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Abstract: Hitchin’s equations are a system of gauge theoretic equations on a Riemann surface that

are of interest in many areas including representation theory, Teichmüller theory, and the geometric

Langlands correspondence. The Hitchin moduli space carries a natural hyperkähler metric. An

intricate conjectural description of its asymptotic structure appears in the work of physicists Gaiotto-

Moore-Neitzke and there has been a lot of progress on this recently. I will discuss some recent results

using tools coming out of geometric analysis which are well-suited for verifying these extremely

delicate conjectures. This strategy often stretches the limits of what can currently be done via

geometric analysis, and simultaneously leads to new insights into these conjectures.



The Hitchin moduli space

Fixed data:

• C , a compact Riemann surface (possibly with punctures D)

• G = SU(n), GC = SL(n,C)

• E → C , a complex vector bundle of rank n with Aut(E ) = SL(E )

 Hitchin moduli space, M.

Fact #1: M is a noncompact hyperkähler manifold with metric gL2

⇒ have a CP1-family of Kähler manifolds Mζ = (M, gL2 , Iζ , ωζ).

• Mζ=0 is GC-Higgs bundle moduli space

• Mζ∈C× is moduli space of flat GC-connections
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The Higgs bundle moduli space

Definition

A Higgs bundle is a pair (∂̄E , ϕ) consisting of a holomorphic structure

∂̄E on E and a “Higgs field” ϕ ∈ Ω1,0(C ,End0E ) such that ∂̄Eϕ = 0.

(Locally, ∂̄E = ∂̄ and ϕ = Pdz , where P is a tracefree n × n matrix with

holomorphic entries.)

Ex: The GL(1)-Higgs bundle moduli space is M = Jac(C )︸ ︷︷ ︸
∂̄E

×H0(KC )︸ ︷︷ ︸
ϕ

.
For C = T 2

τ , M = T 2
τ × C.

Fact #2: In its avatar as the Higgs bundle moduli space, M is an

algebraic completely integrable system.
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Hitchin’s equations

Hitchin’s equations are equations for a hermitian metric h on E .

Definition

A Higgs bundle (∂̄E , ϕ), together with a Hermitian metric h on E , is a

solution of Hitchin’s equations if

F⊥D + [ϕ,ϕ∗h ] = 0.

(Here, D is the Chern connection for (∂̄E , h).)

There is a correspondence between stable Higgs bundles and solutions of

Hitchin’s equations. [Hitchin, Simpson]

{stable Higgs bundles

(∂̄E , ϕ)

}/
SL(E)

∼=←→
{soln of Hitchin’s eqn

(∂̄E , ϕ, h)

}/
SU(E)

=:M
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Conjecture of Gaiotto, Moore, and Neitzke

The Hitchin moduli space (with parameter t > 0)

Mt = {solutions of F⊥D + t2 [ϕ,ϕ∗h ] = 0}/ ∼
arises as the moduli space of certain N = 2, 4d SUSY theories (namely

“theories of class S”, S [g,C ,D]) compactified on a circle S1
t .

Gaiotto-Moore-Neitzke:

• The BPS spectrum{
Ω(γ; u)

∣∣∣ u ∈ B, γ ∈ H1(Σu;Z)σ
}

of the N = 2 4d theory S [g,C ,D] can be recovered from the geometry of

the family Mt as t →∞. Satisfies Kontsevich-Soibelman wall-crossing.

Schematically, the length scale of Lagrangian fibers is 1
t

and

gMt − gsf,t = t2
∑

γ∈H1(Σu ;Z)σ

Ω(γ; u)e−`(γ;u)t .

• GMN also give a recipe for constructing hyperkähler metrics from

integrable system data and BPS indices Ω(γ; u)

Note: If M admits a C×ζ -action (E , ϕ) 7→ (E , ζϕ), then conjecture is about the

asymptotic geometry of a single Hitchin moduli space, M. 4



Two hyperkähler metrics on the regular locus M′

• gL2 Hitchin’s L2 hyperkähler metric—uses h

• gsf semiflat metric—from integrable system structure

Gaiotto-Moore-Neitzke’s Conjecture

Fix (∂̄E , ϕ) ∈M′. Along the ray T(∂̄E ,tϕ,ht)
M′,

gL2 − gsf = Ωe−`t + faster decaying

Progress:

• Mazzeo-Swoboda-Weiss-Witt proved polynomial decay for

SU(2)-Hitchin moduli space. [’17]

• Dumas-Neitzke proved exponential∗ decay in SU(2)-Hitchin section

with its tangent space. [’18]

• F proved exponential∗ decay for SU(n)-Hitchin moduli space. [’18]

• F-Mazzeo-Swoboda-Weiss proved exponential∗ decay for SU(2)

parabolic Hitchin moduli space. (Higgs field has simple poles along

divisor D ⊂ C .) [’20]

∗: Rate of exponential decay is not optimal. 5



Two hyperkähler metrics on the regular locus M′

• gL2 Hitchin’s L2 hyperkähler metric—uses h

• gsf semiflat metric—from integrable system structure

Gaiotto-Moore-Neitzke’s Conjecture

Fix (∂̄E , ϕ) ∈M′. Along the ray T(∂̄E ,tϕ,ht)
M′,

gL2 − gsf = Ωe−`t + faster decaying

Plan:

(1) Describe important elements of general proof.

• We can gain insight into physics conjecture from geometric analysis.

• Trying to prove intricate conjectures of physics stretches limits of

geometric analysis.

(2) Specialize to 4d Hitchin moduli spaces, since 4d noncompact

hyperkähler spaces are well-studied. In particular, I’ll describe progress for

SU(2)-Hitchin moduli space on the four-punctured sphere. (Here, we get

optimal rate of exponential decay.) 6



Main Theorem

Theorem [F, F-Mazzeo-Swoboda-Weiss]

Fix (∂̄E , ϕ) ∈M′ and a Higgs bundle variation (η̇, ϕ̇) ∈ T(∂̄E ,ϕ)M.

Along the ray T(∂̄E ,tϕ,ht)
M′, as t →∞,

‖(η̇, tϕ̇)‖2
gL2
− ‖(η̇, tϕ̇)‖2

gsf = O(e−εt)

As t →∞, FD(∂̄E ,ht)
concentrates along branch divisor Z ⊂ C .

The limiting metric h∞ is flat with singularities along Z .

The main difficulty is dealing with the contributions to the integral

‖·‖gL2
=
∫
C
· · · from infinitesimal neighborhoods around Z .
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Idea #1: Semiflat metric is an L2-metric

Hitchin’s hyperkähler metric gL2 on T(∂̄E ,tϕ)M is

‖(η̇, tϕ̇, ν̇t)‖2
gL2

= 2

∫
C

∣∣η̇ − ∂̄E ν̇t∣∣2ht + t2 |ϕ̇+ [ν̇t , ϕ]|2ht

where the metric variation ν̇t of ht is the unique solution of

∂htE ∂̄E ν̇t − ∂
h
E η̇ − t2 [ϕ∗ht , ϕ̇+ [ν̇t , ϕ]] = 0.

The semiflat metric, from the integrable system structure, on T(∂̄E ,tϕ)M
is an L2-metric defined using h∞.

‖(η̇, tϕ̇, ν̇∞)‖2
gsf = 2

∫
C

∣∣η̇ − ∂̄E ν̇∞∣∣2h∞ + t2 |ϕ̇+ [ν̇∞, ϕ]|2h∞ ,

where the metric variation ν̇∞ of h∞ is independent of t and solves

∂htE ∂̄E ν̇∞ − ∂
h
E η̇ = 0 [ϕ∗h∞ , ϕ̇+ [ν̇∞, ϕ]] = 0. 8



Idea #2: Approximate solutions

Desingularize h∞ (singular at Z ) by gluing in solutions hmodel
t of

Hitchin’s equations on neighborhoods of p ∈ Z .  happroxt .

Perturb happroxt to an actual solution ht using a contracting mapping

argument.

(Difficulty: Showing the first eigenvalue of Lt : H2 → L2 is ≥ Ct−2 )

Theorem

ht(v ,w) = happt (eγtv , eγtw) for ‖γt‖H2 ≤ e−εt .
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Idea #2: Approximate solutions

Define an non-hyperkähler L2-metric gapp on M′ using variations of the

metric happt .

‖(η̇, tϕ̇, ν̇t)‖2
gL2

= 2

∫
C

∣∣η̇ − ∂̄E ν̇t∣∣2ht + t2 |ϕ̇+ [ν̇t , ϕ]|2ht

‖(η̇, tϕ̇, ν̇∞)‖2
gsf = 2

∫
C

∣∣η̇ − ∂̄E ν̇∞∣∣2h∞ + t2 |ϕ̇+ [ν̇∞, ϕ]|2h∞

‖(η̇, tϕ̇, ν̇appt )‖2
gapp

= 2

∫
C

∣∣η̇ − ∂̄E ν̇appt

∣∣2
happ
t

+ t2 |ϕ̇+ [ν̇appt , ϕ]|2happt
.

Then, break the gL2 − gsf into two pieces:(
‖(η̇, tϕ̇, ν̇t)‖2

gL2
−‖(η̇, tϕ̇, ν̇appt )‖2

gapp

)
+
(
‖(η̇, tϕ̇, ν̇appt )‖2

gapp−‖(η̇, tϕ̇, ν̇∞)‖2
gsf

)
Corollary

Since ht(v ,w) = happt (eγtv , eγtw) for ‖γt‖H2 ≤ e−εt , as t →∞ along

the ray T(∂̄E ,tϕ)M,

‖(η̇, tϕ̇, ν̇t)‖2
gL2
−‖(η̇, tϕ̇, ν̇appt )‖2

gapp
= O(e−εt).
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Idea #2: Approximate solutions

Our goal is to show that the following sum is O(e−εt):(
‖(η̇, tϕ̇, ν̇t)‖2

gL2
−‖(η̇, tϕ̇, ν̇appt )‖2

gapp

)
︸ ︷︷ ︸

O(e−εt)

+
(
‖(η̇, tϕ̇, ν̇appt )‖2

gapp−‖(η̇, tϕ̇, ν̇∞)‖2
gsf

)

It remains to show that ‖(η̇, tϕ̇, ν̇appt )‖2
gapp
− ‖(η̇, tϕ̇, ν̇∞)‖2

gsf = O(e−εt).

Since happt differs from h∞ only on disks around p ∈ Z , the difference

gapp − gsf localizes (up to exponentially-decaying errors) to disks around

p ∈ Z .
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Idea #3: Holomorphic variations

When Mazzeo-Swoboda-Weiss-Witt proved that gL2 − gsf was at least

polynomially-decaying in t, all of their possible polynomial terms came

from infinitesimal variations in which the branch points move.

Dumas-Neitzke used a family of biholomorphic maps on local disks

(originally defined by Hubbard-Masur) to match the changing location of

the branch points. This uses subtle geometry of Hitchin moduli space.

E.g. for SU(2), conformal invariance.

Remarkably, this can be generalized off of the Hitchin section and from

SU(2) to SU(n).

Theorem [F, F-Mazzeo-Swoboda-Weiss]

‖(η̇, tϕ̇, ν̇appt )‖2
gapp − ‖(η̇, tϕ̇, ν̇∞)‖2

gsf = O(e−εt)
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Main Theorem

Gaiotto-Moore-Neitzke’s Conjecture

Fix (∂̄E , ϕ) ∈M′. Along the ray T(∂̄E ,tϕ,ht)
M′,

‖(η̇, tϕ̇)‖2
gL2
− ‖(η̇, tϕ̇)‖2

gsf = Ωe−`t + faster decaying.

Theorem [F, F-Mazzeo-Swoboda-Weiss]

Fix (∂̄E , ϕ) ∈M′ and a Higgs bundle variation (η̇, ϕ̇) ∈ T(∂̄E ,ϕ)M.

Along the ray T(∂̄E ,tϕ,ht)
M′, as t →∞,

‖(η̇, tϕ̇)‖2
gL2
− ‖(η̇, tϕ̇)‖2

gsf = O(e−εt).

• F proved exponential∗ decay for SU(n)-Hitchin moduli space. [’18]

• F-Mazzeo-Swoboda-Weiss proved exponential∗ decay for SU(2)

parabolic Hitchin moduli space. (Higgs field has simple poles along

divisor D ⊂ C .) [’19]

∗: Rate of exponential decay is not optimal.

Here, ε = `
2 − δ for δ arbitrarily small.
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4d Hitchin moduli spaces



Noncompact hyperkähler four-manifolds X

There are several known families: the ‘classical’ spaces of types ALE, ALF,

ALG, ALH, as well as two more recently discovered types, now frequently called

ALG∗ ALH∗.

Theorem [Chen-Chen]

If (X , g) is a noncompact complete connected hyperkähler manifold of real

dimension 4 (i.e. if (X , g) is a “gravitational instanton”) whose Riemannian

curvature tensor decays faster than 1/r 2, i.e., |Riemg (q)| ≤ Cdist(p, q)−2−ε

as q →∞, where p is a fixed point in X , then (M, g) necessarily belongs to

one of the families ALE, ALF, ALG and ALH.

Categories based on asymptotic volume growth: ALE/ALF/ALG/ALH

ALE: [Vol ∼ r 4] Any X is asymptotic to some standard model X ◦Γ = C2/Γ

where Γ is a finite subgroup of SU(2). [Kronheimer]

ALF: [Vol ∼ r 3] S1-fibrations over 3d spaces, described by Gibbons-Hawking

Ansatz.

ALG: [Vol ∼ r 2] T 2 fibrations over cone

ALH: [Vol ∼ r 1] T 3 fibrations over R or R+.

Curvature decay condition ⇒ volume growth is r 4, r 3, r 2 or r 1. Rigidity! 14



Noncompact hyperkähler four-manifolds X

More recently, Chen-Chen-Chen classified ALG and ALH spaces.

ALG: Any X (with faster than quadratic

curvature decay) is asymptotic to some

standard model X ◦τ,β fibered over Cβ of

angle 2πβ with fiber T 2
τ . [Chen-Chen]

What about these other types ALG∗ and ALH∗?

• ALG∗: There are examples with Vol ∼ r2 but Riem ∼ r−2(log r)−1

[Hein].

• ALH∗: There are examples with Vol ∼ r
4
3 but Riem ∼ r−2 [Hein].

Both of these examples are given by rational elliptic surfaces.

Not sure if there are other exceptional examples.

Question

Where do 4d Hitchin moduli spaces fit in to classification of

gravitational instantons? 15



Modularity Conjecture [Boalch]

Modularity Conjecture

Every 4d Hitchin moduli space is of type ALG or ALG∗. Conversely,

every ALG & ALG∗ hyperkähler metric with Vol ∼ r2 can be realized as

the hyperkähler metric on a Hitchin moduli space.

Here are the types of ALG metrics, and the conjectural associated

families of 4d Hitchin moduli spaces.

Regular I∗0 II III IV II∗ III∗ IV ∗

β 1 1
2

1
6

1
4

1
3

5
6

3
4

2
3

τ ∈ H ∈ H e2πi/3 i e2πi/3 e2πi/3 I e2πi/3

C T 2
τ CP1 CP1 CP1 CP1 CP1 CP1 CP1

D {0, 1,∞, p0} {0, 1,∞} {0, 1,∞} {0, 1,∞} {∞} {∞} {0,∞}

G U(1) SU(2) SU(3) SU(4) SU(6) SU(2) SU(2) SU(2)

The Hitchin moduli spaces associated to the SU(2) theories with

Nf = 0, 1, 2, 3 are conjecturally of type ALG∗ with fiber I ∗4−Nf
. (They are

not ALG since the modulus, τ , of torus does not converge at ends.)
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Example: The four-punctured sphere

There is a 12-parameter family of SU(2)-Hitchin moduli spaces on

CP1 − {0, 1,∞, p0}.

Data: At each p ∈ {0, 1,∞, p0},
• fix a “complex mass” mp ∈ C (eigenvalue of Res ϕ)
• fix a “real mass” αp ∈ (0, 1

2
) (parabolic weights at p are αp and 1− αp)

 Hitchin moduli space, M =M(m•,α•).

In this case, the model metric metric has cone angle π and fibers are T 2
τ where

τ = λ(p0). The volume of each fiber is 4π2.

Generically, M→ B has 6 singular fibers. The semiflat metric gsf coincides

with gmodel iff complex masses are all zero. Call such spaces “strongly

parabolic” (as opposed to “weakly parabolic”). 17



Example: The four-punctured sphere

Data: At each p ∈ {0, 1,∞, p0},
• fix a “complex mass” mp ∈ C (eigenvalue of Res ϕ)
• fix a “real mass” αp ∈ (0, 1

2
) (parabolic weights at p are αp and 1− αp)

 Hitchin moduli space, M =M(m•,α•).

How fast does curvature decay for each of these Hitchin moduli spaces?

Use our results about the asymptotic geometry to compare gL2 versus gsf .

• Riem ∼ 1
r2 if m 6= 0 since gsf 6= gmodel

• Riem ∼ e−εr if m ≡ 0 since gsf = gmodel.

Corollary [F-Mazzeo-Swoboda-Weiss]
Each of these Hitchin moduli spaces is ALG. 18



Example: The four-punctured sphere

Now restrict our attention to strongly parabolic Hitchin moduli moduli

spaces (i.e. m ≡ 0) where gsf = gmodel.

Question

Is it possible to prove Gaiotto-Moore-Neitzke’s conjectured rate of

exponential decay for in the case of the strongly parabolic

SL(2,C)-Higgs bundles on the four-punctured sphere?
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Bootstrapping to optimal exponential decay

LeBrun gave a framework to describe all Ricci-flat Kähler metrics of

complex-dimension two with a holomorphic circle action in terms of two

functions u,w .

Generalized Gibbons-Hawking Ansatz specialized to our case:

Consider a hyperkähler metric on T 2
x,y × R+

r × S1
θ with holomorphic

circle action. The hyperkähler metric is

gL2 = euur (dx
2 + dy2) + urdr

2 + u−1
r dθ2

where u : T 2
x,y × R+

r → R solves

∆T 2u + ∂2
r e

u = 0.

The semiflat metric gsf corresponds to usf = log r .

Goal

Show that u − usf has conjectured rate of exponential decay.
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Bootstrapping to optimal exponential decay

Let v = u − usf . Then,

∆T v + r∂2
r v + 2∂rv︸ ︷︷ ︸

Lv

= −ev r(∂rv)2 − (ev − 1)
(
r∂2

r v + 2∂rv
)︸ ︷︷ ︸

Q(v ,∂r v ,∂rr v)

,

Observation #1: The first exponentially-decaying function in ker L

decays like e−2λT
√
r , where λ2

T is the first positive eigenvalue of −∆T 2 .

In the torus T 2
τ with its semiflat metric λ2

T = 2
Im τ .

Observation #2: If v ∼ e−ε
√
r , then Q(v , ∂rv , ∂rrv) ∼ e−2ε

√
r .

Solving the non-homogeneous problem Lv = f for f ∼ e−2ε
√
r , we find

v ∼ e−2 min(ε,λT )
√
r .

Conclusion: v ∼ e−2λT
√
r where λT =

√
2

Im τ
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Bootstrapping to optimal exponential decay

Gaiotto-Moore-Neitzke’s Conjecture (Schematically)

Pick a point u ∈ B ' C and let |u| = r .

gL2 − gsf =
∑

γ∈H1(Σu ;Z)

Ω(γ, u)e−`(γ,u)
√
r .

The first correction is Ω(γ0, u) = 8 and `(γ0, u) = 2
√

2
Imτ .

Theorem [F-Mazzeo-Swoboda-Weiss]

Let M be a (strongly-parabolic) SU(2) Hitchin moduli space for the

four-punctured sphere. The rate of exponential decay for the Hitchin

moduli space is as Gaiotto-Moore-Neitzke conjecture:

gL2 − gsf = O(e−2
√

2
Imτ

√
r ).

(M, gL2 ) is an ALG metric asymptotic to the model metric gsf .
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Thank you!
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