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Motivation … 
Observation of gravitational waves & Emerging field of 
gravitational spectroscopy for Ultra Compact Objects 


What is the spectrum of Ultra Compact Objects in 
theories of gravity? 

Microstates for BPS black holes admit coherent states that 
can be describe as smooth horizon-less solutions in 

supergravity (Microstate geometries — Mathur, Bena-Warner)


Can coherent states of Quantum Gravity exist as non-BPS 
solutions of classical theories of gravity?  



 On Solitons in gravity

Need a framework for constructing solitonic solutions in 
theories of gravity 


‣  Asymtotically flat, smooth and horizon-less solutions


‣  Finite energy and definite charges


‣  Classically stable, Meta-stable saddles of the 
gravitational Euclidian action 



Hurdles… Opportunity?!? 
Without Supersymmetry — Deal with non-linear PDEs of 

Einstein equations (Good Luck…)

No-Go Theorem: Serini (1918); Einstein, Pauli, Lichnerowitz 
(1940’s); Recently revisited in supergravity by Gibbons-Warner

If a vacuum solution in four dimensions is 


‣  Asymtotically flat


‣  Topologically trivial 

‣  Globally Stationary (Global timelike killing vector) 


It must be flat! 



Hurdles… Opportunity?!? 
Ways to move ahead (Gibbons-Warner, 2013)


‣  Solutions with interesting topology

‣  Add various Maxwell-type fields — support topological 
structure


‣  Topological interactions — Chern-Simons terms


‣  Most importantly — Extra Dimensions

Look for solutions in backgrounds that are Asymptotic to 


 — 4d Minkowski with extra circlesM4 × Tn



Topological Star
Look for solutions in backgrounds that are Asymtoptic to 


 — 4d Minkowski with extra circlesM4 × Tn

ℝ3

Circles collapse on surface 

Construct such smooth and regular geometries!?!?



Weyl Systems

Static, axially symmetry spacetimes



4d Weyl Systems
ds2

4 = −
1
Z

dt2 + Z ds2(M3), ds2(M3) = e2ν (dρ2 + dz2) + ρ2dϕ2

F = dH ∧ dϕ

Einstein Equations decoupled into two sectors

∂a ( 1
ρZ

∂aH) = 0, ( 1
ρ

∂ρ (ρ∂ρ) + ∂2
z) log Z =

c
ρZ [(∂ρH)

2
+ (∂zH)2]

Maxwell Sector — Reduced EE 

Base equations


Integrability implied by Maxwell Sector 

∂aν = Pa (H, Z, ∂H, ∂Z)
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Generalize the base
ds2(M3) → ds2(M4) =

1
Z0

(dy0 + H0 dϕ)2 + Z0 ds2(M3)

Generalize the fiber

ds2
n+5 =

1
Z1 [−W0 dt2 +

n

∑
i=1

Wi dy2
i ] + Zn

1 ds2(M4)

F = dH1 ∧ dϕ ∧ dy0, W0∏Wi = 1

Einstein equations decouple into several sectors

Reduced EE sectors

(Z1, H1), (Z0, H0)

Vacuum Sector Base sector 

∂aν = Pa (HI, ZI, Wi, ∂HI, . . . )∂a (ρ∂a log Wi) = 0

For Vacuum Weyl system (Emparan & Reall `01)

Higher-D Weyl Systems



Torus Weyl Systems 

Reduced EE sectors

(Z1, H1), (Z2, H2)

Vacuum Sector

∂a (ρ∂a log W) = 0

Base sector 

∂aν = Pa (HI, ZI, W, ∂HI, . . . )

Find solutions with 

No Horizon

Z1W−1 > 0

Circles shrink at locus 

y1 : Z1W → ∞,
Z1

Z2
> 0

y2 : Z2 → ∞, Z1 > 0

ds2
6 =

1
Z1

[−W dt2 + W−1 dy2
1] + Z1 ds2(M4)

ds2(M4) =
1
Z2

(dy2 + H2 dϕ)2 + Z2 ds2(M3)



Constructing 
Solutions



BPS Solutions

∂a ( 1
ρZ

∂aH) = 0, ∂a (ρ∂a log Z) = −
κ2

ρZ2 [(∂ρH)
2

+ (∂zH)2]
Maxwell Sector — Reduced EE 

Consider the functions  —  is a harmonic potential(X, Y ) X

∂a (ρ∂aX) = ∂a ( 1
ρ

∂aY) = 0, ∂aX∂aY = 0, |∂aY ) |2 = ρ2 |∂aX |2

There is the BPS solutions for multi-center black holes 4d Weyl

κ H = Y, Z = X+constant



On sources
ds2

6 =
1
Z1

[−W dt2 + W−1 dy2
1] + Z1 ds2(M4)

Boundary Conditions

y1 : Z1W → 0
Z1

Z2
> 0,

Z1

W
> 0

∂a (ρ∂aZ1) = 0
Point Charges

∂a (ρ∂a log W) = 0
Line Charges

Sources not compatible and lead 
to singular geometries when flux 

is non-trivial



Reduced EE
∂a ( 1

ρZ
∂aH) = 0, ∂a (ρ∂a log Z) = −

κ2

ρZ2 [(∂ρH)
2

+ (∂zH)2]
Consider the functions (X, Y )

∂a (ρ∂aX) = ∂a ( 1
ρ

∂aY) = 0, ∂aX∂aY = 0, |∂aY ) |2 = ρ2 |∂aX |2

Consider larger class of solutions ?!? κ H = Y, Z = F(X)

F1 =
1
a

sinh(aX + b), F2 =
i
a

cosh(aX + b)

F3 =
1
a

sin(aX + b), F4 =
1
a

cos(aX + b)

(a, b) ∈ ℝ



Rod Sources
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For each rod source, construct a solution of the Laplace 
operator   that diverges at the sourceXi(ρ, z)

ZI =
1

2aI [ebI

N

∏
i=1

XaIPI
i

i − e−bI

N

∏
i=1

X−aIPI
i

i ]
W = ∏XGi

i , HI = ∑ PI
i (r

i
+ − ri

−)

The  associate a magnetic flux for each rod sourcePI
i

ri
± = ρ2 + (z − z±

i )2

ds2
6 =

1
Z1

[−W dt2 + W−1 dy2
1] + Z1 ds2(M4)

F = dH1 ∧ dϕ ∧ dy2
ds2(M4) =

1
Z2

(dy2 + H2 dϕ)2 + Z2 ds2(M3)



Rod Species

ZI =
1

2aI [ebI

N

∏
i=1

XaIPI
i

i − e−bI

N

∏
i=1

X−aIPI
i

i ]

W = ∏XGi
i , HI = ∑ PI

i (r
i
+ − ri

−)

The  associates a magnetic flux for each rod PI
i

Asymptotically flat 4d spacetime requires

aI = sinh(bI)

Black rod — Horizon

PI
i =

1
2aI

, Gi = −
1
2

Bubble 1 — Circle  shrinky1

PI
i =

1
2aI

, Gi =
1
2

Bubble 2 — Circle  shrinky2

P2 =
1
a2

, P1
i = Gi = 0

ds2
6 =

1
Z1

[−W dt2 + W−1 dy2
1] + Z1 ds2(M4)

F = dH1 ∧ dϕ ∧ dy2
ds2(M4) =

1
Z2

(dy2 + H2 dϕ)2 + Z2 ds2(M3)

There is a unit magnetic charge for each rod



Rod Species
ds2

6 =
1
Z1

[−W dt2 + W−1 dy2
1] + Z1 ds2(M4)

ds2(M4) =
1
Z2

(dy2 + H2 dϕ)2 + Z2 ds2(M3)F = dH1 ∧ dϕ ∧ dy2

Asymptotically flat 4d spacetime requires

aI = sinh(bI)

Black rod — Horizon

PI
i =

1
2aI

, Gi = −
1
2

Bubble 1 — Circle  shrinky1

PI
i =

1
2aI

, Gi =
1
2

Bubble 2 — Circle  shrinky2

P2
i =

1
a2

, P1
i = Gi = 0
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Black Rod 

Species-1 Bubble
Rod

Species-2 Bubble
Rod

&'×	ℝ+

&$×&, horizon
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at an origin of ℝ%
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origin of ℝ%
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N-Rod System
ds2

6 =
1
Z1

[−W dt2 + W−1 dy2
1] + Z1 ds2(M4)

ds2(M4) =
1
Z2

(dy2 + H2 dϕ)2 + Z2 ds2(M3)F = dH1 ∧ dϕ ∧ dy2
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Rod 1: Species-1 Bubble

Rod 2: Species-2 Bubble
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The geometries constructed by 
the chain of magnetic rods are 

free from curvature singularities 
and of horizons!

Regularity of metric leads to N 
algebraic conditions that relate 

the mass parameters 

With asymptotic data 

Mi

(Ry1
, Ry2

, aI)



Asymptotic Data
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Rod 2: Species-2 Bubble
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Asymptotic data can be expressed in terms of the mass parameters

MADM =
1

4G4 [coth b2

N

∑
i=1

M2i +
coth b2 + 2 coth b1 − 1

2

N+1

∑
i=1

M2i−1]

Q1
m =

1
8 πG4 sinh b1

N+1

∑
i=1

M2i−1

Q2
m =

1
8 πG4 sinh b2 [

N+1

∑
i=1

M2i−1 + 2
N

∑
i=1

M2i]



Regularity and Force balance
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The mass parameters are constrained by regularity conditions near 
each Rod  

L2i(M1, M2, . . . ) =
4 sinh2 b1

e2b1

2 sinh b2

eb2
R2

y1

L2i−1(M1, M2, . . . ) =
4 sinh2 b2

e2b2
R2

y2

The regularity conditions are force 
balance conditions for the rods.  They 

are ratio of polynomials of degree 
. > N



Bubble Bag-End 
Spacetimes


Solution at large N



N-Rod System
ds2

6 =
1
Z1

[−W dt2 + W−1 dy2
1] + Z1 ds2(M4)

ds2(M4) =
1
Z2

(dy2 + H2 dϕ)2 + Z2 ds2(M3)F = dH1 ∧ dϕ ∧ dy2
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Rod 1: Species-1 Bubble

Rod 2: Species-2 Bubble

&$

&%

Rod 3: Species-1 Bubble &'

0

M2i ∼ M, M2i−1 ∼ M

In the large N limit, we 
look for solutions to the 
regularity conditions with 

Ry1
∼ Ry2

∼ Ry



N-Rod System solution
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Rod 1: Species-1 Bubble

Rod 2: Species-2 Bubble
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Mi ∼ N−3/4Ry

MADM ∼ N1/4Ry

Q2
m ∼ N1/4RyQ1

m ∼ N1/4Ry

Rod length:

Total mass and Charges

ΔN−S ∼ N1/2Ry ΔE−S ∼ N1/4Ry

Proper length of the system



Outside Spacetime 
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Rod 1: Species-1 Bubble

Rod 2: Species-2 Bubble
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Metric dramatically 
simplify right outside 

of structure 

ds2
6 = − dt2 + 1 −

2M
r (dy2

1 + dy2
2) + ( (r − M )2 − M2 cos2 θ

r(r − M )
1/4

( rdr2

r − 2M
+ r2dθ2) + r2 sin2 θ dθ2

M =
1
2 ∑ Mi ∼ N1/4Ry

r > 2M (1 + 𝒪(N−1/2))

The metric in zero charge limit r > 2M (1 + 𝒪(N−1/2))



Bag-End structure
Consider co-centric spheres around structure with area

AreaS2 = ∫ gθθgϕϕ

1 1.51.05

65.7M2

218M2

r
2M

A
re
a S

2

1 1.00004

218M2

r
2M

Plots for .  The area of the spheres shrink, reach a minimal surface 
and grow again close to the structure 

N = 20

ds2
6 = − dt2 + 1 −

2M
r (dy2

1 + dy2
2) + ( (r − M )2 − M2 cos2 θ

r(r − M )
1/4

( rdr2

r − 2M
+ r2dθ2) + r2 sin2 θ dθ2



Bubble Bag-End structure

ℝ",$	×	'(

)



Resolution of singularity
We can consider a system where the rod sources are smeared to 

obtain singular solutions
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Resolution

$%-Circle:
!

$&-Circle:
!

ds2
6 =

1
Z1 (−dt2 + (1 −

2M
r )

D

dy2
1) +

Z1

Z2 (dy +
(2 − D)M

sinh b0 )
2

+Z1Z2 ( (2 − M)2 − M2 cos2 θ
r(r − 2M) )

D(1−D)

( rdr2

r − 2M
+ r2dθ2) + r2 sin2 θdϕ2

The singular solution is labeled 
by two  parameters  in 

addition to charges 

(M, D)
(Q1

m, Q2
m)

 will be related to the 

asymptotic radii 

(M, D)
(Ry1

, Ry2
)



Some Outlook

• What is the general space of non-SUSY solitons? Adding Gibbons-Hawking 
centers? Embedding in string theory!


• Exploit integrability structure in GR, inverse scattering methods? Backlung 
transformations?


• Physical observables in the sky? Phenomenological realizations and implications?


• General aspect of stability and existence? 
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