joint work with Dan Berwick-Evans
Laura Murray
Apuva Narade
Emma Phillips

Thanks to the AMS NRC on geometric representation theory
and equivariant elliptic cohomology.

Plan:
1) Context / Motivation
2) Principal 2-group bundles: definitions and key properties
3) Applications

§1. CONTEXT AND MOTIVATION

Let \(G \) be a compact Lie group and fix \(\alpha \in H^3(\mathcal{G}, U(1)) \)

\(\Rightarrow \) there are lots of fun things we can do with this data.

\(\Rightarrow \) Chern-Simons theory

\(\Rightarrow \) G-equivariant elliptic cohomology

\(\Rightarrow \) String structures

\(\Rightarrow \) Equivariant gerbes

\(\Rightarrow \) Higher representation theory

\(\Rightarrow \) Smooth two-group \(\mathcal{G} = \mathcal{G}(G, U(1)), \alpha \)

and its moduli space of principal 2-group bundles

Expectation

All of the above topics are meaningfully related to the space \(\text{Bun}_{\mathcal{G}}(X) \).
Today we focus mainly on the case that G is finite.

Fix input data:
- G: finite group
- A: an abelian Lie group with trivial G-action (e.g., $A = U(1)$)
- $\alpha: G^3 \to A$ a 3-cocycle.

Chern–Simons story:
- $(A = U(1))$
- Dijkgraaf–Witten theory.

Freed–Quinn: construct a line bundle L on the moduli space of principal G-bundles on Riemann surfaces.

- For X a Riemann surface, we get a line bundle L_X on $\text{Bun}_G(X)$.

- $\Gamma(\text{Bun}_G(X), L_X)$ is exactly the vector space that Chern–Simons assigns to X.

Elliptic aside: Restricting L to the moduli space of principal G-bundles over elliptic curves, we obtain \tilde{L}.

Ganter: \tilde{L} is the natural home of twisted G-equivariant elliptic cohomology.

2-groups story: $\left[\alpha \right] \in H^3(G; A)$ classifies finite 2-groups that are central extensions of G by $\frac{1}{2}A$.
- To the representative α, we associate \hat{g} with
 - objects $g \in G$
 - morphisms $\text{Hom}(g, h) = \{ \emptyset, g \neq h \}$
 - \otimes-structure: $g \otimes h = gh$.
associativity: \[(g_0 \circ h_0) \circ k \overset{\sim}{\rightarrow} g_0 \circ (h_0 \circ k)\]

\[\Leftrightarrow \alpha(g_0, h_0, k) \in A\]

- \(G\) can be viewed as a smooth 2-group, depending on the smooth structure of \(A\).

(i.e. a group object in \(\text{Bibun}\))

Today

- we’ll define a moduli space (bicategory) \(\text{Bun}_G(X)\)
- we’ll see there is a nice map \(\text{Bun}_G(X) \rightarrow \text{Bun}_G(X)\)
- when \(X\) is a Riemann surface, this categories \(\mathcal{L}_X\).
- Sections of \(\mathcal{L}_X\) are men isomorphism classes of lifts from \(\text{Bun}_G(X)\) to \(\text{Bun}_G(X)\).
- also applications to string structures/string geometry.

§2. Principal 2-group bundles

Fix a smooth (finite) 2-group \(G\) and smooth manifold.

Goal: Define a bicategory of smooth 2-group bundles over \(X\)

Our favourite definition: A principal \(G\)-bundle on \(X\) is a smooth stack \(\mathcal{P} \rightarrow X\) equipped with an action of \(G\) which is locally trivial:

- a surjective submersion \(u: Y \rightarrow X\) and an isomorphism of \(G\)-stacks over \(Y\):
 \[d: u^* \mathcal{P} \overset{\sim}{\rightarrow} Y \times G\]

Cech data for \(\mathcal{P}\) - tells us how to glue \(G\)-bundles from the trivial bundle on an open over \(Y\).

Note: The first level of gluing data is a bibundle \(\Phi\)

\[Y \times Y \times G \overset{\Phi}{\rightarrow} Y \times Y \times G\]
which we can assume is trivial as an A-bundle

- $u : Y \rightarrow X$
- $g : Y \times Y \rightarrow G$ satisfying "cocycle" conditions.
- $\gamma : Y \times Y \times Y \rightarrow A$

Example: An A-gerbe over X is a principal $\#A$-bundle over X.

Čech data:

\begin{align*}
u : Y & \rightarrow X \\
\gamma : Y \times Y \times Y & \rightarrow A \text{ a 2-cocycle}.
\end{align*}

Definition: An A-2-gerbe is determined by

\begin{align*}
u : Y & \rightarrow X \\
\lambda : Y \times Y \times Y \times Y & \rightarrow A \text{ a 3-cocycle}.
\end{align*}

Observe: We have a forgetful functor $\pi_c : \text{Bun}_g(X) \rightarrow \text{Bun}_G(X)$ in terms of Čech data: $(u, g, \gamma) \mapsto (u, g)$

Theorem: [Bereich-Evans, C., Murray, Nakade, Phillips]

$\pi_c : \text{Bun}_g(X) \rightarrow \text{Bun}_G(X)$ is a torsor over the symmetric monoidal bicategory $\text{Gerbe}_A(X)$.

Sketch of proof: The fibre over (u, g) is given by the γ's that complete the triple (u, g, γ).

- γ determines a 3-cocycle $\lambda_{p,x} = \gamma^x : Y_x^3 \rightarrow A$:

\begin{align*}
(y, y_2, y_3, y_4) & \mapsto \alpha(g(y, y_3), g(y_2, y_3), g(y_3, y_4)) \\
i.e. & \text{ a 2-gerbe}. (* \text{Chern- Simons 2-gerbe} *)
\end{align*}

Claims: 1) the data of γ is equivalent to a trivialisation
of this 2-gerbe \(\lambda_{p, \alpha} \)

2) The bicategory of trivializations of a fixed 2-gerbe is a topos over the symmetric monoidal bicategory of genres.

Principal 2-group bundles in terms of classifying stacks:

Expectation: \(\mathcal{G} \)-bundles are classified by maps \(X \to \mathcal{B}\mathcal{G} \).

![Diagram](image)

Definition: A flat \(\mathcal{G} \)-bundle is a principal \(\mathcal{B}\mathcal{G} \)-bundle with discrete topology.

Recall: Flat principal \(\mathcal{G} \)-bundles are classified by homomorphisms \(\pi_1(X) \to \mathcal{G} \).

Theorem [BCHNP]

For \(X \) with contractible universal cover:

\[
\begin{array}{ccc}
\Bun_{\mathcal{B}\mathcal{G}}^b(X) & \overset{\sim}{\longrightarrow} & \Hom_{\mathcal{B}\text{Cat}} (\ast \!/ \pi_1(X), \ast \!/ \mathcal{G}) \\
\downarrow \pi & & \downarrow \pi \\
\Bun_{\mathcal{G}}^b(X) & \overset{\sim}{\longrightarrow} & \Hom_{\text{Cat}} (\ast \!/ \pi_1(X), \ast \!/ \mathcal{G}) \cong \Hom_{\text{Grp}} (\pi_1(X), \mathcal{G}) \cong \mathbb{G}
\end{array}
\]

A homomorphism \(\pi_1(X) \to \mathcal{G} \):

* \(g : \pi_1(X) \to G \) a homomorphism
• For all \(a, b \in \Pi(X) \), \(g(a)g(b) \xrightarrow{\gamma(a,b)} g(ab) \in \mathcal{G} \)
\[\gamma(a,b) \in A \quad \text{+ cocycle condition} \]

A natural transformation \((\gamma_1, \gamma_2) \Rightarrow (\gamma_3, \gamma_4) \):

• \(t \in G \) s.t. \(\forall a \in G, \ t \gamma_1(a) t^{-1} = \gamma_2(a) \)
• \(\forall a \in G, \ t \gamma_3(a) \xrightarrow{\gamma_4(a)} \gamma_3(a)t \in \mathcal{G} \)

\[\gamma(a) \in A \quad \text{+ cocycle condition} \]

• 2-morphisms are given by \(\gamma \in A \).

Theorem [BCMNP] The action of \(G \) on \(\text{Hom}_{\text{grp}}(\Pi(X), G) \) lifts to an action of \(G \) on the bicategory \(\text{Hom}_{\text{bicat}}(\ast//\Pi(X), \ast//G) \).

This gives \(\mathcal{T} \) the structure of a cloven 2-fibration.

§3. APPLICATIONS

3.1. Freed-Quinn line bundle \((A = UC_1), X \) a Riemann surface)

• We've seen that \(\mathcal{T} : \text{Bun}^b_G(X) \to \text{Bun}^b_G(X) \) is a cloven 2-fibration

with fibres equivalent to \(\text{Gerbe}_{\text{UC}_1}(X) \)

• We can now take isomorphism classes along fibres.

• Since isomorphism classes of gerbes are given by

\[H^2(X, UC_1) \cong UC_1, \]

we obtain a principal \(UC_1 \)-bundle on \(\text{Bun}^b_G(X) \).

Theorem [BCMNP] The associated line bundle is the Freed-Quinn line bundle \(\mathcal{L}_X \).

(cf. Willerton for \(X \) a torus)
Recent work in progress [Benwick-Evans, C.]

- We study categorical tori \mathbb{T}^n from compact torus $1 \rightarrow \mathbb{C}/\mathbb{C}^\times \rightarrow \mathbb{T}^n \rightarrow \mathbb{T} \rightarrow 1$ (cf. Ganter)

- We have $\text{Fun}_{\text{bicat}} (\mathbb{C}/\mathbb{C}^\times, \mathbb{C}/\mathbb{T}) \\ \downarrow \text{Fun}_{\text{cat}} (\mathbb{C}/\mathbb{Z}, \mathbb{C}/\mathbb{T}) \cong \mathbb{T} \times \mathbb{T}$

Theorem (?) This fibration categorifies the line bundle from Chern-Simons, with curvature equal to the Atiyah-Bott symplectic form.

§3.B string structures

- We work with the string 2-group (not finite!) (cf. Schommer-Pries)

$1 \rightarrow \mathbb{C}/\mathbb{C}^\times \rightarrow \text{String}(n) \rightarrow \text{Spin}(n) \rightarrow 1$.

- Starting from a finite group representation $\rho_0 : \rho_0 \rightarrow \text{SO}(n)$,

we produce a 2-group:

\[
\begin{array}{ccccc}
\mathbb{C}/\mathbb{C}^\times & \rightarrow & \mathbb{C}/\mathbb{T} & \rightarrow & \text{String}(n) \\
\downarrow & & \downarrow & & \downarrow \\
\mathbb{Z}/\mathbb{Z} & \rightarrow & \mathbb{G} & \rightarrow & \text{Spin}(n) \\
\downarrow & & \downarrow & & \downarrow \\
\rho_0 & \rightarrow & \text{SO}(n) \\
\end{array}
\]

Recall Let $P_0 \rightarrow X$ be an oriented vector bundle with structure group G.

- A spin structure on P_0 is a lift to a G-bundle P.

Definition [Schommer-Pries] a string structure on P is a lift to a \mathbb{C}/\mathbb{T}-bundle P.
Alternative definition [Waldorf] a string structure on P is a trivialization of the 2-gerbe $\lambda_{P,\alpha}$.

Theorem [BCHNP] The two definitions coincide.

* Let $P \rightarrow X$ be a principal flat G-bundle and consider Chern-Simons theory for P, CS_p.

Definition [Stolz-Teichner] a geometric string structure on P is a trivialization of CS_p.

* in particular, for suitable $f: M^2 \rightarrow X$, $CS_p(f)$ is a line, and we require a non-zero point in this line.

i.e. an isomorphism class of flat G-bundle over $f^*\mathcal{P}$
* this could be given by $f^*\mathcal{P}$ for \mathcal{P} a flat lift of P.

So (part of the data of a trivialization of CS_p)

\[
\uparrow
\]

(part of the data of $\mathcal{D} \in \pi^{-1}(P) \subset \text{Bun}_G^b(X)$)

Work in progress: complete this story.

#

Thank you!