the role of BKM (super)algebras in more “realistic” 

string theory constructions, i.e., ones where the worldsheet theory has both 

holomorphic and antiholomorphic sectors: V × W

There are many models we can consider where, where we take  to be one of the 

three  self-dual SVOA and V to be either 

a) one of the same (type II) or 

b) a holomorphic  bosonic VOA (heterotic)

W

c = 12

c = 24



The 2d models of interest

Type II models

Heterotic models

(is it unique up to automorphisms?) G =
P8

i=1 : @Xi i : (z), which is left invariant by the

group of inner automorphisms U(1)8 : W (E8), where W (E8) is the Weyl group of E8. The

F24 theory is described in section ??.

Type II models. For every combination V ⇥ V̄ , we list the number of fields of spin 0 or

1/2 in the massless spectrum (there are also fields with no propagating local dofs, namely Gµ⌫ ,

Bµ⌫ , the dilaton �, and possibly gravitini and vectors fields) and the number of spacetime

supersymmetries.

Theory NS-NS R-R NS-R R-NS SUSY

V fE8 ⇥ V̄ fE8 8⇥ 8 8⇥ 8 8⇥ 8 8⇥ 8 (16, 16)

V f\
⇥ V̄ fE8 0 24⇥ 8 0 24⇥ 8 (32, 8)

F24 ⇥ V̄ fE8 24⇥ 8 0 24⇥ 8 0 (8, 8)

V f\
⇥ V̄ f\ 0 24⇥ 24 0 0 (24, 24) or (48, 0)

F24 ⇥ V̄ f\ 0 0 24⇥ 24 0 (24, 0)

F24 ⇥ F̄24 24⇥ 24 0 0 0 (0, 0)

(Let me stress that the F24 ⇥ F̄24 has massive spacetime fermions, although it has no

space-time supersymmetries).

Heterotic models One can play the same game for heterotic compactifications to 1 + 1

dimensions with holomorphically factorized theory V ⇥ V̄ , where V is a holomorphic bosonic

VOA with c = 24 and V̄ is one of the three (anti-)holomorphic SVOAs with c = 12. If V has

N currents, we get

Theory NS R SUSY

V ⇥ V̄ fE8 N ⇥ 8 N ⇥ 8 (8, 8)

V ⇥ V̄ f\ 0 N ⇥ 24 (24, 0)

V ⇥ F̄24 N ⇥ 24 0 (0, 0)

Questions. Some homework:

• Determine the ‘holomorphic’ BKM algebra (as Scheithauer did for V f
E8

and we did for
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• determine the full spectrum, the number of supersymmetries (kind of done, see above),
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string theory for the various combinations of V ⇥ V̄ and choices of the GSO projection
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• can we obtain the ‘holomorphic BKM algebra’ as an algebra of BPS states, as in the

heterotic Monster case?

• Are any of the type II models dual to, e.g., some two dimensional heterotic model? Or is

there some U-duality relating some of these model to each other (or some other model)

non-perturbatively?

Notice that V fE8 ⇥ V̄ fE8 model is just type II on T 8 at the ‘holomorphically factorized point’;

then, V f\ can be obtained as a Z2 orbifold of V fE8 . In principle, also F24 and V f\, as SVOAs,

are related by a Z2 orbifold procedure, but it doesn’t seem to give an N = 1 structure (in the

sense that the symmetry we are dividing by acts non-trivially on the N = 1 current, which
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 a holomorphic bosonic VOA 
with  and  currents

V
c = 24 N

space-time massless spectrum

Most of these theories can arise as asymmetric orbifolds of type II/heterotic string on  at 
holomorphically factorized point in moduli space

T8

{𝒬i, 𝒬j} = 2δij(P0 − P1)



Physical BPS states
A similar BRST reduction to the chiral case—now combining holomorphic and 

antiholomorphic sectors—results in a Hilbert space of spacetime BPS states

ℋBPS := ⨁
kl, kr ≠ 0

k0
l = k0

r = k1
r

H1(kl) ⊗ H̄1(kr) ⊕ (𝖧2(0,0))

left- and right-moving cohomology spaces (nonzero-mom.), arising from BRST reduction w.r.t 
Q = QL + QR

cohomology at zero-mom.

BPS condition:  (states annihilated by right-moving supercharge), 

where  

k0
r = k1

r

k0
l = k0

r = k1
r =

1

2
(
m
R

− nR) , k1
l =

1

2
(
m
R

+ nR), m, n ∈ ℤ

Compactifying in spacetime on spacelike circle of radius :R



Physical BPS states
A similar BRST reduction to the chiral case—now combining holomorphic and 

antiholomorphic sectors—results in a Hilbert space of spacetime BPS states

ℋBPS := ⨁
kl, kr ≠ 0

k0
l = k0

r = k1
r

H1(kl) ⊗ H̄1(kr) ⊕ (𝖧2(0,0))

left- and right-moving cohomology spaces (nonzero-mom.), arising from BRST reduction w.r.t 
Q = QL + QR

cohomology at zero-mom.

We prove there is an action of a BKM algebra on the subspace of BPS 

states in this space of physical states, similar to what was proven in the 

case of V♮ × Vf♮

[SMH, Paquette, Persson, Volpato]



BKM algebras of physical states—the non-chiral case

For worldsheet theory ,  algebras  associated to  and  associated to , s.t.: VL ⊗ VR ∃ 𝔤 VL 𝔤 VR

•

•

• similar relations for 

𝔤 = ⊕k∈Γ1,1 𝔤(k) = ⊕m,n∈ℤ 𝔤(m, n)

𝔤(k) ≅ H1(k) , k ∈ Γ1,1

𝔤

At nonzero mom., BPS states are holomorphically factorized of the form 

, where  and u ⊗ v̄ ∈ ℋBPS u ∈ H1(kl) v̄ ∈ H1(kr)

Roughly, right-moving part of BPS states furnishes  copies of trivial rep. 
of , where  is number of right-moving supercharges, whereas left-

moving part furnishes adjoint rep of 

N
𝔤̄ N

𝔤



For , one can construct a representation  which acts on states 

of the form , where explicitly

x ∈ 𝔤 δx

u ⊗ v̄ ∈ ℋBPS

δx(u ⊗ v̄) := [x, u] ⊗ (e
i
2

( m
R −nR)Xr)0v̄

There exist subtleties for states at zero momentum, but one can prove 
something similar with a little more work

BKM algebras of physical states—the non-chiral case

These  are in fact associated with BRST exact states living in right-moving NS 
sector and generate algebra action on space of physical states 
x

ℋBPS

δx (∫ℳ0,n

⟨
n

∏
i=1

Vui
(zi, z̄i)⟩) ≡

n

∑
j=1

∫ℳ0,n

⟨Vδx(uj)∏
i≠j

Vui
⟩ = 0

Furthermore, one can show:

genus 0, -point correlator of BPS 
vertex operators
n

 is symmetry of 
BPS amplitudes
𝔤



We can make connections to further properties of BKM algebras computing a 
supersymmetric index in the spacetime theory on a spatial circle of radius  and 

Euclidean time corresponding to inverse temperature :
R

β

Define an index

 , 

where  are the Hamiltonian, winding, and momentum,  is 

spacetime fermion number, and  are charges w.r.t. spacetime gauge gp

Z = Tr(−1)Fe−βHe2πiwWe2πimM∏
i

yqi
i

H, W, M (−1)F

qi

Spacetime indices and denominator formulas

H =
1

2 ( M
R

+ WR) ,  Wilson lines for spacetime gauge 
group along circle

yi = e2πiAi Ai

Receives contributions only from single string BPS states 



This index is a signed count spacetime BPS states, and should be closely 

related to the denominator or superdenominator function of  the 

corresponding BKM algebra  associated to 𝔤 VL

It is convenient to define complex parameters 

 and , 

which parametrize Kahler and complex structure of spacetime 

T = w + i
βR

2 2π
U = m + i

β

2 2πR
T, U ∈ ℍ

T2

Spacetime indices and denominator formulas

This allows us to write 

Z(T, U, Ak) = TrBPS(e2πiTWe2πiUM∏
i

e2πi∑k Akqk(−1)F) = TrBPS(pWqM∏
k

yqk
k (−1)F)

where   p := e2πiT , q := e2πiU



Example 1: Consider , where  is holomorphic,  VOA 

constructed from , where  is Leech lattice or one of 23 Niemeier lattices 

(Heterotic)

VL × VR = VΛN
× Vf♮ VΛN

c = 24

ℝ24/ΛN ΛN

Z ∼ p24w0q24m0y−24ρ ∏
m, w ∈ ℤ, ℓ ∈ ℤ24

(m, w, ℓ) > 0

(1 − pwqm∏
i

yℓi
i )

24c(mw,ℓ)

where TrVΛN
qL0−c/24∏

i

yqi
i =

ΘΛN
(τ, ξ)

η(τ)24
= ∑

n∈ℤ,ℓ∈ℤ24

c(n, ℓ)qn∏
i

yqi
i

 is the (24th power of the) product side of a denominator for the 
BKM based on 

Z
VΛN

Something similar is true in most of our models



Example 2: Consider  (Type II)VL × VR = Vf♮ × Vf♮

Z ∼ (q−1
∞

∏
m=1

1
(1 − qm)24 )

24
= ( 1

η24(T ) )
24

 is the (24th power of the) product side of the superdenominator 
for the Conway BKM

Z

Z ∼ (p−1
∞

∏
w=1

1
(1 − pw)24 )

24
= ( 1

η24(U) )
24

OR

depending on whether we assign +/- sign to 24 Ramond ground states of weight 1/2 in , in 
+ case, space-time BPS states only carry momentum (& no winding) and in - only winding 

(no mom.)

Vf ♮



And computing a “modified index” with  instead of  yields (24th power 
of) denominator formula of Conway BKM:

(−1)FR (−1)F

Z ∼ (q−1
∞

∏
m=1

1
(1 + qm)24

∞

∏
w=1

(1 − pwqm)cNS(mw)

(1 + pwqm)cR(mw) )
24

Z ∼ (p−1
∞

∏
w=1

1
(1 + pw)24

∞

∏
m=1

(1 − pwqm)cNS(mw)

(1 + pwqm)cR(mw) )
24

OR



Path integrals & theta lifts
One can compute second-quantized partition function  via Euclidean 

path integral on a 2d space-time torus with Kahler and complex 
structure moduli :

𝒵

T, U

𝒵 ∼ exp (∫SL(2,ℤ)\ℍ

d2τ
τ2

2
Tr(𝗊L0𝗊̄L̄0(−1)F))

= complex structure of worldsheet, τ 𝗊 = e2πiτ

Exponent in  reduces to computing integral of form:𝒵

∫SL(2,ℤ)\ℍ
f(τ)ΘΓ2,2(τ; T, U)

d2τ
τ2

2

Siegel-Narain theta function for even 
unimodular lattice  capturing momenta 
and winding along spacetime  (no Wilson 

lines)

Γ2,2

T2
Partition function for internal worldsheet 

CFT VL ⊗ VR



This kind of integral is called a theta lift in number theory

Path integrals & theta lifts

One starts with a modular form  on  and “lifts” it to an automorphic form  on 

via the map

f ℍ Θf(g)

Γ\SO(m, n; ℝ)/(SO(m) × SO(n))

f ⟼ Θf(g) = ∫SL(2,ℤ)\ℍ
f(τ)ΘΓm,n(τ; g)

d2τ
τ2

2

Siegel-Narain theta function for lattice ,
such more general lattices can arise if we 

include Wilson lines along spacetime torus

Γm,n

Captures connection between automorphic forms, BKM algebras, and spacetime BPS states 



Example: Type II on 

  OR 

Vf♮ ⊗ Vf♮

𝒵 ∼ | |η−24(T ) | |48
Pet 𝒵 ∼ | |η−24(U) | |48

Pet

Path integrals & theta lifts

 agrees with (super)denominator arising from BPS index * 𝒵 Z

*More precisely, since the theory contains massless chiral particles, one 
must take only the holomorphic piece of  to compare with 𝒵 Z

Holomorphic half of  reproduces supersymmetric index , the 
(24th power of) Conway BKM superdenominator

𝒵 Z



Conclusions & speculation
We’ve constructed new examples of super-BKM algebras, and sketched how they 
may arise in string compactifications to 2d where the worldsheet theory has the 

form VL × VR

1. Spacetime BPS states furnish a representation of 

2.  acts as a symmetry of certain BPS amplitudes

3. A suitably-defined spacetime supersymmetric index (as a trace in 

Hilbert space of physical states) reproduces denominator formula for 

 (and is an automorphic form)

4. A path integral formulation of this index reduces to familiar “theta 

lift” from number theory  

𝔤

𝔤

𝔤

We show that in these theories

SMH, Paquette, Persson, Volpato



Conclusions & speculation

We hope such systems will be of use for exploring and understanding the role of 
BKM algebras and/or BPS algebras in string theory

We expect these different algebras may have fascinating/surprising relations 
among each other in the full physical string theory setting by considering the 
action of dualities (descending from their close relations at the SVOA level)



BKM algebras in higher dimensions

CHL orbifolds
Studying CHL orbifolds of  allows one to make connection to monstrous 

moonshine and “twisted denominator identities” & furnishes physical explanation 
of genus zero property of monstrous moonshine

V♮ × Vf♮

What can we learn from CHL orbifolds of these more general models? In particular, 
can we understand the genus zero property of Conway moonshine in a similar way 

by considering CHL orbifolds of ?Vf♮ × Vf♮

How do BKM algebras in our models behave under decompactification?

Can we find similar instances of BKM/BPS algebras of this type in higher-
dimensional string compactifications? 

How does this connect with automorphic forms, geometry, and observations 
about threshold corrections & black holes mentioned in introduction?



Automorphic forms & dualities
The denominator function for the  BKM algebra (from choice of current algebra in ) arises 

from an expansion of an automorphic form  on

 

at a “level 2 cusp”

If you expand  at a “level 1 cusp”, you get the denominator function for Scheithauer’s super-BKM 

based on 

These expansions are related by transformations in the discrete group , which in string theory has 

the interpretation of a duality transformation between theory on  and  

A8
1 F24

Ψ

Γ\SO(2,10)/SO(2) × SO(10)

Ψ

VfE8

Γ

F24 × Vf ♮ VfE8 × Vf ♮

A similar phenomenon occurs for the Conway BKM and an automorphic form for , 

 : there is a second cusp where Fourier expansion leads to a denominator formula 

for a distinct super-BKM arising on a CHL orbifold of the theory 

ℋ × ℋ/Γ

Γ < O(2,2,ℤ)

Physically, the cusps represent different perturbative duality frames, where the states in 
the Fourier expansion of the denominator formula at one cusp are perturbative BPS 

states, where the states associated with the other cusp are non-perturbative 

closely related to moduli space of 
“Enriques Calami-Yau threefold”



Moonshine & K3 string theory?
Some intriguing observations:

•  (VOA closely related to ) has a relation to elliptic genus of non-linear 

sigma models on K3 due to a construction of Duncan and Mack-Crane:

 such that 

and produces many McKay-Thompson series of Mathieu moonshine

• The superdenominator of the Conway BKM , generating fn of Euler 

characteristics of , also spectrum of 1/2-BPS (Dabholkar-Harvey) 

states in  string theory on 

Vs♮
tw Vf♮

Vs♮
tw ⊃ ̂su (2)1 TrVs♮

tw
(−1)FqL0−c/24y2J3 = EG(K3)

∼
1

η24

SymN(K3)

𝒩 = 4 K3 × T2

Is there a duality frame in which the physical appearance of the Conway BKM algebra 
involves compactification on a K3 surface (perhaps an orbifold of )?K3 × T4

Is there a connection to Mathieu moonshine???



Thank you!


