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Abstract

We make the case that over the coming decade, computational
technology and computer assisted reasoning will become far more
widely used in the mathematical sciences.
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Extended Abstract

We make the case that over the coming decade, computer assisted
reasoning will become far more widely used in the mathematical
sciences. This includes interactive and automatic theorem verification,
symbolic algebra, and emerging technologies such as formal
knowledge repositories, semantic search and intelligent textbooks.
After a short review of the state of the art, we survey directions where
we expect progress, such as mathematical search and formal
abstracts, developments in computational mathematics, integration of
computation into textbooks, and organizing and verifying large
calculations and proofs. For each we try to identify the barriers and
potential solutions.
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Introduction

Computers and the internet have had a large and growing impact on
many human activities. Many believe that machine learning and AI will
dramatically expand this impact.

In this talk we focus on the mathematical sciences, broadly defined to
include not just pure and applied mathematics and statistics, but also
much of computer science, and the theoretical and computational
branches of physics, chemistry and biology.

Our goal will be to identify opportunities for significant advances in how
we discover, communicate and teach knowledge in these fields, which
are feasible over the coming decade.

We will do this by identifying lines of research which address clear
needs, which are being pursued now, which have interesting results
and are making progress, and then extrapolating this progress.
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Introduction

The first electronic computers were built at the end of World War II,
and they were first used for numerical calculations in scientific and
military applications. Soon the pioneers of computer science saw their
far broader potential:

Information storage and retrieval (Vannevar Bush)
Control systems (many people, let’s say Norbert Wiener)
Artificial intelligence (Newell and Simon, McCarthy, Minsky)
Natural computing (Rosenblatt, Ulam and von Neumann, Holland)

In mathematical research, the growing availability of computation led to
a steadily growing interest in numerical methods and simulation. This
has had a huge impact on the mathematical sciences.

AI researchers proposed visionary ideas such as automated theorem
proving. Early attempts were based on tree search, which in general
requires exponential time and by itself can only solve small problems.
But as part of their research, they developed broadly useful
technologies for symbol manipulation, leading for example to symbolic
algebra systems.
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Introduction

The next technological leap was the Internet. This dramatically sped
up the dissemination of results. In my own field of theoretical physics,
we went from paper preprints in the 80’s to the arXiv in the early 90’s.

The “second superstring revolution” was begun in 1993 by Ashoke
Sen, working almost alone in India. Before the internet, important
discoveries were quickly taken over by groups working in a few
dominant centers. But with the internet, Sen and the many other
researchers spread around the world could stay competitive. Unlike
the “first superstring revolution” in the 80’s, this time there was no
single dominant center of research.

Arguably the greatest success story of this type is Wikipedia. In the
past, large collaborative knowledge projects such as encyclopedias
required a great deal of organization, and centralized control of the
editing process. While Wikipedia still has editors and a hierarchical
organization, it requires far fewer editors than anyone predicted.
Wikipedia is a valuable resource for mathematical scientists, but by no
means a panacea.
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Introduction

Many people would agree that we are in the midst of a third
technological leap, powered by machine learning. ML has led to
dramatic improvements in the ability of computers to recognize and
classify patterns, to translate between languages, to play games of
strategy, to extract information from documents, and to carry out tasks
without requiring explicit programming. Its scope is still expanding.

ML is already a core technology for firms like Google, Apple, Facebook
etc. and they have established groups whose total research staff
numbers in the thousands. ML is gradually being adopted by
businesses of all sizes, academic research groups, government etc.

How can ML be used by mathematical scientists? Of course ML is
itself a mathematical concept and is studied by statisticians, applied
mathematicians and other mathematical scientists. But it can also be
used to augment the human capability to do more general research, by
helping to recognize patterns, by finding and organizing relevant data,
documents and code, by helping to write and verify code and
mathematical proofs, in education, and in other ways.
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Introduction Computational mathematics

Computational mathematics

Many of the great mathematicians – Euler, Gauss and Ramanujan
come to mind – were renowned for the calculational abilities, which
were the basis for many mathematical discoveries.
This tradition continues and has been enhanced by the use of
computers. Leaving aside computer-aided proofs of earlier
conjectures, a few discoveries which were made this way include

Many properties of chaos in dynamical systems.
Most of the original constructions of the sporadic finite groups.
The Birch Swinnerton-Dyer conjecture, based on calculations
done on the EDSAC-2 computer at Cambridge.

Numerical experiment is now a central part of number theory, see for
example the web site of the Simons Collaboration on Arithmetic
Geometry, Number Theory, and Computation.
Still, continuing any specific program eventually runs into exponentially
large computing problems, because of the curse of dimensionality, the
existence of NP hard problems, etc. .
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Introduction Computational mathematics

So what are new ideas and tools which will lead to progress by 2030 ?
Faster computers, more storage, better infrastructure
Satisfiability modulo theories, SAT+CAS, ...
Neural networks – the subject of many talks at this workshop
Advances in statistics

The first of these, while not involving deep concepts, can still make a
big difference to research. As an example from physics, there was a
large effort starting in the 80’s to do numerical simulations of lattice
gauge theory, to compute masses of hadrons ab initio. This problem
was essentially solved in the 2000’s, mostly thanks to cheap
supercomputers (clusters with GPUs).

If we were within a factor of 1000 (time, space, ...) of solving a problem
in 2019, it will probably be solved using the same methods by 2030.
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Introduction Computational mathematics

SAT, SMT and SAT+CAS

SAT solvers: solve problems in propositional logic, given as a list of
clauses.
Math example: the Boolean Pythagorean triple problem, split {1...N}
into two subsets such that neither subset contains a triple a2 + b2 = c2.
Possible for N = 7824 and not for N = 7825, as shown by Heule,
Kullmann, and Marek in 2016 (producing “the world’s longest proof”).

In this problem the Boolean variables are the assignments of each
number to a subset, and the logical clauses are easy to derive. Many
problems involve more algebra, or reasoning in other domains. An
SMT (Satisfiability Modulo Theories) solver combines some other
decision algorithm with a SAT solver. Often the SAT solver can reach
its conclusions without evaluating many of the constraints, so this will
be much faster. The “SAT+CAS” variant combines a SAT solver with a
general computer algebra system, which checks proposed solutions
and can return “conflict clauses” to the SAT solver.
Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? WHCGP Oct 17, 2022 9 / 51
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Introduction Computational mathematics

Problems suitable for this approach tend to be those in which the
search space has a natural Boolean encoding. There are many
examples in https://arxiv.org/abs/1907.04408 (the
MathCheck project):

The Williamson conjecture: find four symmetric n × n matrices
with ±1 entries such that

A2 + B2 + C2 + D2 = 4n · id. (1)

These can be arranged into a 4n × 4n Hadamard matrix satisfying
HH t = 4n · id. Strangely enough, these exist for all n < 35, and all
even n ≤ 70, but not for n = 35.
Golay pairs: polynomials f ,g with coefficients from {1, i ,−1,−i}
such that |f (z)|2 + |g(z)|2 is constant on the unit circle.
3× 3 matrix multiplication using fewer than 27 scalar
multiplications. One can find many ways using 23 and so far, none
using 22.

Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? WHCGP Oct 17, 2022 10 / 51



Introduction Computational mathematics

Machine Learning and Neural Networks

AlphaFold: a solution to a 50-year-old  
grand challenge in biology
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Introduction Computational mathematics

Generalities on machine learning

Three standard paradigms: supervised learning (function fitting), 
reinforcement learning (usually, fitting a Markov decision process), and 
self-supervised learning (fitting a conditional probability distribution).
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Introduction Computational mathematics

• All ML methods involve fitting parameterized functions to data, almost always by 
optimizing an objective function, most commonly by stochastic gradient descent.


• In “deep learning” the standard parameterized function is a feedforward neural 
network.  These fits are powered by techniques to efficiently evaluate the models 
and compute gradients with respect to parameters (GPUs, backpropagation).


• Current methods require huge datasets.  Performance often goes as a low power 
(e.g. N1/10) of the dataset size and number of parameters.


• Supervised learning requires labeled data.  Large curated datasets (e.g. 
CIFAR-10, Imagenet) led to major advances.  But these are hard to get.


• Self-supervised learning of masked word prediction led to the tremendous 
advances in large language models (Bert, GPT-3, PaLM).


• Reinforcement learning for game self-play can generate arbitrarily large quantities 
of synthetic data, as was done for AlphaZero .
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Introduction Computational mathematics

• Statistics and standard ML are based on general purpose models.  By 
contrast, physics has fundamental models which accurately describe 
the dynamics of a system: Newton’s equations of celestial mechanics, 
the Schrödinger equation of atomic physics, etc..  Model-informed ML 
methods use the particularities of these models to do inference.


• One general approach is to simulate the physical equations starting 
from diverse initial conditions to get a set of trajectories: a synthetic 
dataset.  Model features can also use known properties of solutions.


• Mathematical objects come in sets or families which can be classified: 
Riemann surfaces and higher dimensional manifolds, the elliptic curves 
of number theory, knots in three dimensions, etc.  These are platonic 
datasets, i.e. synthetic datasets depending on few arbitrary choices 
(one might need to choose a bound on the size of the objects). 

Synthetic datasets and model-informed learning
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Introduction Computational mathematics

One mathematically natural (or “platonic”) and arbitrarily large dataset is a  table of 
knots.  A table of all knots with up to 16 crossings (over a million knots) with their 
corresponding knot invariants has been computed. 

Davies et al (2021) fit this data to predict the signature from the other invariants, and 
working with knot theorist Marc Lackenby proved a new relation between invariants.

A mathematical dataset - knots 
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Introduction Computational mathematics

A number theoretic dataset: elliptic curves

Solutions of a cubic equation - one parameter Group law

The group law on an elliptic curve is abelian and takes rational points to rational 
points.  The rank of an elliptic curve is the number of generators of the infinite 
order part of the group.  Most elliptic curves have rank 0 or 1, but examples are 
known with ranks 20 and higher.  There are large datasets of elliptic curves, such 
as the LMFDB at https://www.lmfdb.org/ .
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Introduction Computational mathematics

The Birch Swinnerton-Dyer conjecture: one of the first (1960’s)  
mathematical conjectures based on machine learning 
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Introduction Computational mathematics

Predicting (in)stability of an exoplanetary solar system (Tamayo et al 2020)
The long term stability of our Solar System was famously studied by Laplace and 
Lagrange (among others).   Using perturbation theory one can show stability for 
10000’s of years but also see that it is not guaranteed over longer timescales.  In 
fact the dynamics is chaotic and depends sensitively on the initial conditions.


In 2009 Gastineau and Lascar showed that the Solar System is not stable, by 
starting from 1000’s of nearby initial conditions and simulating for billions of years.  
About 1% of the starting points led to collisions or ejection of a planet.


The discovery of exoplanetary systems leads us to ask the general question: given 
a system of N planets with masses and initial conditions, predict the timescale T 
of (in)stability.  The Lyapunov exponent (exponential growth of perturbations) gives 
a lower bound but chaos need not lead to instability.


One can use ML to predict T by doing many simulations to generate a synthetic 
dataset.  The inputs include the masses and a time series of positions and 
velocities, or features derived from these.  The target is (a lower bound on) T.
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Introduction Computational mathematics

From Tamayo et al (arXiv:2007.06521) and Cranmer et al (arXiv:2101.04117)
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Introduction Computational mathematics

A GNN propagates data by message passing along edges, followed by 
aggregation (sum, max, …) at each node, followed by a general function 
(FFN).  This is repeated in (usually 2 or 3) layers.

Graphical Neural Networks
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Introduction Computational mathematics

Fitting modifications to the inverse square law of gravity caused 
by interactions with dark matter (Cranmer et al 2020)
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Introduction Computational mathematics

Gravity models of trade fit by GNN (Verstyuk and Douglas 2022)

•CEPII Gravity Dataset includes trade, GDP, population, trade agreements 
(224 economies, 1948 to 2016 period, bilateral) 


• Even the simplest (linear) model fits well, R2 ~ 0.4

•Much work on identifying other “distance” factors, e.g. trade agreements

•Higher order interactions, for example competitive advantage. Structural 

models with market access factors (upweight a country’s access by a 
weighted average of its total imports or exports) can get R2 ~ 0.5


• Verstyuk and Douglas (2022) developed a graphical neural network model 
with general higher order interactions.  Fitting the data followed by symbolic 
regression leads to terms similar to market access factors and R2 ~ 0.6

(Tinbergen 1962)
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Introduction Computational mathematics

Advances in statistics

Statistics is hardly new, but one could argue that with less need for
computational efficiency, one is more free to use general approaches
based on simple concepts:

Generative models: give entire probability distribution of data.
Bayesian statistics: turn around model⇒ data to infer P(model).
Information theory: KL divergence, variational methods
Distances between observations or measures: Wasserstein
distance and optimal transport, ...

Given two measures µ and ν on a metric space M, the p’th
Wasserstein distance between them is

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
M×M

d(x , y)pdγ(x , y)
)1/p

(2)

where
∫

M1
dγ = µ, resp. M2 and ν.
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Introduction Computational mathematics

An interesting trend in physics and other hard sciences is to replace
hand-crafted concepts and tools for data analysis, with more general
statistical tools. An example from particle physics is Thaler et al,
http://arxiv.org/abs/1902.02346, “The Metric Space of
Collider Events.” They use Wasserstein W1 as a distance between
collider events, considered as energy distributions µ, ν.
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Introduction Computational mathematics

Probabilistic models in number theory

Interestingly, pure mathematicians also seem to be more interested in
probabilistic approaches. This is not a new idea – one of the classic
approaches to the theory of prime numbers is to make models in which
the probability of a given number being divisible by 2,3, . . . are
approximated as independent. But the availability of large databases
allows making and testing more sophisticated models.

A recent example is the probabilistic model of the arithmetic of elliptic
curves developed by Bhargava et al arXiv:1304.3971 . To give just
a taste, we are discussing the solutions to a cubic equation like
y2 = x3 − 2x + 2 in rational numbers, for example x = 1, y = ±1. In
fact this curve has infinitely many rational solutions, but they can all be
generated from a (well chosen) pair of solutions – it is rank 1.

Curves are known with rank 19 and higher, and until recently it was
believed that arbitrarily high rank should exist. But the probabilistic
model suggests that the rank is ≤ 21 for all but finitely many curves.
Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? WHCGP Oct 17, 2022 27 / 51
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Interactive theorem verification

Interactive theorem verification

In the 50’s and 60’s, the pioneers of AI developed automatic theorem
provers, which generate logical deductions and search for proofs of
given logical statements. Concurrently, the subfield of formal methods
was developed, in which computer programs were given precise
semantics allowing them to be rigorously verified.

This is of great practical value, especially for programs (an airplane
autopilot, a CPU floating point unit) where mistakes can be extremely
expensive. Thus it has been pursued intensively for decades, the
formal methods community is fairly large and well-funded, and most of
the systems we cited (Isabelle and Coq, though not Mizar) have
software verification as the primary application.
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As a prototypical example of software verification, let us briefly discuss
sorting a list into alphabetical order. In an algorithms course one
learns that a list of N elements can be sorted in worst case time
N logN, but the algorithms (quicksort, heapsort, ...) are a bit tricky. On
the other hand, logically defining the problem of sorting is not difficult.
In Coq we can say

In https://softwarefoundations.cis.upenn.edu/
vfa-current/Sort.html one can see formally verified proofs that
runnable sorting programs satisfy this specification.
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The Fundamental Theorem of Algebra

Let’s look a bit at a mathematical example, the fundamental theorem of
algebra. As we all know, this states that the field C of complex
numbers is algebraically closed, in other words every nonconstant
polynomial f (z) has a root.

This claim can be easily formalized: in the Lean theorem proving
language, we can say

lemma exists_root {f : polynomialC} (hf : 0 < degree f ) :
∃z : C, f .eval z = 0 := (3)

followed by the proof.
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Here is an informal proof. We start by assuming that f has no zero, to
get a contradiction. (A constructive proof exists but is longer.)

1 We first show that |f (z)| attains its minimum at some point z0. A
polynomial goes to infinity at infinity, so the infimum of f is
contained in a closed bounded region R. Since |f | is continuous,
the image of R is closed and bounded, so it contains its infimum.

2 Expand around the location z0 of the minimum by writing

f (z) = f (z0) + (z − z0)
ng(z)

for some polynomial g(z) such that g(z0) 6= 0.
3 Now, consider a small circle z = z0 + δeiθ. If we neglect the

variation of g(z) and look at F (z) = f (z0) + (z − z0)
ng(z0), it is

easy to show that z0 cannot be a minimum of |F (z)|, since
(z − z0)

n takes every possible phase.
4 Intuitively, we then want to choose δ small enough such that we

can neglect the variation of g(z), so z0 cannot be a minimum of
|f (z)|, a contradiction. After a bit of algebra, it turns out that
|g(z)− g(z0)| < |g(z0)| ∀|z − z0| ≤ δ suffices.
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The Lean version of this proof takes about 100 lines: here is part 1.

The statement being proved is on line 13 - it is clear and intuitive.
The language is “computerese” - but this is a question of taste and
one can display the same content in more math-friendly notations.
Unlike the informal proof, we had to give many propositions their
own names and calling conventions, which also hurts readability.
Commands like rw and simpa are “tactics,” explicit instructions to
the proof verifier. These are procedural and tricky to get right.
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Today’s ITV systems incorporate many advances in logic, such as
dependent type theory (in Coq and Lean), and many advances in
computer science. But despite all this work, theorem verification is
more akin to programming than to any of the traditional skills of a
mathematical scientist. And the many differences with informal proofs
which we just cited, while each fairly simple, add up. At present ITV is
hard to learn and use.

Still, many people believe that formalization and verification is a central
part of the relation between computers and mathematics. This even
includes theoretical physicists and others for whom rigorous proof is
not a primary goal. It is hard to get a computer to understand anything,
and here is a way for it to “understand truth.” So how to use this?

Definitions are easier to write than proofs: focus on these?
Perhaps ITVs need more reasoning methods than deductive
logic? Say counterexamples, heuristics, etc.. Omitted in this talk.
Will machine learning and AI help?
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Formal Abstracts

Tom Hales at U Pittsburgh has begun a project to create an online
repository of formal abstracts, meaning statements of the main results
of a mathematical paper, expressed in formal terms. Proofs would not
be required, but it should be possible in principle to prove every
abstract true or false. This project has many parts – here are a few
(based on discussions with Tom):

A solid ITV with dependent types – Lean.
A library of standard concepts which can be used by abstracts,
probably covering all of advanced undergraduate/early graduate
level mathematics. A very rough estimate of the size is about
50,000 definitions filling 10,000 pages.
Abstracts can be written in a controlled natural language which
looks like standard mathematical text.
Interactive tools to help search for, read and write abstracts.

While ambitious, such a system could be fully operational with its
library in less than five years.
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Formalization of research level mathematics

Here are some recent and current projects in formalization of research
mathematics, including central results with substantial proofs, and
frontier topics. See recent articles and blogs of Kevin Buzzard, and his
upcoming ICM lecture, for the latest developments.

Schemes in algebraic geometry (Buzzard et al arXiv:2101.02602).
Peter Scholze’s “Liquid Tensor Experiment” – formalize the proof
of a key theorem about condensed abelian groups in Lectures on
Analytic Geometry by Clausen and Scholze. Completed this
summer by Johan Commelin and the Lean community.
Perfectoid spaces (Buzzard, Commelin, Massot).
Independence of the continuum hypothesis (Han and van Doorn,
arXiv:2102.02901).
In progress (Massot et al): the h-principle for open and ample first
order differential relations, and its application to sphere eversion
(a homotopy of embeddings S2 → R3 which exchanges inside and
outside).
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As for the third question, clearly AI has made transformative progress
over the last decade. Let’s come back to this after discussing some
more applications.
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AI and theorem proving

learning 
use deep

Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? WHCGP Oct 17, 2022 37 / 51



AI and theorem proving

Many groups are applying machine learning to make ITV more
automatic, in AITP projects such as TacticToe (Gauthier, Kalisczyk and
Urban 2017), GamePad (Huang, Dhariwal, Song and Sutskever 2018),
HOList (Bansal, Loos, Rabe, Szegedy and Wilcox 2019), CoqGym
(Yang and Deng, 2019), and GPT-F (Han et al, 2021).

In developing a proof, many choices must be made, including
Premise selection. Out of the many known true statements, which
ones should be used to make the next deduction? There could be
100’s of candidates in the current context, and if we search the
entire library of proved theorems, millions of candidates.
Tactic selection. Tactics include introduction of antecedent
clauses, rewriting and simplification, and other simple logical
steps. Modern ITV’s typically provide 40–100 tactics.

We can make an analogy between these successive choices, and the
moves in a game of solitaire.
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AI and theorem proving

A very successful approach to AI game play is reinforcement learning
(RL), as famously used by AlphaGo. Its central parts are a pair of
neural networks, one to choose moves and the other to evaluate the
score of game positions. The original AlphaGo used a corpus of
human games for initial training, and then generated games by
self-play. (Another important element is Monte Carlo tree search – it
turns out for Go that playing out a game many times with random
moves, gives a good estimate for its score.)

Similarly, the AITP systems use a corpus of proven theorems as
training data. As the verifier works through a theorem, each step of
premise and tactic selection is saved, along with a summary of the
state just before the choice is made. One can then use these pairs
(state, selection) to train networks to do premise and tactic selection.

The better developed systems (Coq, HOL) have large libraries with
30,000–70,000 (short) theorems. This is enough training data to
achieve success rates in proving similar theorems (a held-out testing
set) of around 75% (it was 50% two years ago).
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Auto-formalization

The total corpus of mathematical texts is much larger of course – there
are about 1.5 million papers just on arXiv. Building on the success of
neural networks for machine translation, could we develop a system
which translates “informal” mathematical text to formal mathematics?

These experiments are in very early days, see for example
https://arxiv.org/abs/1611.09703 by Kaliszyk et al. One
problem is that there is no sizable corpus of aligned informal and
formal mathematics to use as training data. So far this is dealt with by
“informalizing” a formal corpus.

To my mind, a deeper problem is that mathematical texts are almost
never self-contained, and a formalization cannot make much sense
without the formal definitions of the concepts it refers to. In the best
cases a text will only refer to standard concepts, so having a library as
in Formal Abstracts would be a great help. But in many (most?) cases
research papers refer to other research papers.
Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? WHCGP Oct 17, 2022 40 / 51



AI and theorem proving

Auto-formalization

The total corpus of mathematical texts is much larger of course – there
are about 1.5 million papers just on arXiv. Building on the success of
neural networks for machine translation, could we develop a system
which translates “informal” mathematical text to formal mathematics?

These experiments are in very early days, see for example
https://arxiv.org/abs/1611.09703 by Kaliszyk et al. One
problem is that there is no sizable corpus of aligned informal and
formal mathematics to use as training data. So far this is dealt with by
“informalizing” a formal corpus.

To my mind, a deeper problem is that mathematical texts are almost
never self-contained, and a formalization cannot make much sense
without the formal definitions of the concepts it refers to. In the best
cases a text will only refer to standard concepts, so having a library as
in Formal Abstracts would be a great help. But in many (most?) cases
research papers refer to other research papers.
Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? WHCGP Oct 17, 2022 40 / 51



AI and theorem proving

Auto-formalization

The total corpus of mathematical texts is much larger of course – there
are about 1.5 million papers just on arXiv. Building on the success of
neural networks for machine translation, could we develop a system
which translates “informal” mathematical text to formal mathematics?

These experiments are in very early days, see for example
https://arxiv.org/abs/1611.09703 by Kaliszyk et al. One
problem is that there is no sizable corpus of aligned informal and
formal mathematics to use as training data. So far this is dealt with by
“informalizing” a formal corpus.

To my mind, a deeper problem is that mathematical texts are almost
never self-contained, and a formalization cannot make much sense
without the formal definitions of the concepts it refers to. In the best
cases a text will only refer to standard concepts, so having a library as
in Formal Abstracts would be a great help. But in many (most?) cases
research papers refer to other research papers.
Michael R. Douglas (CMSA/SCGP) How will we do mathematics in 2030 ? WHCGP Oct 17, 2022 40 / 51



AI and theorem proving

Reinforcement learning

The big success of AlphaGo came from its ability to generate its own
training data by self-play. Amazingly, it turned out that human games
were not needed – AlphaGo Zero achieved superhuman skill without
them. Could we make a theorem prover do self-play?

At first, one might say that to “win a game” is equivalent to proving a
theorem. However this is simplistic as every step of a deduction proves
a new logical statement. Somehow the results have to be scored
according to how “significant,” “interesting” or “useful” the statement is,
or how close the new statement is to a significant result.

Only rewarding the theorems considered interesting or significant by
humans may not be giving the computer enough feedback. So, it may
be necessary to give the computer its own ability to judge what is
interesting. From an ML point of view this is just another scoring
function which could be learned.
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AI and theorem proving

What is “interesting” mathematics? In Lenat’s AM system (1976) this
was defined by hand-coded heuristics.

Perhaps given a large semi-formal corpus, this could be inferred by
similarity of a statement to the statements in the corpus. After all,
people try to make interesting statements and avoid uninteresting
ones.

Rather than make an a priori definition of interesting, one can say that
an interesting concept is one which aids reasoning. To the extent that
the system can judge the complexity of its proofs, then a new
statement which makes many proofs simpler is ipso facto interesting.

One could consider efficacy at more general tasks. Perhaps textbook
problems would be a good source. As another example, given a
mathematical definitions such as “finite group,” can the system take a
pair of randomly chosen examples and efficiently prove that they are
isomorphic or not isomorphic. As an even harder test, can the system
enumerate groups with up to k elements?
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Large Language Models
The term language model usually refers to a probabilistic model, for example a 
model for the conditional probability that a sequence of words is followed by 
another specified word.

Such a probability description can be modeled and fit to a large corpus of text, for 
example the 100’s of gigabytes of natural language on the web.
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This type of language model has been studied for a long time, for example in the 
1993 work of Brown et al on statistical machine translation.


In 2017 a neural network architecture called attention was proposed by Vaswani 
et al.  The basic idea is to have a neural network for each word, which can take 
its input from any of the words in the previous layer depending on a learned 
measure of relevance.  This dramatically improved performance.
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Large language models such as GPT-3 and PaLM are trained on large
fractions of the text available on the internet, 100’s of gigabytes. This
can also include Github repositories (more 100’s of gigabytes).

The resulting models can be used to generate text which looks eerily
similar to what a human would write, at least if one doesn’t look too
closely (it lacks coherence and can have elementary mistakes). They
are also the basis of systems such as Google Translate.

The models have amazing capabilities far beyond what anyone
expected. Among the impressive recent developments are Codex and
AlphaCode, systems which translate natural language descriptions of
a problem to runnable code in Python or other languages.

Language models can even solve math and physics word problems at
an advanced high school or early undergraduate level. Google’s
Minerva system (arXiv:2206.14858) is a language model fine-tuned on
text from arXiv and other mathematical sources, and gets almost 50%
accuracy.
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Codex - an example from Chen et al 2021 (arXiv:2107.03374)
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This is an example of the language model approach (Polu et al, 2022).  Their 
GPT-f system can accept natural language mathematics problems (here from 
the IMO) and, at least sometimes, find the solutions with formal proofs.
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Summary and conclusions

Question: A line parallel to y = 4x + 6 passes through (5,10). What is the
y -coordinate of the point where this line crosses the y -axis?

Human solution: Since the line is parallel to y = 4x + 6, we know that its
slope is 4. Thus the equation of the line is y = 4x + b where b is the

y -intercept. Plugging (5,10) into this gives 10 = 4 · 5 + b ⇒ b = −10 which
is what we wanted.

Minerva output: The line is parallel to y = 4x + 6, which means that it has
the same slope as y = 4x + 6. Since the line passes through (5,10), we can

use the point-slope form of a line to find the equation of the line:

y − 10 = 4(x − 5)
y − 10 = 4x − 20

y = 4x − 10

Now that we have the equation of the line, we can find the y -coordinate of the
point where the line crosses the y -axis by substituting x = 0 into the equation:

y = 4 · 0− 10 = −10 .

Figure: From Lewkowycz et al, arXiv:2206.14858.
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Summary and conclusions

Some major lines of progress in computers and mathematics:
General advances in hardware and software
More and larger knowledge repositories, with better metadata
Neural networks and deep learning
Interactive theorem verification, theorem libraries and formal
abstracts
New styles of collaboration along the lines of the Stack project,
Polymath, ...
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Summary and conclusions

Speculations and opportunities

In the end I don’t think there are very clear predictions to make for
2030, but let me go out on a limb and make some anyways.

There will be textbooks which integrate computation – not just
numerics but many of the new technologies we discuss – in
groundbreaking ways, making today’s textbooks look dated.
Significant new discoveries and proofs will continue to be made
using computational experiment and numerical methods, but of
the general character we have seen: solving intricate problems by
combinatorial search, producing large datasets leading to
statistical conjectures, etc..
ITVs will be much easier to use, thanks to AI automation. An
introductory course in theorem proving will be a common
advanced undergraduate offering. They will have a status much
like computer algebra systems now – a convenient tool that some
people rely on and many people use (say) once a month.
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Significant new discoveries and proofs will continue to be made
using computational experiment and numerical methods, but of
the general character we have seen: solving intricate problems by
combinatorial search, producing large datasets leading to
statistical conjectures, etc..
ITVs will be much easier to use, thanks to AI automation. An
introductory course in theorem proving will be a common
advanced undergraduate offering. They will have a status much
like computer algebra systems now – a convenient tool that some
people rely on and many people use (say) once a month.
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Summary and conclusions

A large database of formal mathematics will exist, built by some
combination of human and automated work. Perhaps the overall
organization will be created or tuned by humans, while the bulk of
the formalization will be automatic.
Semantic mathematical search will be a standard part of our
literature searches. At least one nontrivial connection between
different mathematical fields will be discovered this way.
At present it is hard to reuse code from math/physics projects –
this problem will be largely solved.

But in 2030 will computers have invented or proven any major result by
themselves? Math AGI, either based on the human mathematical
literature, or which trains itself ab initio, is an old dream.
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Summary and conclusions

While progress in AI is rapid, we don’t have a good way to guess how
far away this dream might be. But here are some thoughts:

Math reasoning – at the level of individual steps – is not likely to
be easier than general reasoning in other large domains.
Other domains may have advantages, such as more training data.
The advantages of math as a domain are that one can use
arbitrarily long chains of reasoning, and that success depends
much less on abilities other than logical reasoning. So, even if
general reasoning capability is developed in many domains at
once, it will have major consequences in math before most fields.
Significant advances are being made in general reasoning, and
breakthroughs may happen soon.
The full consequences of a breakthrough will take around ten
years to realize. For example, MCTS was introduced in computer
Go around 2006, and produced significant improvements by 2009,
leading to AlphaGo in 2016.
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