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In most quantum theories, we can use perturbation theory
to calculate observables as power series in a “small”

coupling z:
p(z) = Z ap 2"
n>0

Unfortunately, these series are typically factorially divergent
[Dyson]
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It is therefore nontrivial to extract, say, numerical predictions
from these series!



String theory is no exception!
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It has been recognized for a long time that the factorial
divergence of perturbative series is a signal of “non-
perturbative effects” that have to be taken into account, of
the form

e—A/z



This idea has been given appropriate mathematical form in
the theory of resurgence of Jean Ecalle, who was
inspired in part by the work of physicists studying non-

perturbative effects in quantum theory.

In this talk, based on this theory, | will introduce the
concept of a resurgent structure associated to a
factorially divergent series. This gives a proper mathematical
framework to understand “non-perturbative sectors.”

| will then show how this idea can be applied to topological
string theory.



From wild series to analytic functions

Let us consider a formal power series with factorially growing
coefficients

o(z) =) anz" Ay ~ N

n>0

These are sometimes called Gevrey-| series. The first step in
resurgence is the Borel transform, a deceptively simple
way of transforming these series into “nice” functions
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The Borel transform ©(¢) is analytic at the origin.We now
demand that it can be “endlessly analytically continued” to
the complex plane, displaying a set of singularities
(poles, branch cuts)
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Example: p(z) = Z kl2"
k>0




One of the main ideas in the theory of resurgence is that
the singularities of the Borel transform contain non-
perturbative information, which is hidden in the original
divergent series




To extract this information, we have to consider the
expansion of the Borel transform around each singularity.
These leads to new formal power series.

Let us consider for simplicity the so-called simple
resurgent functions, where singularities are logarithmic
branch cuts. The expansion around a singularity at

( = (. has the form
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The function (&) is typically analytic at the origin
Pu (f) — Z an,wgn
n>0

but we can think about it as the Borel transform of a new,
factorially divergent power series associated to the
singularity:

— n ~
QOW(Z) — E Un,wc Un.w — n! An W
n>0

The constant S, is called a Stokes constant. Its value
depends on the normalization of ¢, (%)



Resurgent structures

We can repeat the same analysis for the new power series
found in this way, and generate further series. At the end, we
obtain a set of formal power series associated to the
original power series, which | will call the resurgent

structure associated to ¥ (Z)

p(2) - B, = {vu(2) tweo



Therefore, from a single factorially divergent series we obtain
a very rich structure!




In actual calculations, the new series are multiplied by an
exponential involving the location of the singularity

oy (2) = e~/ Fp,(2)

These objects, which involve a new, exponentially small
parameter, are sometimes called trans=-series.They have
many mathematical applications, from the solutions of
ODEs to the saddle-point analysis of multi-dimensional
integrals.



In physics, trans-series can be sometimes interpreted as
instanton corrections, i.e. expansions around non-
trivial saddle-points of the path integral.

dy(2) = e_cw/zww (2)
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Resurgence and asymptotics

The “largest” exponentially small trans-series, associated to
the closest Borel singularity to the origin

D= A% (co+crget )

turns out to determine the asymptotic behavior of the
perturbative series

A" | ClA |
Qn ~ 5 ['(n) (CO F o )

The trans-series “resurges” in the perturbative series




This is the famous connection between perturbative and
non-perturbative sectors predicted by resurgence, which
goes back to the pioneering work by Bender and Wu
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This connection will be useful to obtain experimental tests
of our results.



Topological string theory

Let X be a Calabi-Yau (CY) threefold. At each genus g we can
compute the topological string free energy F,(t), which
depends on the Kahler moduli t (I will often consider one-
modulus CYs for simplicity)

At large t this has an expansion encoding Gromov-Witten

invariants of X, which “count” holomorphic curves of genus g
in X:

ZNgde



| will use mirror symmetry throughout. In the mirror
manifold one can calculate periods by integrating the
holomorphic 3-form over a symplectic basis of 3-cycles

[=0,1,--,n

The X! are projective coordinates of the CY moduli space,
and the mirror map is




String perturbation theory tells us that the total free
energy is given by a genus expansion in a small parameter,
a.k.a. the string coupling constant

F(t,gs) =Y Fy(t)g3s?

g=0

General arguments [Gross-Periwal, Shenker] indicate that this
series grows doubly-factorially, at fixed t

Fy(t) ~ (29)!,  g>1



What is the resurgent structure associated to this series!?

This is a difficult problem. Note that in this case the
resurgent structure depends on the moduli of the CY
manifold, parametrized by t.

| will present a conjecture on the possible location of Borel
singularities, and an exact description of the trans-series
associated to singularities.



Borel plane and CY periods

Conjecture: the Borel singularities for the series of free
energies are integral periods

Determining which periods are actual singularities is much
harder and only partial information is available (often based on
numerical calculations)
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Trans-series for topological strings

How do we determine the trans-series associated to the
singularities!?

In the case of ODEs, a simple way to obtain trans-series is

to use an ansatz involving exponentially small terms [Ecalle,
Costin, ...]

Euler equation: 2%y () —y(x) = —o

. . 1
perturbative solution:  Yp (x) = E nlz" "
n>0

trans-series solution: y(.CE) = Yp (33) ‘I‘(Ce_l/aj




In the case of the topological string, and in contrast to
e.g. non-critical strings, there is no ODE in the string
coupling constant.

However, we have a PDE governing the total free energy:
the famous holomorphic anomaly equations (HAE)
of BCOV

| will write a simplified version of the HAE, involving a
single propagator S and the complex modulus z of the
CY
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One can solve this equation perturbatively, to obtain the
free energies as polynomials in the propagator; and

involving known functions of the modulus z [BCOV,Yamaguchi-
Yau, Grimm-Klemm-M.M.-Weiss, Alim-Lange, Klemm et al,, ...]
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The conventional topological string free energies are
recovered in the so-called holomorphic limit, where §
becomes a (known) function of z.

In this way one can obtain the perturbative series to high
order in the genus [Klemm et al.]



The CESV trans-series ansatz

CESV [Couso-Edelstein-Schiappa-Vonk] proposed to solve the HAE
with a trans-series ansatz as in Ecalle’s theory of ODEs

F =Y F,(8,2)g2 2 + e A9 3 FO(S,2)g0 + -+

g=>0 n>0

perturbative series Instanton correction

In the case of one-modulus, toric CYs they obtained
solutions at low orders in the string coupling constant



In recent work [Gu-M.M, Gu-Kashani-Poor-Klemm-M.M.] we obtained
an all-orders, exact solution for the trans-series, for any
CY (compact or not)

0X1!

A=c'Fr+d; X' =¢

va = (1 g0 s (X = guet) ) o (¥ ) F (X

This is a universal formula for the “one-instanton
amplitude” associated to A

Remarkably, it can be written in terms of perturbative data
only. Multi-instanton solutions are available, too.



This formula suggests that the the periods X are
quantized in units of the string coupling constant, as
postulated in large N dualities.

In fact, the form of the one-instanton amplitude is reminiscent
of “eigenvalue tunneling” in matrix models and non-critical
strings

N\ — e




Experimental evidence: asymptotics in
the quintic CY

We can test the one-instanton amplitude against the large
genus asymptotics of the free energies in e.g. the famous
quintic CY

large radius

z=10

5—5

vanishing period at the conifold
z=5""°

conifold point
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Stokes constants

An important piece of the resurgent structure are the
Stokes constants. In some interesting examples (e.g.VWWKB,
complex Chern-Simons theory) they turn out to be

integers related to BPS invariants [Gaiotto-Moore-Neitzke,
Garoufalidis-Gu-M.M].

We expect a similar picture here.We can show e.g. that the
genus zero Gopakumar-Vafa invariants ng 4 arise as Stokes
constants associated to towers of Borel singularities at

dX! +mXxY m € 7



Relation to other work

Some recent works have explored the relation between
susy gauge theories, topological strings, Riemann-Hilbert
problems, and BPS counting [Bridgeland, Neitzke, Hollands, Grassi,
Longhi, Alim, Teschner, ...]. Many of these works assume the
Delabaere-Pham (or Kontsevich-Soibelman) form for
Stokes automorphisms.

Our approach is based on a more universal tool, the theory
of resurgence, where Stokes automorphisms are more
general. It follows from our results that Stokes
automorphisms for topological strings do not seem to have
the Delabaere-Pham form.



Conclusions and outlook

The theory of resurgence gives a precise mathematical
framework to understand non-perturbative sectors, which
can be applied successfully to (topological) string theory.

To do this, we have developed instanton calculus in the

Kodaira-Spencer theory of BCOV, and managed to find

exact solutions for instanton amplitudes. They lead to
precise formulae for large genus asymptotics.

Our results apply as well to other systems governed by the
HAE, like large N matrix models



The full resurgent structure requires determining the
possible Borel singularities and their Stokes constants,
and we expect a very rich mathematics and physics
related to BPS invariants and Riemann-Hilbert
problems.

What is the meaning of the “instanton” amplitudes we
obtained?! They look like D-branes of the “wrong” type.
Are they rather “renormalons” of the topological string?

Relation to proposals for non-perturbative definitions

of the topological string, like the one in [Grassi-Hatsuda-
M.M.]?



Thank you for your attention!



