Symplectic manifolds and quantization

I shall assume you are familiar with:

smooth manifolds, vector fields, and differential forms;
the relation between vector fields and 1-parameter groups of diffeomorphisms;
the Lie derivative, its relation to 1-parameter groups of diffeomorphisms,
and, above all, the Cartan relation

$$L_X = i_X d + d i_X$$;

de Rham's theorem;

ordinary facts about Lie groups and Lie algebras, and about
line bundles and connections in them.

§1

A symplectic manifold is a smooth manifold X with a closed 2-form
$\omega \in \Omega^2(X)$ which is nondegenerate at each point — i.e., such that
ω_x induces an isomorphism $T_x X \to T_x^* X$ for each $x \in X$.
(Equivalently: $\omega^n \in \Omega^{2n}(X)$ never vanishes, where $2n = \dim(X)$.)

The basic fact is that a function f on X gives a vector field
\mathfrak{i}_f by applying $\omega_x : T_x^* \cong T_x^*$ to df. More precisely,

$$i_f \omega = -df.$$

The Poisson bracket $\{f, g\}$ of two functions on X is

$$\{f, g\} = \mathfrak{i}_f g = \omega(\mathfrak{i}_f, \mathfrak{i}_g) = -\mathfrak{i}_g f.$$

Remark. On a Riemannian manifold a function f also defines a
vector field: its gradient. But in the symplectic case the flow
\mathfrak{i}_f is along the contours of f, as $\mathfrak{i}_f f = \{f, f\} = 0$.

What is the significance of having ω closed?

Proposition. ω closed \iff $[\mathfrak{i}_f, \mathfrak{i}_g] = \mathfrak{i}_{\{f, g\}}$

\iff the Jacobi identity $\{f, \{g, h\}\} + \{g, \{h, f\}\}$

$= \{h, \{f, g\}\} = 0.$
The second here is trivial, while the first comes from
\[dc: (J_g, J_f, J_h) = \{ J_g, J_f, J_h \} + J_g, J_f, J_h + J_h, J_f, J_g, \]
which holds without assuming \(\omega \) is closed. \(\quad \)

Thus the functions on a symplectic manifold form a Lie algebra under the Poisson bracket.

Definition A Poisson manifold \(X \) is one with a skew tensor field \(\sigma \in \Gamma(\Lambda^2 TX) \) which — via \(\sigma(f,g) = \frac{1}{2} \langle \sigma, df \wedge dg \rangle \) — makes the functions on \(X \) into a Lie algebra.

Thus a symplectic manifold is a Poisson manifold for which \(\sigma \) is non-degenerate at each point.

Examples (i) \(\mathfrak{g} \) is a Lie algebra, its dual \(\mathfrak{g}^* \) is a Poisson manifold with \(\{ f, g \}(\alpha) = \alpha(\{ df, dg \}) \) for \(\alpha \in \mathfrak{g}^* \).

(Here for \(f: \mathfrak{g}^* \to \mathbb{R} \) we regard \(df \) as a map \(\mathfrak{g}^* \to (\mathfrak{g}^*)^* = \mathfrak{g}^* \).)

(iii) The most basic example of a symplectic manifold is the cotangent bundle \(T^* M \) of a manifold \(M \). This has \(\omega = dx \), where \(dx \) is the canonical 1-form which in a local coordinate chart is \(\sum p_i dx_i \), where \(\{ x_i \} \) are the coordinates on \(X \) and \(\{ p_i \} \) are the fibre-wise-linear functions on \(T^* M \) dual to the linear functions \(\{ dx_i \} \) on \(TM \).
The vector field \mathcal{L}_X^ω associated to a function f on a symplectic manifold preserves the form ω, i.e., $\mathcal{L}_X^\omega = d\iota_X \omega + \iota_X d\omega = -df = 0$.

Conversely, if X is simply connected — or even if $\pi_1(X; \mathbb{R}) = 0$ — a vector field \mathcal{L} which preserves ω always comes from a function f, i.e., $\mathcal{L} \omega = 0 \Rightarrow d\iota_X \omega = 0 \Rightarrow \iota_X \omega = -df$ for some f.

In general, there is an exact sequence of Lie algebras

$$0 \to \mathfrak{h}^0(X; \mathbb{R}) \to \mathfrak{v}^0(X) \to \text{Vect}_\omega(X) \to H^1(X; \mathbb{R}) \to 0,$$

where Vect_ω denotes the vector fields which preserve ω. The map $\text{Vect}_\omega \to H^1$ associates to a vector field \mathcal{L} and a 1-cycle γ in X the "flux"

$$\int \mathcal{L} \cdot \omega$$

through γ. If X is a surface with area form ω, this is the obvious flux through γ of an area-preserving flow.

§ 2 Variational problems

Symplectic manifolds arise from variational problems.

Suppose we want to find a path $q: \mathbb{R} \to M$, where M is some manifold, which makes the action

$$S_{\text{act}}(q) = \int_a^b L(q(t), \dot{q}(t), \ddot{q}(t), \ldots') \, dt$$

stationary for all intervals $[a, b] \subset \mathbb{R}$, where $L: TM \to \mathbb{R}$ is a given smooth function on the space TM of jets of maps $\mathbb{R} \to M$.

(A jet at $t \in \mathbb{R}$ is an equivalence class of maps $q : U \to M$ defined up to rth order at t. If we coarsen this to touching to order r we get the r-jet $J_r M$, which form a manifold of dimension $(r+1)\dim(M)$ fibred over M. Thus $J_r M = TM$.)

'Stationary' means that if $q = q_0$, where $\{q_0, f \}$ is a family of
paths, then
\[\frac{d}{ds} \mathcal{S}_{ab}(q) \bigg|_{s=0} = 0 \]
providing that for all \(s \) we have \(\frac{\delta}{\delta q} \) in the stbd of \(a \) and \(b \).

Of course, \(q \) is a stationary point of the Euler-Lagrange equation
\[\frac{SL}{\delta q} = 0 \]
holds, where
\[\frac{SL}{\delta q} = \frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \left(\frac{d}{dt} \right)^2 \left(\frac{\partial L}{\partial \ddot{q}} \right) - \ldots . \]

If the Lagrangian \(L \) depends only on the r-get the Euler-Lagrange equation is an ODE of order \(2r \) for \(q \), and generally has a solution manifold \(X \) of dimension \(2rn \), where \(n = \dim(M) \).

Considering variations \(\delta q \) with no boundary conditions we have
\[d\mathcal{S}_{ab}(q; \delta q) = \int_{q_a}^{q_b} \frac{SL}{\delta q} \delta q \, dt + \alpha(q_b; \delta q_b) - \alpha(q_a; \delta q_a), \]
where
\[\alpha(q; \delta q) = \left\{ \frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \ldots \right\} \delta q \\
+ \left\{ \frac{\partial L}{\partial \dot{q}} - \frac{d}{dt} \left(\frac{\partial L}{\partial \ddot{q}} \right) + \ldots \right\} \delta \dot{q} + \ldots . \]

Here \(q_a \) denotes the stbd of \(q \) at \(a \in \mathbb{R} \).

Thus on the solution manifold \(X \) of the Euler-Lagrange equation we have functions \(\mathcal{S}_{ab} : X \rightarrow \mathbb{R} \), and 1-forms \(\alpha_x \in \Omega^1(X) \) defined by
\[\alpha_x(q; \delta q) = \alpha(q_x; \delta q_x), \]
and
\[\alpha_b - \alpha_a = d\mathcal{S}_{ab}. \tag{2.1} \]

In particular, \(\omega = d\alpha_b = d\alpha_a \) is a naturally defined closed 2-form on \(X \) which in good cases makes it a symplectic manifold.

There is a natural flow on \(X \) defined by translating solutions in time. If \(\xi \) is the vector field which generates it, then (2.1) gives us
\[i_{\xi} \delta \alpha_b - i_{\xi} \delta \alpha_a = i_{\xi} d\mathcal{S}_{ab} = L_b - L_a, \]
where \(L_a : X \rightarrow \mathbb{R} \) is \(q \mapsto L(q_a) \). In other words, the function \(H : X \rightarrow \mathbb{R} \) defined by
\[H(q) = \xi^a \alpha_a - L_a \]
is independent of \(a \in \mathbb{R} \). \(H \) is called the Hamiltonian function.

Dividing (2.1) by \(b - a \) and letting \(b \to a \) gives

\[\int \alpha_a = dL_a, \]
or equivalently

\[dH = -i_\xi \omega. \]

Thus \(\xi \) is the vector field generated by \(H \).

The preceding formalism is not restricted to 1-dimensional problems. If for any manifold \(\Sigma \) we look for \(q : \hat{\Sigma} \to M \) which makes the functions

\[S_\Sigma (q) = \int \Sigma L(q, x) dx \]
stationary for every compact submanifold \(\Sigma \) with boundary inside \(\hat{\Sigma} \),
then \(dS_\Sigma \) will be of the form

\[dS_\Sigma = \int_\Sigma \frac{\delta L}{\delta q} \delta q dx + \int_{\partial \Sigma} \alpha(q, x; \delta q, \delta x). \]

On the space \(X \) of \(q \) which satisfy \(\frac{\delta L}{\delta q} = 0 \), we get

\[dS_\Sigma = \alpha \partial \Sigma. \]

In fact for each compact oriented codimension 1 submanifold \(\Sigma \) of \(\hat{\Sigma} \), we have a 1-form \(\alpha_\Sigma \) on \(X \), and if \(Z \) is a cobordism from \(S_0 \) to \(S_1 \) then

\[\alpha_{S_1} - \alpha_{S_0} = dS_\Sigma, \]
so that \(\omega = d\alpha_\Sigma \) is a closed 2-form on \(X \) which depends only on the homology class of \(\Sigma \). (The compactness of \(S \) can of course be replaced by conditions on the behavior of \(q \) at infinity.)

Returning to the 1-dimensional problem, the standard case is when \(M \) is a Riemannian manifold, and \(L : TM \to \mathbb{R} \) is of the form
\[L(q, \dot{q}) = \frac{1}{2} \| \dot{q} \|^2 - V(q) \]

for some \(V : M \rightarrow \mathbb{R} \). (When \(V = 0 \) this is the problem of geodesics on \(M \).) Then the symplectic manifold \(X \) of trajectories can be identified symplectically with \(T^*M \) by the Legendre transformation \(q \mapsto (q(t), p(t)) \), where \(p(t) \) is the image of \(\dot{q}(t) \) under the map \(T_q(T^*_q M) \rightarrow T^*_{q(t)} M \) given by the Riemannian metric.

§ 3 Darboux's theorem

Riemannian manifolds are locally quite unlike each other: the intrinsic curvature cannot be changed by a diffeomorphism. The same is true for manifolds with a skew form \(\omega \). But if \(\omega \) is closed the position is quite different, for we have

Darboux's theorem. Any symplectic manifold is locally isomorphic to \(\mathbb{R}^{2n} \) with its canonical symplectic structure \(dx_1 dx_2 + dx_3 dx_4 + \ldots + dx_{2n-1} dx_{2n} \).

The idea of the proof is very simple. A vector field \(\xi \) changes \(\omega \) according to \(\dot{\omega} = \mathcal{L}_\xi \omega = d(\iota_\xi \omega) \). So a deformation of \(\omega \) which does not change its cohomology class — say \(\dot{\omega} = d\alpha \) — is produced by the field \(\xi \) such that \(\iota_\xi \omega = \alpha \). More precisely, if \(\omega_t \) is a family of symplectic forms which agree outside a compact region, and \(\omega_t = \omega_0 + d\alpha_t \) with \(\alpha_t \) of compact support, then integrating the time-dependent flow \(\xi_t \) such that \(\iota_{\xi_t} \omega_t = \alpha_t \) gives a diffeomorphism taking \(\omega_0 \) to \(\omega_t \).

To obtain Darboux's theorem it is enough to start with an arbitrary symplectic form \(\omega \) on \(\mathbb{R}^{2n} \) and to find a diffeomorphism...
which makes \(\omega \) into a form with constant coefficients in a neighborhood of the origin. For any two non-degenerate bilinear forms \(\omega \) and \(\tilde{\omega} \) related by a linear isomorphism, let \(\tilde{\omega} \) be the form with constant coefficients which agrees with \(\omega \) at \(0 \), and let \(\omega - \tilde{\omega} = dx \), where \(\alpha \) vanishes at \(0 \). If \(f \) is a function with compact support which is 1 near \(0 \) then \(\omega_t = \omega - td(f \alpha) \) is a path joining \(\omega \) to a form which is constant near \(0 \), and for suitable \(f \) the forms will all be non-degenerate.

Remarks (i) The method used here was introduced by Moser to prove that two volume forms on a compact manifold are related by a diffeomorphism providing they have the same total volume.

(ii) A more "old-fashioned" proof constructs a local coordinate system \(\{ p_i, q_i \} \) for which \(\omega = \sum dp_i \wedge dq_i \) by induction on \(\dim(X) \).

We choose \(p_1 \) at random, and then choose \(q_1 \) by solving the ODE \(\{ p_1, q_1 \} = 1 \). Then consider \(X_0 = \{ x \in X : p_1(x) = q_1(x) = 0 \} \). This is (locally) symplectic, so by induction has good coordinates \(\{ p_i, q_i \} \geq 2 \). Extend \(p_i \) and \(q_i \) first to \(X_1 = \{ x \in X : p_1(x) = 0 \} \) by the projection \(X_1 \to X_0 \) along trajectories of \(\Gamma_{q_1}^p \), then to \(X \) by the projection \(X \to X_1 \) along trajectories of \(\Gamma_{p_1}^q \).

(iii) Darboux's theorem shows that symplectic manifolds have no local invariants. A symplectic structure on a manifold \(X \) defines a cohomology class \([\omega] \in H^2(X; \mathbb{R}) \) which can vary continuously. But symplectic manifolds have more subtle continuous invariants than cohomological ones. A striking indication of this is Gromov's squeezing theorem, which says that the unit ball in \(\mathbb{R}^{2n} \) is not symplectically equivalent to any subset of \(D_r^2 \times \mathbb{R}^{2n-2} \) if \(r < 1 \), where \(D_r^2 \) is the disc of radius \(r \) in \(\mathbb{R}^2 \).
§ 4 Quantization

We can abstract from a classical system, the symplectic manifold X of its trajectories. This does not carry much information unless we know the "significance" of various functions on X. In particular, there is the Hamiltonian $H: X \rightarrow \mathbb{R}$ which generates time translation of the trajectories.

A symplectic (or Poisson) manifold is completely encoded in the Poisson algebra of functions on X.

\textbf{Definition} A Poisson algebra is a commutative algebra A with a \textit{bilinear map} $\{,\} : A \times A \rightarrow A$ which makes it a Lie algebra, and satisfies

$$\{ f, gh \} = \{ f, g \} h + g \{ f, h \}.$$

The states of a quantum system are the rays in a Hilbert space \mathcal{H}. The self-adjoint operators in \mathcal{H} are the "observables", corresponding to \textit{functions} $X \rightarrow \mathbb{R}$ in the classical situation. But a state $\psi \in \mathcal{H}$ and an observable A together give not a single number but a probability distribution on \mathbb{R} defined by

$$\mathcal{E}(f) = \frac{\langle \psi, f(A) \psi \rangle}{\langle \psi, \psi \rangle}.$$

On this level, all quantum systems are the same; but again we might like to single out a particular operator H, the \textit{Hamiltonian}, which generates the unitary group $\{ e^{i t H} \}$ of automorphisms of \mathcal{H} corresponding to time translation.

A classical system is meant to be an approximate description of a quantum system, but it is hard to make this precise. One general principle relates the \textit{volume} of parts of X, defined by the "Liouville" volume form $\frac{1}{n!} \omega^n$, to the number of quantum states. Thus $\text{vol}(X)$ should be finite precisely when $\text{dim}(\mathcal{H})$ is, and they should be roughly equal. More generally, if $f: \mathbb{R} \rightarrow \mathbb{R}^+$ is a classical observable such that
$f^{-1}([0,1])$ is of finite volume V_λ then the corresponding quantum observable A should be a positive operator with discrete spectrum, and $V_\lambda \approx \frac{1}{n!} \pi^{\frac{n}{2}} n!$ (number of eigenvalues of A which are $\leq \lambda$).

Example The geodesic flow on a Riemannian manifold M corresponds classically to $X = T^*M$, with $H : T^*M \to \mathbb{R}$ given by $H(x,y) = \frac{1}{2} \|y\|^2$.

The corresponding quantum system, for which $\mathcal{H} = L^2(M)$ and $H : \mathcal{H} \to \mathcal{H}$ is the Laplacian, encodes only the spectrum of the Laplacian. This does not enable us to reconstruct M, though it does tell us a lot about it — its dimension, volume, Euler number, ...

To say something more precise, we can consider a family of quantum systems depending on a small parameter \hbar (Planck's constant).

We observe that a Poisson algebra arises naturally when one has a family $\{A_\hbar\}$ of associative algebras over \mathbb{C}, defined for small \hbar, and such that A_0 is commutative. (I assume that $\{A_\hbar\}$ is locally trivial as a family of vector spaces.) For, given $a, b \in A_\hbar$, we can define

$$\{a, b\} = -i \frac{d}{d\hbar} [a_\hbar, b_\hbar] \bigg|_{\hbar = 0},$$

where $a_\hbar, b_\hbar \in A_\hbar$ are paths such that $a_0 = a$ and $b_0 = b$. Then we can say that the Poisson manifold defined by A_0 is the classical limit of the systems $(\mathcal{H}_\hbar, \mathcal{H}_\hbar)$.

Example Let \mathfrak{g}_\hbar be a Lie algebra, and let \mathfrak{g}_0 be the Lie algebra obtained by multiplying the bracket of \mathfrak{g}_\hbar by \hbar. Let $A_\hbar = \mathcal{U}(\mathfrak{g}_\hbar)$, the universal enveloping algebra. Then $\mathfrak{g}_0 = \mathfrak{g}_\hbar / \hbar \neq 0$, while \mathfrak{g}_0 is abelian. The Poisson structure on $\mathfrak{g}_0 = S(\mathfrak{g}) = \{ \text{polynomials on } \mathfrak{g} \}$ is easily seen to be that of the Poisson manifold \mathfrak{g}^* described in §1.

The natural question is: does every Poisson manifold X come from
a family of non-commutative algebras \(\mathfrak{A}_h \), and, if so, how uniquely?

Following much earlier work (Nogay, Fedosov, ...), in the last few months
Kontsevich has given a remarkable proof of existence and uniqueness in
complete generality., at least on the formal level, i.e., working with formal
power series in \(h \). A crucial point is that Kontsevich requires the algebras
\(A_h \) to be formal with respect to \(X \), i.e., he defines a multiplication \(m_h \)
on functions on \(X \) such that \(m_h(f, g)(x) \) depends only on the jets of
\(f \) and \(g \) at \(x \).

But there is a more ambitious question. Can one associate to a
symplectic manifold \(X \) a single Hilbert space \(\mathcal{H} \) with a ring of operators
\(\mathfrak{A} \) which is a canonical deformation of the Poisson algebra of \(X \)? This
is the preceding question with \(h = 1 \) instead of \(h \) infinitesimal, but we are
asking for a representation of \(\mathfrak{A} \) in addition. The art of constructing
\(\mathcal{H} \) — whose existence does not seem very well motivated from physics —
is called geometric quantization, and has led to some very interesting
mathematics.

The idea arose in particle physics. For a classical particle the space
\(X \) should be a symplectic manifold with an action of the Poincaré group \(P \)
of isometries of space-time. Being a particle should mean that \(P \) acts
transitively on \(X \). Symplectic manifolds homogeneous under \(P \) are
easily classified: They correspond to pairs of real numbers \((m, s)\), "mass"
and "spin". A quantum particle should presumably be represented by
a Hilbert space on which \(P \) acts by an irreducible unitary representation.
These representations again correspond to pairs \((m, s)\), though now \(s \) must be
integrated. This observation was the origin of Kirillov's doctrine that for
any Lie group \(G \) the irreducible unitary representations correspond very closely
to the homogeneous symplectic manifolds for G, which are, as we shall see, very easy to classify.

A good example to have in mind in thinking about quantization is the sphere S^2_r of radius r in \mathbb{R}^3, with its natural area form ω. The algebra of polynomial functions on S^2_r is $\mathbb{C}[X,Y,Z]/(X^2+Y^2+Z^2-r^2)$, and the Poisson structure is

$$\{X,Y\} = \frac{1}{r} Z, \quad \text{and cyclic permutations.}$$

It should be thought of as a quotient of the Poisson algebra of $\mathfrak{g}^*_\mathbb{C}$, where $\mathfrak{g} \subseteq \mathbb{R}^3$ is the Lie algebra of SO_3. Then $\mathcal{U}(\mathfrak{g})$ is generated by X,Y,Z with the relations $[X,Y] = Z$, etc., and has a center generated by the Casimir element $X^2+Y^2+Z^2$. The natural choice for the algebra of operators associated to S^2_r is therefore $\mathfrak{A} = \mathcal{U}_r(\mathfrak{g})$, the quotient of $\mathcal{U}(\mathfrak{g})$ by the relation $X^2+Y^2+Z^2 = r^2$. But this means that a representation of \mathfrak{A} is a representation of \mathfrak{g} with Casimir operator r^2. There is no such representation unless $r^2 = n\pi(n)$ for some integer n, and when that condition is satisfied there is a unique representation, of dimension $2n+1$, on which most of \mathfrak{A} acts trivially.

It quickly emerged that the proper starting points of geometrical quantization, accounting for the integrability properties, are not simply symplectic manifolds, but rather pairs (X,L), where X is symplectic and L is a hermitian line bundle with a unitary connection A whose curvature form is the symplectic form ω.

If one is familiar with the theory of line bundles, the following result is more or less obvious.

Proposition (i) For given symplectic (X,ω) one can find (L,A) if and only if X is integral, i.e. ω represents an element of $H^2(X;\mathbb{Z})$.

(ii) If (L,A) is one choice then any other differs from it by tensoring L with a flat hermitian line bundle. These correspond to elements of $H^2(X;\mathbb{R})$.

(iii) For integral X there is an exact sequence of Lie groups corresponding to the sequence $(1,1)$ of Lie algebras

$$1 \to H^0(X;\mathbb{R}) \to Aut(X;\omega) \to Diff_c(X) \to H^2(X;\mathbb{R}) \to 1.$$
Examples of deformation quantization of a Poisson manifold X

(i) $X = \mathfrak{g}_h^*$ gives $A_h = U(\mathfrak{g}_h)$ as above.

(ii) If X is a symplectic vector space V of dimension n, the Weyl algebra $A_h(V)$ is defined as the algebra over C generated by the real vector space V^* subject to the relations $[a, b] = i \hbar \omega^*(a, b)$, where ω^* is the skew form on V^* corresponding to ω on V.

Remark. $A_h(V) \cong U(\mathfrak{g})$ where \mathfrak{g} is the Heisenberg Lie algebra.

Sitting into an exact sequence $0 \to \mathbb{R} \to \mathfrak{g} \to V^* \to 0$.

If we choose symplectic coordinates (x^i, p_i) for V then $A_h(V)$ is generated by x^i and p_i subject to $[P_k, x_m] = i \hbar S_{km}$. Now $[i \hbar \frac{\partial}{\partial x^k}, x_m] = i \hbar S_{km}$, so $A_h(V) \cong \{\text{differential operators on } \mathbb{R}^n \text{ with poly. coeff.}\}$.

More invariantly,

Proposition. For every symplectic isomorphism $V \cong M \oplus M^* = T^*M$ we have a canonical isomorphism

$A_h(V) \cong \{\text{poly. diff. ops on } M^3\}$.

In particular, the RHS depends only on the symplectic vector space T^*M.

Remarks.

(a) Notice that making \hbar small amounts to making w big, i.e. the classical limit is the limit of large symplectic manifolds.

(b) In ex. (i) and (ii) we have considered only polynomial functions on X.

But if we work with formal power series in \hbar this still gives us a deformation quantization of $C^\infty(X)$, as $m_h(f, g)(x)$ depends only on the jets of f and g at x. The same applies in the next example.

(iii) If $X = T^*M$ for any manifold M we have $A_h(X) = \{\text{differential operators on } M^3\}$. For if we associate to a function f on
T^*M which is polynomial along the fibers the differential operator $P_\hbar = f(x, \frac{\partial}{\partial x})$ then $[P_f, P_\hbar] = i\hbar P_{f\hbar} \mod \hbar^2$. (Notice that different ordering conventions for defining $f(x, \frac{\partial}{\partial x})$ do not change $P_f \mod \hbar$.)

Geometric quantization

The particle physics background, and Kirillov's *vague* doctrine have been mentioned. Recall that given a symplectic manifold (X, ω) we want to define a Hilbert space \mathcal{H} on which the algebra \mathcal{A} acts, where $\mathcal{A} = a_h$ when $h = 1$. Observe that \mathcal{A} will be canonically defined if the formal power series defining a_h are analytic functions of h.

If $X = S^2$ with the area form of area m then $\mathcal{A} = C[X, Y, Z]/(p) = U(\mathfrak{g})/\mathfrak{p},$

where $[X, Y] = iZ, \text{ etc.}$, $p = X^2 + Y^2 + Z^2 - m(m+2)$, and $\mathfrak{g}_Y = so_3$.

We want \mathcal{A} to act on \mathcal{H} by a $*-$representation, i.e., X, Y, Z should be self-adjoint. This means that $\mathcal{H} = 0$ unless m is an integer, in which case \mathcal{H} is the $(m+1)$-dim repn of so_3 = (double covering of so_3).

In particular, the group $Diff^0(S^3) =$ (area-preserving diffeomorphisms of S^3) cannot possibly act on \mathcal{H}, but only so_3^g. Thus there can be no functor $(\text{symplectic manifolds}) \rightarrow (\text{Hilbert space})$; at best we can define

$(\text{symplectic manifolds with extra structure}) \rightarrow (\text{Hilbert space}),$

which one might begin to think in the category.

The first piece of extra structure we undoubtedly need is a line bundle L with a connection A, as described above.

Group actions An action $G \rightarrow \text{Diff}(X)$ of a group G on a Poisson manifold X is called Hamiltonian if the Lie algebra action
\[\gamma \to \text{Vect}_\gamma(X) \text{ is lifted to } \gamma \to C^\infty(X). \] This is certainly the case if \((X, \omega)\) comes from \((X, L)\) and \(G\) acts on \((X, L)\). (For then the function generating \(\mathfrak{g}\) is \(\xi^*_g A\), where \(\xi^*_g\) and \(A\) are thought of on the principal bundle of \(L\).)

In this situation, the map \(\gamma \to C^\infty(X)\) is usually regarded as a map \(p : X \to \gamma^*,\) called the moment map of the action. By its construction it is \(G\)-equivariant, and its derivative \(T_x X \to \gamma^*\) at \(x\) is the transpose of the map \(\gamma \to T_x X\) defining the \(G\)-action. (Here \(T_x X\) is identified with \(T_x^* X\) by \(\omega\).)

The following gives a complete description of homogeneous symplectic orbits.

Proposition. If \(G\) acts transitively on \(X\) then \(p : X \to \gamma^*\) makes

\(X\) a covering space of a \(G\)-orbit in \(\gamma^*.\) (And every such orbit is symplectic.)

Proof. The derivative of \(p\) is injective at each point, for it is the transpose of \(\gamma \to T_x X\), which is surjective for a transitive action. But \(X \to \gamma^*\) is a \(G\)-map, so takes an orbit to an orbit.

To see that each orbit is symplectic:

\[\omega((x, y), (x, y)) = \omega([x, y], \xi) \text{ by definition}, \] and so

\[\omega((x, y), (x, y)) = 0 \text{ for all } y \in \gamma \implies \omega([x, y], \xi) = 0 \text{ for all } y \implies (\xi x)(y) = 0 \implies \xi x = 0. \]

Kirillov's doctrine can now be reformulated as a relation between irreducible unitary reps of \(G\) and "adjoint orbits" in \(\gamma^*\). It can be understood to some extent from the viewpoint of deformation quantization.

Let \(Z(\gamma)\) be the centre of the enveloping algebra \(U(\gamma)\). Any irreducible rep of \(G\) has centre \(Z(\gamma)\) acts by a ring-homomorphism \(\chi : Z(\gamma) \to \mathbb{C}\) called its infinitesimal character. But we have

Theorem. \(Z(\gamma)\) is canonically isomorphic to \(S(\gamma)^G\), the algebra of \(G\)-invariant polynomials on \(\gamma^*\).
This theorem is highly non-trivial. It was proved by Harish-Chandra for semisimple groups. Then Kirillov defined a map in general, and conjectured it to be an isomorphism. This was proved by Duflo case by case. Kostant's recent work gives a non-case-by-case proof. Kirillov's map is easy to define:
the exponential map \(\exp: \mathfrak{g} \to G \) induces a map \(\exp^*: \Omega^k G(\mathfrak{g}) \to \Omega^k G(\mathfrak{g}) \) on the spaces of \(\frac{1}{2} \)-densities. Now \(G(\mathfrak{g}) \) acts on \(\Omega^k G(\mathfrak{g}) \), and \(S(\mathfrak{g}) \) acts by constant coefficient differential operators on \(\Omega^k G(\mathfrak{g}) \). Kirillov conjectured that the respective actions of \(S(\mathfrak{g}) \) and \(S(\mathfrak{g})^G \) correspond under \(\exp^* \). This assigns an orbit \(\mathfrak{g}^* \) in \(\mathfrak{g}^* \) to each irreducible repn of \(G \) precisely to the extent that orbits are separated by invariant polynomials on \(\mathfrak{g}^* \), i.e. to the extent that ring homomorphisms \(S(\mathfrak{g})^G \to \mathbb{C} \) correspond to orbits.

Linear geometric quantization

For each way of writing a symplectic vector space \(V \) as \(M \oplus M^* \)
we can identify the Weyl algebra \(A(V) \) with the polynomial differential operators on \(M \), and so we can define an action of \(A(V) \) on the Hilbert space \(L^2(M) \). But of course \(L^2(M) \) is not naturally associated to \(V \).

The Stone-von Neumann Theorem on the uniqueness of the representation of the "canonical commutation relations" tells us that if \(\hat{M} \oplus \hat{M}^* \) is another decomposition then the spaces \(L^2(M) \) and \(L^2(\hat{M}) \) are uniquely isomorphic up to a scalar multiplication — i.e., the projective space \(\text{Proj}(L^2(M)) \) is functorially associated to \(V \), though not obviously so.

We should like to do better still. If we had a functor \(V \mapsto \mathcal{H}_V \)
then the group \(\text{Sp}(V) \) would act unitarily on \(\mathcal{H}_V \). This is impossible.
The optimal result is that a double covering \(\text{Mp}(V) \) of \(\text{Sp}(V) \), called the metaplectic group, can be made to act on \(\mathcal{H}_V \). Thus there is a functor

\[
\text{(symplectic vector spaces with extra structure)} \to \text{(Hilbert spaces)}
\]

which we want to understand fully. (The functor is called the metaplectic representation.)
Linear quantization

We associated the Hilbert space $\mathcal{H} = L^2(M)$ to a symplectic vector space (V, ω) by choosing a decomposition $V = M \oplus M^*$. The Stone-von Neumann theorem shows that $\mathcal{T}(\mathcal{H})$ is naturally associated to (V, ω).

Sketch of proof. Because $\mathcal{A}(V) \equiv U(\mathfrak{g})$ the Hilbert space \mathcal{H} is a unitary representation of the Heisenberg group G associated to V whose Lie algebra is \mathfrak{g}. This group is a central extension

$$1 \to \mathbb{T} \to G \to V \to 1,$$

and the central \mathbb{T} acts by scalar multiplication on \mathcal{H}. Thus, there is only one irreducible representation of this type. For, as ω vanishes on M and M^*, we can regard M and M^* as abelian subgroups of G. Decomposing \mathcal{H} under the action of M^* expresses \mathcal{H} as a direct integral $\int_{M^*} \mathcal{H}_m \, \text{dm}$, where M^* acts on \mathcal{H}_m by e^{im} for $m \in (M^*)^* = M$. But conjugation by $\mu \in M \subseteq G$ changes e^{im} to $e^{i(m+\mu)}$, so μ defines an isomorphism $\mathcal{H}_m \to \mathcal{H}_{m+\mu}$, and \mathcal{H} can be identified as a representation of G with $L^2(\mu; \mathcal{H}_0)$. But we must have $\dim(\mathcal{H}_0) = 1$ for \mathcal{H} to be irreducible. \[//\]

To go further, we introduce the space $\mathcal{S}(V)$ of complex isotropic subspaces W of V_C which are positive in the sense that $i \omega(\xi, \xi) > 0$ if $\xi \neq 0$. For any such W we have $V_C = W \oplus \overline{W}$, and

$$\langle w_1, w_2 \rangle = i \omega(w_1, w_2)$$

is a Hermitian inner product.

Proposition 8.1: Points of $\mathcal{S}(V)$ correspond precisely to positive complex structures on V compatible with ω, i.e. to linear maps $J : V \to V$.
such that
(i) \(J^2 = -1 \),
(ii) \(\omega(Jv, Jv) = \omega(v, v) \),
(iii) \(\omega(v, Jv) > 0 \) if \(v \neq 0 \).

The correspondence is: \(J \mapsto W = \{ w \in V_c : Jw = i(w) \} \).

\(\mathcal{F}(V) \) is a complex manifold with two important descriptions.
(a) If we choose \(V = M \otimes M^* \) then \(\mathcal{F}(V) = \{ \text{symmetric } C-\text{linear } A : M \to M^* \text{ such that } \Im(A) \text{ is positive definite} \} \). This is the "Siegel generalized upper half-plane." The correspondence is \(A \mapsto \text{graph}(A) \subset M \otimes M^* \).

(b) If we choose \(V_c = W \otimes \overline{W} \) then
\[
\mathcal{F}(V) = \{ \text{symmetric } A : W \to W^* \text{ such that } ||A|| < 1 \}.
\]
This is the "Siegel generalized unit disc," which describes \(\mathcal{F}(V) \) as a bounded open subset of \(\mathbb{C}^{\dim(V)} \), where \(\dim(V) = 2n \).

The real Lagrangian (i.e., real, isotropic) subspaces \(M \subset V \) form a compact manifold \(\text{Lagr}(V) \) of real dimension \(\frac{n(n+1)}{2} \) contained in the boundary of \(\mathcal{F}(V) \) — in fact \(\text{Lagr}(V) \) is the Shilov boundary of \(\mathcal{F}(V) \).
The group \(\text{Sp}(V) \) acts transitively on both \(\mathcal{F}(V) \) and \(\text{Lagr}(V) \), and
\[
\mathcal{F}(V) \cong \text{Sp}(V)/U(W), \quad \text{Lagr}(V) \cong \text{Sp}(V)/\text{Stab}(M) \cong U(W)/U(W)\alpha\text{Stab}(M) \cong U_n/\text{Un}.\]

The functionality of \(\mathcal{F} \) is now described by

**Proposition (3.2) For each \(W \in \mathcal{F}(V) \) the subspace
\[
\mathcal{F}_W = \{ \xi \in \mathcal{F} : \omega \xi = 0 \text{ for all } w \in W \}
\]
is 1-dimensional. (Here \(W \) is regarded as contained in \(\mathcal{F}(V) \).) The lines \(\mathcal{F}_W \) form a hermitian holomorphic (= h.h.) line bundle \(\Lambda^* \mathcal{F} \) on \(\mathcal{F}(V) \) such that \(\Lambda^* \mathcal{F} \circ \Lambda^* \mathcal{F} = \text{Det}^* \) as h.h. line bundles, where \(\text{Det}^* \) is the tautological bundle with fibre \(\Lambda^n W^* \).

(The proof is given below.)

Remarks

(i) If two h.h. line bundles are isomorphic, the isomorphism
is unique up to multiplication by a constant element of \(T \), by the maximum modulus principle.

(ii) Any two h.h. line bundles \(\Lambda_1, \Lambda_2 \) on \(\mathcal{G}(V) \) such that \(\Lambda_1^{\otimes 2} \cong \text{Det}^* \) are isomorphic, for \(\Lambda_1^{\otimes 2} \Lambda_2 \) is a flat unitary line bundle on the contractible space \(\mathcal{G}(V) \).

Corollary (3.3)

\{ choice of representation \(\mathcal{G} \) \} \rightarrow \{ h.h. line bundles \(\Lambda \) such that \(\Lambda^{\otimes 2} \cong \text{Det}^* \) \}

is an equivalence of categories.

Equivalently, \(\mathcal{G} \) can be regarded as a functor of \((V, \Lambda)\). In fact

Proposition (3.4)

For any \(W \in \mathcal{G}(V) \), \(\mathcal{G} \) is canonically isomorphic to the Hilbert space completion of \(S(W^*) \otimes \Lambda_{g^*,W} \), where \(\Lambda_{g^*,W} \) is the fibre of \(\Lambda_{g^*} \) at \(W \) — i.e. \(\Lambda_{g^*,W} \) is a "choice" of \(\Lambda^n(W^*)^{\otimes 2} \).

For a given choice of \(\Lambda \), the group \(\text{Aut}(V, \Lambda) \) is a double covering of \(\text{Sp}(V) \) called the metaplectic group. \(\mathcal{G} \) is a non-trivial double covering, for (3.4) implies that the subgroup which preserves \(W \) is

\[\tilde{U}(W) = \{(u, \lambda) : u \in U(W), \lambda^2 = \det(u) \} \]

Proof of (3.2)

It is enough to consider the particular choice \(\mathcal{G} = L^2(M) \), for any other is \(\mathcal{G}(\text{line}) \). If \(W \in \mathcal{G}(V) \) is given by \(A : M_c \rightarrow M_c^* \)

with \(\text{Im}(A) > 0 \) we find at once that \(\mathcal{G}W \) consists of all multiples of \(\psi_A = e^{i \langle x, A^*x \rangle} \). Thus \(\Lambda_\mathcal{G} \) comes equipped with a holomorphic section \{ \(\psi_A \) \} whose (norm)^2 is easily calculated to be \(\det \left(\frac{1}{2\pi} \text{Im}(A) \right)^{-1/2} \).

On the other hand the choice \(V = M \otimes M^* \) defines a holomorphic section \(A \mapsto S_A = \Lambda^n(A) \otimes \text{Det}^* \) on \(\mathcal{G}(V) \), and \(\|S_A\|^2 = \det \left(\frac{1}{2\pi} \text{Im}(A) \right) \)

Finally, the choice of a line bundle \(\Lambda \) on \(\mathcal{G}(V) \) induces a real line bundle \(\Lambda \) on \(\mathcal{G}(V) \) such that \(\Lambda^{\otimes 2} = \text{Det}^* \), and we have
Proposition (5.5) \mathcal{H}^V_{Λ} is canonically isomorphic to $L^2(M) \otimes \Lambda_M$, where $L^2(M)$ denotes the Hilbert space of $\frac{i}{2}$-densities on M.

Remark. On $\text{Log}(V)$ the relation $\Lambda^{\otimes 2} \otimes \text{Det}^*$ does not fix the isomorphism class of Λ, for $\pi_1 \text{Log}(V) = \mathbb{Z}$. But the extendibility to $\mathcal{H}(V)$ picks out a class.

Affine-linear quantization

Suppose now that V is given only as an affine symplectic space, with underlying vector space V_0. Let $\mathcal{J}eff(V)$ denote the affine positive Lagrangian subspaces $W \subset V_0$. (Each such W meets V in a unique point.) The complex manifold $\mathcal{J}eff(V)$ is a bundle of complex affine spaces over $\mathcal{J}(V_0)$ whose fiber V_J at J is V with the complex structure J. We readily check

Proposition (5.6) If \mathcal{H} is a quantization of V then

$$\{ \mathcal{H}^W \} \cong (\text{Det}^*)^{\otimes k} \otimes L$$

as h.h. line bundles on $\mathcal{J}eff(V)$, where Det^* is the line bundle pulled back from $\mathcal{J}(V_0)$, and $L|_{V_J}$ is obtained from a line bundle L on V with a unitary connection with curvature ω, by giving it the holomorphic structure J.

Thus we can associate a Hilbert space \mathcal{H} functorially to a symplectic affine space V equipped with L and $\Lambda = (\text{Det}^*)^{\otimes k}$, and for any $J \in \mathcal{J}(V_0)$ we have a canonical isomorphism

$$\mathcal{H} \cong \mathcal{T}_{L}^{1}\text{holomorphic} (V_J; L_J \otimes \Lambda_J).$$

The enlargement of \mathcal{H}

As we $\mathcal{J}(V)$ tends to a boundary point $M \in \text{Log}(V)$ the ray \mathcal{H}^W does not have a limit in $T_P(\mathcal{H})$. (For example, if $V = \mathbb{R}^2$, then $\mathcal{H}^{\text{Plane}^2}$ is not in L^2 for real a, and tends to the delta-function at the origin if $a \to \infty$.) But, without spoiling the functoriality, we can enlarge \mathcal{H} to a complete topological vector space $\overline{\mathcal{H}}$ which does
contain a unique ray for each real Lagrangian subspace M.

To do this, we observe that the action of $\widetilde{Sp}(V)$ on \mathcal{H} does not extend to an action of the complexification $\widetilde{Sp}(V)_c = \widetilde{Sp}(V_c)$, but it does extend holomorphically to a semigroup $\widetilde{Sp}^+(V)_c \subset \widetilde{Sp}(V)_c$. This semigroup can be defined as the elements of $\widetilde{Sp}(V_c)$ which contract the open subset $\mathcal{G}(V)$ of $\text{Lag}(V_c)$ inside itself, or else as the elements whose graphs are positive Lagrangian subspaces of $(\widetilde{V} \otimes V)_c$, where \widetilde{V} is V with the reversed symplectic form. The second description shows that each element defines a ray in $\mathcal{H} \otimes \mathcal{H} = \{ \text{Hilbert-Schmidt operators } g : \mathcal{H} \to \mathcal{H} \}$.

If g belongs to this semigroup, the image of $g : L^2(M) \to L^2(M)$ consists of real-analytic 1-densities, and g is very strongly contracting. We can now define dual topological vector spaces $\hat{\mathcal{H}}$ and $\hat{\mathcal{H}}'$ such that $\hat{\mathcal{H}} \subset \hat{\mathcal{H}}' \subset \hat{\mathcal{H}}$, and such that $\hat{\mathcal{H}}$ contains a ray for each $M \in \text{Lag}(V)$: we take $\hat{\mathcal{H}} = \bigcup g \mathcal{H}$, and $\hat{\mathcal{H}}' = \text{closure of the image of } T g \hat{\mathcal{H}} \to T g \hat{\mathcal{H}}'$, where g runs through the semigroup.
Quantization in non-linear situations

To get some feeling for the problem of extending geometric quantization beyond the linear situation, let us ask whether one can assign a ray in the quantization $\hat{\mathcal{H}}$ of a symplectic vector space V to a general Lagrangian submanifold Σ of V. If $V = M \oplus M^*$ is a linear decomposition, then for any smooth $F : H \to \mathbb{R}$ the graph Σ_F of $dF : M \to M^*$ is Lagrangian, and any Lagrangian submanifold which projects isomorphically on to M is of this form. Introducing canonical coordinates $(x_1, \ldots, x_n; p_1, \ldots, p_n)$, the manifold Σ_F is the set of zeros of the functions $p_k - \frac{\partial F}{\partial x_k}$, and the corresponding operators

$$p_k - \frac{\partial F}{\partial x_k} = i\hbar \frac{\partial}{\partial x_k} - \frac{\partial F}{\partial x_k}$$

annihilate the unique ray in $\hat{\mathcal{H}}$ consisting of \hbar multiples of $e^{-iF/\hbar}$.

On the other hand, $\hat{\mathcal{H}}$ can also be described as $L^2(M^*)$, where the isomorphism $L^2(M) \to L^2(M^*)$ is the Fourier transform $\varphi \mapsto \hat{\varphi}$, where

$$\hat{\varphi}(p) = (2\pi\hbar)^{-\frac{n}{2}} \int \varphi(x) e^{i\langle p, x \rangle / \hbar} \, dx.$$

If Σ_F projects isomorphically to M^* it is the graph of $dG : M^* \to M$, where $G : H \to \mathbb{R}$ is the Legendre transform of F, i.e.

$$G(p) = \langle p, x \rangle - F(x), \text{ where } x \text{ satisfies } p = dF(x).$$

Now x_k acts on $L^2(M^*)$ as $-i\hbar \frac{\partial}{\partial p_k}$, so we expect Σ_F to correspond to the ray containing $e^{iG/\hbar}$ in $L^2(M^*)$. But $e^{iG/\hbar}$ is not the Fourier transform of $e^{-iF/\hbar}$. In fact the Legendre transform is the classical limit of the Fourier transform, in the sense that the Fourier transform of $e^{-iF/\hbar}$ is

$$(2\pi\hbar)^{-\frac{n}{2}} \int e^{i\langle p, x \rangle - F(x) / \hbar} \, dx = e^{iG(p)/\hbar} \left(1 + O(\hbar)^3 \right).$$

(To see this we calculate the integral by stationary phase.) Thus
two candidates for the ray associated to Σ_p tend to coincide as $h \to 0$.

Quantization of cotangent bundles

There is a well-developed theory of quantization for cotangent bundles. It is essentially what is called "micro-local analysis". I shall consider here only the cotangent bundles T^*M of compact manifold M.

Let $X = T^*M - \{zero \, section\}$. This should have the same quantization as T^*M, as it has the same Liouville volume. It has a free action of the multiplicative group \mathbb{R}_+^*, which scales the fibres, and satisfies $t^*x = tx$.

I have already said that the algebra $\mathcal{A}_0(X)$ of smooth functions on X which are polynomial on the fibres of T^*M has the deformation quantization $\mathcal{A}_h(X)$, where $\mathcal{A}_h(X)$ is the algebra of differential operators acting on the space $\mathfrak{F} = L^2(M)$ of t-densities on M. (Recall that in a standard chart (x_i, p_i) the function $p_i \in \mathcal{A}_h(X)$ acts by $\mathcal{F} \mapsto \mathcal{F}$.)

This picture makes strong use of the linear structure of T^*M. But we can consider the larger algebra $\mathcal{A}_0(X)$ of smooth functions on X which have asymptotic expansions $f \sim \sum_{k=0}^{\infty} f_k$, where f_k is homogeneous of degree k under the \mathbb{R}_+^*-action — i.e., $t^* f_k = t^k f_k$.

This algebra does not depend on the linear structure but only the \mathbb{R}_+^*-action, and it can be deformed to the algebra $\mathcal{A}_h(X)$ of pseudo-differential operators on $L^2(M)$.

To define a pseudo-differential operator we begin by observing that a differential operator $f \mapsto Pf$ is characterized by the fact that for each $x \in M$ the map $f \mapsto Pf(x)$ is a distribution with support $\{x\}$.

Lemma (4.1) \(\text{If} \ V \text{ is a real vector space, and } \text{Dist}_0(V) \text{ denotes the distributions with support } \{0\}, \text{ then} \)
\[
\text{Dist}_0(V) \cong S^*(V) \cong \text{Polynomials on } V^*. \]
(The isomorphism is given by the Fourier transform.)

Let us define a larger class of distributions \(\text{Dist}^\psi_0(V) \) with
singular support \(\{0\} \) — i.e., which are smooth in \(V \setminus \{0\} \). This class consists of all \(\phi \) whose Fourier transforms \(\hat{\phi} \) have asymptotic expansions
\[
\hat{\phi} = \sum_{k,m} \hat{\phi}_{k,m}
\]
with \(\hat{\phi}_{k,m} \) homogeneous of degree \(k \). The remarkable theorem of Hörmander is that \(\text{Dist}^\psi_0(V) \) depends only on \(V \) as a smooth manifold with the
base-point \(0 \). In other words, we can define \(\text{Dist}^\psi_0(M) \) for any
smooth manifold \(M \) and any \(x \in M \).

Definition (4.2) A pseudodifferential operator \(f \mapsto Pf \) is one such
that the distribution \(P_x : f \mapsto (Pf)(x) \) belongs to \(\text{Dist}^\psi_0(M) \) for
each \(x \in M \), and depends smoothly on \(x \).

If \(\hat{P}_x = \sum_{k,m} \hat{P}_{x,k,m} \) then \(P \) has degree \(m \), and the
homogeneous function \(\hat{P}_{x,m} \) on \(X = T^*M \setminus \{0\} \) is called its
principal symbol.

These concepts can be generalized. If \(\Sigma \) is a submanifold of
\(M \), then a conormal distribution along \(\Sigma \) is one whose singular
support is \(\Sigma \) and which, in a tubular neighbourhood of \(\Sigma \) looks
like a smooth family \(\phi_x \in \text{Dist}^\psi_0(N_x \Sigma) \), where \(N_x \Sigma \) is the normal
slice to \(\Sigma \) at \(x \). Again, it can be shown that this class of
distributions depends only on \(\Sigma \). Each member has a degree \(m \), and a
principal symbol which is a homogeneous function on \(N^*\Sigma \). The
obvious conormal distribution of degree \(0 \) on \(\Sigma \) with principal symbol \(1 \).
is the 8-function S_Σ along Σ, but there are many others.

For any submanifold Σ of M, the conormal bundle N_Σ^* is a Lagrangian submanifold of T^*M. Conversely, if Γ is a conical Lagrangian submanifold of T^*M, then in any open set where the projection $\Gamma \to M$ has constant rank Γ is of the form N_Σ^*. With a little more care, we can define a class of Lagrangian distributions on M for each conical Lagrangian submanifold Γ of X, so that when $\Gamma = N_\Sigma^*$ we get the conormal distributions above. Any Lagrangian distribution for Λ with degree 0 and principal symbol 1 defines a candidate for the ray in $\mathfrak{g}_\mathbb{F} = \mathcal{L}^2(M)^\Lambda$ associated to Γ.

The theory of Lagrangian distributions reveals the functorial properties of the quantization of cotangent bundles. Let $\text{Diff}_{h^s}(X)$ denote the homogeneous symplectic isomorphisms $f: X \to X$, i.e., those which commute with the R_+^*-action. The map Γ_f of such an f is a conical Lagrangian submanifold of $X \times X$. Let \mathfrak{g}_f denote the distributions on $M \times M$ which are Lagrangian with respect to Γ_f, and of degree 0 with principal symbol 1. These distributions define operators $\mathcal{L}^2(M) \to \mathcal{L}^2(M)$ which are called Fourier integral operators. As f varies, they form a group $\mathfrak{g}(X)$ which fits into an exact sequence

$$1 \to \mathfrak{g}(X) \to \mathfrak{g}(X) \to \text{Diff}_{h^s}(X) \to 1, \quad (14.3)$$

where $\mathfrak{g}(X)$ denotes the invertible pseudodifferential operators of order 0 with principal symbol 1. (For a pseudodifferential operator, its kernel is conormal with respect to the diagonal in $M \times M$.) The sequence (14.3) expresses the precise functoriality of the quantization $X \mapsto \mathfrak{g}_X = \mathcal{L}^2(M) : \mathfrak{g}_X$ is associated to X only up to the action of an element of the group $\mathfrak{g}(X)$.
Nevertheless, this gives us quite a lot of information, as the action of \(\mathcal{G}(X) \) preserves the singular support (and even the wave-front set) of a distribution in \(M \). A beautiful example of this is the following, discussed by Guillemin in Duke Math. J. 44 (1977).

For a Riemannian manifold \(M \), the geodesic flow on \(X \) is generated by the Hamiltonian function \(\frac{1}{2} \| p \|^2 \), and corresponds to the 1-parameter unitary group \(e^{it\Delta} \) on \(\mathcal{H} = L^2(M) \), where \(\Delta \) is the Laplacian. Although this flow does not belong to \(D(c^\infty_{\text{hs}}(X)) \), the rescaled flow \(\{ f_t \} \) generated by \(\| p \| \) does commute with \(R^X_t \). It corresponds to \(e^{it\Delta^h} \) on \(\mathcal{H} \). We conclude that the singular support of the kernel of \(e^{it\Delta^h} \) (the projection of the graph of \(f_t \) to \(M \times M \)), and hence the singular support of \(\text{Trace} (e^{it\Delta^h}) \), as a distribution in \(t \), is the set of points \(t \) such that the graph of \(f_t \) meets the diagonal in \(X \times X \), i.e., is the set of periods of periodic geodesics in \(M \).

Quantization of compact symplectic manifolds

Suppose that \((X,L) \) is a compact symplectic manifold with a hermitian line bundle with a connection whose curvature is the symplectic form \(\omega \) of \(X \). For each \(x \in X \) we have the complex manifold \(\mathcal{F}(T_x X) \) described in Lecture 3. These manifolds fit together to form a bundle \(\mathcal{F}(TX) \) on \(X \) with contractible fibres. A section of this bundle is an almost-complex structure on \(X \) compatible with \(\omega \). (\(\mathcal{F} \) defines in particular a Riemannian metric on \(X \).) On the total space \(\mathcal{F}(TX) \) there is a tautological complex line bundle \(\mathcal{D}^X \) whose first Chern class \(c_1 \in H^2(\mathcal{F}(X); \mathbb{Z}) = H^2(X; \mathbb{Z}) \) is the first Chern class of \(X \), and is a lift of the Steifel–Whitney class \(w_2 \in H^2(X; \mathbb{Z}/2) \).
If \(c_1 \) is divisible by two (i.e., if \(\omega_2 = 0 \)), we can find a line bundle \(\Lambda \) on \(\mathcal{O}(TX) \) with an isomorphism \(\Lambda^{\otimes 2} \cong \text{Det}^2 \). A choice of \(\Lambda \) is called a metaplectic structure on \(X \).

A section \(\sigma \) of \(\mathcal{O}(TX) \) which is defined by an actual complex structure on \(X \) will be called a compatible Kähler structure on \(X \). It automatically makes the line bundles \(L \) and \(\sigma^* \Lambda \) on \(X \) into holomorphic bundles. Comparison with the linear case makes it natural to define a "quantization"

\[
\mathcal{H}^\sigma = \prod_{\text{hol}} (X : L \otimes \Lambda),
\]

where \(\Lambda \) denotes \(\sigma^* \Lambda \), so that \(\Lambda^{\otimes 2} \) is the canonical bundle of \(X \). Probably this is only a good definition when \(L \otimes \Lambda^* \) is a positive line bundle on \(X \) (i.e., its curvature is a Kähler form), for then the Kodaira vanishing theorem tells us that the cohomology groups

\[
H^i(X, L \otimes \Lambda^*) \text{ vanish for } i > 0.
\]

As \(L \) is a positive bundle by definition, we certainly know that \(L^{\otimes k} \otimes \Lambda^* \) is positive for all sufficiently large \(k \).

When the vanishing theorem applies, the dimension of \(\mathcal{H}^\sigma \) can be calculated by the Riemann-Roch theorem, and is

\[
\dim (\mathcal{H}^\sigma) = \int_X e^c \hat{A}_X.
\]

Here the \(\hat{A} \)-genus \(\hat{A}_X \) of \(X \) is the rational cohomology class of mixed dimension defined in terms of the Pontryagin classes \(P_i(X) \) by

\[
\hat{A}_X = \prod_{x_i/2} \frac{1}{\sinh (x_i/2)},
\]

where \(\Sigma p_i(X) = \prod (1 - x_i)^2 \). Because \(\hat{A}_X = 1 + (\text{higher terms}) \), if we apply this formula to \((X, \kappa L) \) we find that the dimension of \(\mathcal{H}^\sigma \) is a polynomial in \(\kappa \) of degree \(n = \frac{1}{2} \dim X \), whose leading term is

\[
\kappa^n \int_X e^c \frac{c^n}{n!}.
\]
i.e. the Liouville volume of \((X, k\ell)\). As usual, the "classical" volume
is the leading term.

As the complex structure \(\sigma\) vanes, the spaces \(\mathfrak{g}_\sigma\) form a vector
bundle on the parameter space, providing the higher cohomology always
vanishes. One might ask whether there is a natural connection on this
bundle which would allow one to identify the different \(\mathfrak{g}_\sigma\), perhaps
only as projective spaces. But that is impossible.

Example

Let \(\mathcal{C}(S^2)\) denote the space of complex structures on the sphere \(S^2\).
In dimension 2 all complex structures are compatible with the symplectic
structure, providing they define the same orientation. Up to diffeomorphism,
there is only one complex structure on \(S^2\), so

\[
\mathcal{C}(S^2) \cong \text{Diff}(S^2; \mathbb{P}^1)/\text{PSL}_2\mathbb{C}.
\]

If \(f_\sigma = k\) then \(\mathfrak{h}_\sigma\) is the \(k\)-dimensional representation of the group
\(SO_3\) of diffeomorphisms of \(S^2\) which preserve the Kähler structure, and
the bundle \(\{\mathfrak{h}_\sigma\}\) on the contractible space \(\mathcal{C}(S^2)\) is

\[
\text{Diff}(S^2; \mathbb{P}^1) \times \text{PSL}_2\mathbb{C}.
\]

This is a trivial bundle: a trivialization corresponds to a map

\[
\mathcal{C}(S^2) \rightarrow \text{Diff}(S^2; \mathbb{P}^1),
\]

and can be defined, for example, by requiring
three chosen points of \(S^2\) to map to \(\{0, 1, \infty\}\) in \(\mathbb{P}^1\). The relevant question,
however, is whether the bundle \(\{\mathfrak{h}_\sigma\}\) — or \(\{\mathfrak{h}_\sigma\}\) — is naturally trivial,
i.e. whether the trivialization is compatible with the action of the group \(\mathfrak{g}\) of
symplectic diffeomorphisms of \(S^2\). If so, then \(\mathfrak{g}\) would act projectively on the
\(k\)-dimensional space of flat sections, extending the obvious action of \(SO_3\).
That is impossible. For the Lie algebra \(\mathfrak{g}\) of \(\mathfrak{g}\) is \(C^\infty(S^3)/T^\mathbb{R}\), which
is the sum of all irreducible representations of \(SO_3\), each with multiplicity 1,
and so there is only one possible \(SO_3\) -invariant map \(\mathfrak{g} \rightarrow \text{Aut}(\mathfrak{g}_\sigma)\),
and it is not a homomorphism of Lie algebras.
There is one important observation to make about the spaces \mathfrak{F}_σ. When the vanishing theorem applies, \mathfrak{F}_σ is the cohomology of the Dolbeaut complex
\[\Omega^0(X; L \otimes \Lambda) \xrightarrow{\overline{\partial}} \Omega^1(X; L \otimes \Lambda) \xrightarrow{\overline{\partial}} \Omega^2(X; L \otimes \Lambda) \to \cdots. \]
Equivalently, \mathfrak{F}_σ is the kernel of the Fredholm operator
\[\overline{\partial} + \overline{\partial}^* : \bigoplus_{i \text{ odd}} \Omega^{0,i}(X; L \otimes \Lambda) \to \bigoplus_{i \text{ even}} \Omega^{0,i}(X; L \otimes \Lambda). \]
Now, for a hermitian vector space W of dimension n, the space
\[(\Lambda^* W^*)^\otimes \otimes \bigoplus \Lambda^i W^* \]
as a representation of the double covering of the unitary group $U(W)$, is precisely the spin representation of the orthogonal group of the real vector space underlying W. So the source and target of (14.4) are the sections of $L \otimes \Delta^+$ and $L \otimes \Delta^-$, where Δ^\pm are the bundles of $\frac{1}{2}$-spinors on the Kähler manifold X_σ. Furthermore, it is well known that the Dirac operator of X_σ, coupled to the line bundle L.
This means that \mathfrak{F}_σ is defined for any almost complex structure σ, i.e. any section σ of $\mathfrak{F}(TX)$, and not only for sections coming from complex structures.

We cannot assume that the Dirac operator is surjective for all σ, so its index is only a virtual vector space, but we do have a canonical family of Fredholm operators whose index is the "quantization" of X, parametrized by the contractible space $\Gamma(\mathfrak{F}(TX))$.

The Fredholm operators represent the class $[L][X]$ in K-theory, where $[X] \in K_{2n}(X)$ is the fundamental class of X defined by the K-orientation. Thus choosing a K-orientation defines a "virtual quantization" which is the image of $[L]$ under the associated Gysin map $K^0(X) \to K_{2n}(pt) \cong K^0(pt)$. This is essentially the same kind of functoriality that arose in the quantization of cotangent bundles, for the ambiguity in the choice of the K-theory fundamental class (i.e. of the Dirac operator, whose principal symbol is canonical up to canonical homotopy) is closely analogous to the choice of a pseudo-differential operator on X of degree 0 and principal symbol 1, which was the ambiguity we encountered in quantizing a cotangent bundle.