
Lecture 2

The Index and Determinant of
the Dirac Operator

This chapter is something of a digression, but is put in for two reasons. First,
the patching-together properties of the index of the Dirac operator provide a
good example of the formal structure of topological field theory, and will serve
to motivate some of the abstract-looking category theory which we shall come to
in the next chapter. Secondly, the construction of the determinant gives us our
first example of a more-or-less “realistic” —not topological— field theory. It will
be the basic tool when we turn to conformal field theory in Chapter Four.

An n-dimensional topological field theory gives us a number F (X) for every
closed oriented n-dimensional manifold X. Among the invariants of manifolds
which arise in this way are the signature of a 4k -manifold, i.e. the signature
of the quadratic form on the middle-dimensional homology of X given by the
intersection pairing, and the Â-genus, which is defined as the index of the Dirac
operator on an even-dimensional spin manifold. I shall concentrate here on the
Â-genus Â(X), but the signature sign(X) is a closely related invariant, and I
shall return to it in §2.?. (Both Â(X) and sign(X) are additive, rather than
multiplicative, for disjoint unions, so to fit them directly into the framework of
Chapter 1 we should consider eÂ(X) and esign(X).

Let us recall the most basic facts about Dirac operators and Fredholm oper-
ators.

2.1 The Dirac operator

Dirac defined his operator in Euclidean space Rn as

D =
∑

γi
∂

∂xi
,

where γ1, · · · , γn are N × N skew-hermitian matrices satisfying γ2
i = −1 and

γiγj = −γjγi when i 6= j. His idea was to find a first-order operator D whose
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square was the Laplacian:

D2 = −
∑(

∂

∂xi

)2

.

To give the matrices γi is the same as to give for each vector ξ ∈ Rn a matrix
cξ depending linearly on ξ such that c2

ξ = −||ξ||2, for if ξ = (ξi) we can define
cξ =

∑
ξiγi. In other words, we are giving a matrix representation of the Clifford

algebra C(Rn).

To make sense of this on a general Riemannian manifold M we must give for
each x ∈ M a complex vector space ∆x with an inner product, called the space
of spinors at x, and for each cotangent vector ξ at x a skew transformation

cξ : ∆x → ∆x

such that c2
ξ = −||ξ||2. The spaces ∆x must fit together to form a vector bundle

∆ on M . If each space ∆x is an irreducible representation of the Clifford algebra
C(T ∗x ) then ∆ is called a spin bundle. A choice of such a bundle is traditionally
called a spinc-structure on M . To define the Dirac operator we also need to
choose a connection on ∆ which is compatible with the Levi-Civita connection of
M . A connection in ∆ is a rule which enables us to differentiate any spinor field
s —i.e. a section s of ∆— along any tangent vector field ξ to M . I shall write
the derivative ∇ξs. Compatibility with the Levi-Civita connection means that

∇ξ(cηs) = c∇ξηs + cη∇ξs.

When we have a spin bundle with a connection, we define the Dirac operator
DM as the operator given locally by

DM =
∑

cξi∇ξi(2.1.1)

where {ξi} is a set of tangent vector fields which form an orthonormal basis of
the tangent space at each point. (Of course DM is independent of the choice of
the ξi). Solutions s of the equation DMs = 0 are called harmonic spinor fields.

We must distinguish two cases. If M is even-dimensional —say of dimension
n = 2k— then the spin bundle ∆ is of dimension 2k, and it automatically splits
as a sum

∆ = ∆even ⊕ ∆odd,

where ∆even and ∆odd are the (±1)-eigenspaces of the operator

ω = i
1
2
n(n+1)cξ1cξ2 ... cξn,
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which has square 1. The operator ω depends on the orientation of M , and changes
sign if it is reversed. Reversing the orientation therefore interchanges ∆even and
∆odd. The Dirac operator takes sections of ∆even to sections of ∆odd, and vice
versa. We shall write it

DM = Deven
M ⊕ Dodd

M ,

where Deven
M : Γ(∆even)→ Γ(∆odd) is the adjoint of Dodd

M : Γ(∆odd)→ Γ(∆even).
When one speaks of the index of the Dirac operator, one always means the index
of Deven

M , as the self-adjoint operator DM has index zero.

If M is of odd dimension n = 2k+ 1, on the other hand, then the spin bundle
∆ has dimension 2k, and does not split into even and odd parts. In this case
the operator ω acts as the scalar ±1 on each ∆x, and, by replacing cξ by −cξ if
necessary, we can assume ω acts as +1. Reversing the orientation of M therefore
changes DM to −DM .

If M is a manifold with a boundary ∂M , then at each point x ∈ ∂M we
have the map cv(x) : ∆x → ∆x such that c2

v(x) = −1, where v(x) is the unit
inward normal vector to ∂M at x. If M is even-dimensional, these maps define
an isomorphism

∆even
M |∂M ∼= ∆odd

M |∂M,

and either of these bundles can be identified with ∆∂M. If M is odd-dimensional,
then the (±i)-eigenspaces of cv(x) for x ∈ ∂M split ∆M |∂M as the sum of two
bundles which can be identified with ∆even

∂M and ∆odd
∂M.

2.2 Fredholm operators

If E and F are topological vector spaces, a Fredholm operator T : E → F is a
continuous linear map which has an inverse, or “parametrix”, modulo operators
of finite rank, i.e. for which there is a continuous P : F → E such that P ◦ T
and T ◦P differ from the identity by finite rank operators. If T is Fredholm it is
easy to see that the kernel and cokernel

ker(T ) = { ξ ε E : T ξ = 0}
coker(T ) = F/T (E)

are finite dimensional, and that the image T (E) is a closed subspace of F . The
converse is true, too, if E and F are Fréchet spaces. If T : E → F is Fredholm,
its index χ(T ) is defined by

χ(T ) = dim(ker(T ))− dim(coker(T )).

The important property of the index is that in many situations it does not
change when T is deformed continuously. For example, if E and F are Banach
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spaces, and the space Fred(E;F ) of Fredholm operators is given the norm topol-
ogy, then T0 and T1 belong to the same connected component of Fred(E;F ) if
and only if they have the same index. But, quite generally, if {Tt} is a family
of Fredholm operators, then χ(Tt) is a continuous function of t providing one
can find a family {Pt} of parametrices such that the operators Pt ◦ Tt − 1 and
Tt ◦ Pt − 1 are compact, and vary continuously with t in the uniform topology.
This is always the case if {Tt} is a family of elliptic differential operators on a
compact manifold, and Tt depends smoothly on t.

2.3 Localizing the index

Like the signature, the Â-genus of a manifold appears to be of an altogether
global nature, and when a closed manifold X is a union X = X1 ∪ X2 of two
manifolds with boundary whose intersection is their common boundary Y , there
seems at first no reason why Â(X) should be a sum of contributions from X1 and
X2. The Atiyah-Singer index theorem, however, tells us that Â(X) is in some
sense a sum of local contributions, for it asserts

Â(X) =

∫
X

αX

=

∫
X1

αX +

∫
X2

αX

= Â(X1) + Â(X2),(2.3.1)

say, where αX is a differential form constructed locally from the geometry of X.
The formula (2.3.1) splits Â(X) into contributions from X1 and X2; but the

contributions are not integers, and —more importantly— they depend on the
Riemannian structure of X1 and X2, while Â(X) does not. Nevertheless, the
image of Â(X1) or Â(X2) in R/Z depends only on the structure of X in an
arbitrarily small neighbourhood of the interface Y , for if either X1 or X2 is
replaced by another manifold which is indistinguishable in the neighbourhood of
Y then Â(X) can only change by an integer. Let us write ZY for the set of real
numbers congruent to Â(X1) modulo Z : it is a set with a free transitive action
of the additive group Z, i.e. an “affine space” for Z, or Z-torsor. (The word
“torsor” seems rebarbative, but at least it is short).

That there should be a Z-torsor ZY , depending only on Y , in which X1 and
X2 define elements Â(X1) and −Â(X2) whose “difference” is Â(X), is quite easy
to see directly, without using the index theorem. Let us write K, K1 and K2

for the harmonic spinor fields on X, X1, and X2. Because the Dirac operator
is of first order and elliptic, an element s ∈ K is the same thing as a pair
s1 ∈ K1, s2 ∈ K2 such that s1|Y = s2|Y . Furthermore, s1 and s2 are completely
determined by their boundary values s1|Y and s2|Y , and so one can regard K1
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and K2 as subspaces of the space ΓY of all smooth spinor fields on Y . Thus we
have K = K1 ∩K2. In fact rather more is true.

Proposition 2.3.2 (i) The subspaces K1 and K2 of ΓY are closed, and there
is an exact sequence

0→ ker(DX)→ K1 ⊕K2 → ΓY → coker(DX)→ 0(2.3.3)

where the middle map is the sum of the inclusions.

(ii) There is an orthogonal decomposition ΓY = K2

⊕
K⊥2 , and hence an exact

sequence

0→ ker(DX)→ K1 → K⊥2 → coker(DX)→ 0(2.3.4)

where the middle map is the orthogonal projection.

Before giving the proof let us notice how the result relates to the factorization
of the index of DX . If the spaces K1 and K⊥2 were finite-dimensional, (2.3.4)
would tell us that χ(DX) was the difference between their dimensions. Of course
they are infinite-dimensional, but we shall see that they belong to a special class
of closed subspaces of ΓY which are sufficiently close to each other for any two of
them to have a well-defined relative dimension, say dim(K1 : K⊥2 ). Thus (2.3.4)
implies

χ(DX) = dim(K1 : K⊥2 ).

The subspaces of ΓY in question form its restricted Grassmannian GrY . This
is a space whose set of connected components π0GrY forms a Z-torsor ZY , the
components being distinguished by their relative dimension.

2.4 Polarized vector spaces and the restricted

Grassmannian

The concept of a polarized topological vector space will play a prominent role
throughout these lectures. The vector spaces we shall consider will always be
assumed to be locally convex and complete.

A polarization of a vector space E is a class of allowable decompositions
E = E+ ⊕ E− which are fairly close to each other. The meaning of “fairly close”
is somewhat elastic, depending on our precise purposes. At the least, we want
to permit any finite dimensional changes to E+ and E−, but for the present a
very loose definition will suffice. To state it, it is useful to identify decompositions
E = E+⊕E− with the corresponding operators J : E → E such that J |E± = ±1.

Definition 2.4.1 A coarse polarization of a vector space E is a class J of op-
erators J : E → E such that
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(i) J2 = 1 modulo compact operators

(ii) any two operators in J differ by a compact operator, and

(iii) J does not contain ±1.

Example 2.4.2 If E is the space of smooth functions on the circle S1 then we
have a decomposition E = E+ ⊕ E−, where E+ is spanned by the functions einθ

for n < 0, and E− by einθ for n > 0. The polarization so defined does not depend
on the parametrization of the circle, for the operators J corresponding to two
different choices differ by an integral operator with a smooth kernel. (See [PS]
page 91). We could also transfer any finite number of the functions einθ from E+

to E−, or vice versa, without changing the polarization.
The functions einθ are characterized as the eigenfunctions of the operator

i d
dθ

on S1, which in fact is the Dirac operator on S1. For any odd-dimensional
compact Riemannian spin manifold Y , the space ΓY of smooth spinor fields on
Y is correspondingly polarized by ΓY = Γ+

Y ⊕ Γ−Y where Γ+
Y is spanned by the

eigenfunctions of the Dirac operator with eigenvalues > 0, and Γ−Y by those with
eigenvalues < 0.

When we have a polarized vector space E we can define its restricted Grass-
mannian Gr(E) as the set of all subspaces which can occur as the “negative
energy” part E− in one of the allowable decompositions E = E+ ⊕ E−. If

E =
∼
E+ ⊕

∼
E
−

is another allowable decomposition then the projection of Ẽ−

on to E− along E+ is automatically Fredholm, and its index is called the relative
dimension dim (Ẽ− : E−.) The set Gr(E) is naturally an infinite dimensional
manifold, for any W ∈ Gr(E) which is near E− is the graph of a compact oper-
ator E− → E+, and so a neighbourhood of E− can be identified with the vector
space Homcpt(E−;E+). It is easy to see that two points of Gr(E) are in the
same connected component if and only if their relative dimension is zero, and so
π0Gr(E) is a Z-torsor as desired. The component of Gr(E) to which a subspace
E− belongs will be called its virtual dimension, and written simply dim(E−).

2.5 The polarization of spinors on the boundary

My aim in this section is to show that there is a polarization of the spinor fields
ΓY on a compact manifold Y such that whenever Y is the boundary of X1 the
boundary values of harmonic spinor fields on X1 form a closed subspace KX1

belonging to the restricted Grassmannian Gr(ΓY ). If we only want a coarse
polarization this is quite easy. We have already remarked that the self-adjoint
Dirac operator on Y splits ΓY as Γ+

Y ⊕Γ−Y according to the sign of the eigenvalues,
and it is not too hard to show that the projections KX1 → Γ+

Y and KX1 → Γ−Y
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are Fredholm and compact respectively. For our future purposes, however, we
need a more precise result.

Let us examine the construction of the projection operator ΓY → KX1 , which
is called the Calderon projector. We must use a little of the technology of pseudo-
differential operators. The main points are that a pseudo-differential operator is
determined up to a smoothing operator by its symbol, and that the symbol of
the Calderon projector can be calculated explicitly from the symbol of the Dirac
operator DX1 by a local formula. Thus only the jets of the symbol of DX1 at
points of Y are relevant. The following argument is taken from Hörmander [].

There is no loss of generality in taking X1 to be part of a closed manifold X =
X1 ∪X2. Let P be a parametrix for DX on X, i.e. an inverse modulo smoothing
operators. We can choose it so that DX ◦P is exactly the identity on distributions
with support in X1. (Pseudo-differential operators extend automatically to act
on distributions.) Let s1 be a harmonic spinor field on X1, and extend it by zero
to X. Then DXs1 is a δ-function distribution along Y . To be precise, we can
write s1 = χs̃1, where χ is the characteristic function of X1, and s̃1 is a smooth
extension of s1 to X. We have

DXs1 = DX(χs̃1)
= χDX s̃1 + cdχs̃1

= cdχs̃1,

where cdχ denotes Clifford multiplication by the distributional 1-form dχ. Now
cdχ is supported on Y : it can be written γY δY , where δY is the δ-function along
Y and γY is the unit conormal vector field to Y . So

DXs1 = (γY · (s1|Y ))δY .

Let us define an operator C : ΓY → ΓX1 by

C(s) = {P ((γY s) · δY )}|X1.

This has its image in KX1 . (One needs to check that C(s), which is automatically
smooth in the interior of X1, extends smoothly to the boundary. For this, see [].)
Furthermore, if s is the boundary value of s1 ∈ KX1 then

C(s) = PDs1 = s1 + Ss1,

where S is a smoothing operator on X.
Thus C differs from the identity on KX1 ⊂ ΓY only by a smoothing operator,

and we can easily correct it by adding a smoothing operator to make it exactly
the identity on KX1 . The resulting operator can be regarded in two ways:

(i) an operator C : ΓY → ΓX1 , in which guise it is the integral formula men-
tioned earlier which expresses a harmonic spinor field in terms of its bound-
ary values, or
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(ii) or as a projection operator C : ΓY → ΓY .

Hörmander shows that C : ΓY → ΓY is a pseudo-differential operator of order
zero, and he gives a formula ([]) for its symbol in terms of that of P .

To prove that KX1 is close to Γ−Y we must compare the projection C with
the orthogonal projection on to Γ−Y . The latter, however, is just the Calderon
projection C0 corresponding to regarding Y as the boundary of Y × R+ with
the product metric. For we can take as a parametrix for DY ×R the Feynman
propagator

P0 : C∞cpt(R; ΓY )→ S(R; ΓY )

defined by

(P0f)(t) =
∑
λ<0

∫
R+

esλfλ(t+ s) ds +
∑
λ>0

∫
R−

esλfλ(t+ s) ds,

where f =
∑

fλ is the decomposition of an element f ∈ ΓY into eigenfunctions
of DY , and S denotes the rapidly decreasing smooth functions. The calculus of
pseudo-differential operators, however, gives us a rival parametrix

P̃0 : C∞cpt(R; ΓY )→ C∞cpt(R; ΓY ).

It is easy to see that P0 and P̃0 must differ by a smoothing operator.
Thus, finally, we need to know how the Calderon projection C depends on

the metric of the manifold X. If we are content to assume that the metric of
X agrees with that of Y × R to infinite order along Y then there is no more to
say than that the symbol of C can be calculated locally from that of DX . If the
metric is not a product, but we are interested only in a coarse polarization, we
need only check that the leading term of the symbol of C depends only on the
metric of Y , for a pseudo-differential operator of order −1 is compact. But the
fundamental result is

Theorem 2.5.1 The polarization of ΓY defined by the Calderon projection for a
manifold X1 with ∂X1 = Y depends on the first [n/2] normal derivatives of the
metric of Y , where n = dim(Y ).

In other words, if dim(X1) = 2 then the polarization is independent of X1,
while if dim(X1) = 4 it depends on both the metric and the second fundamental
form of Y . I shall return to the importance of this for quantum field theory in
section 2.

Proof of 2.5.1 We first calculate the symbol of the parametrix P of DX . We
can work in local coordinates (x0, · · · , xn; ξ0, · · · , ξn) for T ∗X, so that the symbol
of DX is the matrix-valued function γξ =

∑
γi(x)ξi. Then P is of order −1, and

its symbol is
p−1(x; ξ) + p−2(x; ξ) + · · ·
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where p−k is homogeneous in ξ of degree −k : it is not defined when ξ = 0.
Clearly p−1 = γ−1

ξ , and we find by recurrence that

p−k = (−1)k−1 γ−1
ξ Dγ−1

ξ Dγ−1
ξ · · ·Dγ−1

ξ ,

where there are k factors γ−1
ξ , and D denotes the differential operator

D =
∑

γi(x)
∂

∂xi
.

Because γ2
ξ = −||ξ||2 we see that pk(x; ξ) is, for each x, a matrix-valued

polynomial in ξ, divided by a power of ||ξ||2. (Notice that ||ξ||2 depends on x as
well as ξ.)

To calculate the symbol of C we choose the coordinates so that (x0; ξ0) are
normal to Y , which is defined by x0 = 0. Then Hörmander’s formula ([]) for the
symbol

c0(y; η) + c−1(y; η) + · · · ,

where y = (x1, · · · , xn) and η = (ξ1, · · · , ξn), amounts to saying that c−k(y; η) is
obtained from p−k−1(0, y; ξ0, η) simply by taking the residue of the latter, regarded
as a matrix-valued function of ξ0 for fixed (y; η), at its unique pole in the upper
half-plane, i.e. at ξ0 = i||η||. Thus c−k, like p−k−1, involves k normal derivatives
of the metric along Y .

On an n-dimensional manifold a pseudo-differential operator is Hilbert-Schimdt
if its order is strictly less than −1

2
n, so we need to retain all terms of order > −1

2
n

to define the polarization, i.e. we need [ 1
2
n] normal derivatives of the metric.

2.6 Subdividing the boundary: the appearance

of categories

To express the localizability of the index of the Dirac operator on even-dimensional
closed manifolds we were led to associate algebraic objects ZY to closed manifolds
Y of one lower dimension. If Y in turn is the union of manifolds Y1, Y2 which in-
tersect in their common boundary Σ, we may ask whether ZY can be constructed
from objects ZY1 and ZY2 associated to the pieces. This is indeed the case. But
just as, when X = X1 ∪Y X2, the contributions of X1 and X2 to the index of DX

were not themselves integers, but were elements of the Z-torsor ZY associated to
Y , so the objects ZY1 and ZY2 will not be Z-torsors, but instead will be objects
of a new category ZΣ associated to Σ. The category ZΣ is a groupoid, i.e. all of
its morphisms are isomorphisms. The group of automorphisms of each object of
ZΣ is Z, and the morphisms from any object to any other form a Z-torsor. In
particular ZY is the set of all morphisms from ZY1 to ZY2 .
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Before explaining this any further we should take some thought of the slipper-
iness of the slope we have stepped upon. It would be easy to ask what happens
if Σ = Σ1 ∪ Σ2, and to slither into a wilderness of 2-categories. Personally, I
think it is worth going as far as categories. The justification for that must be
mainly aesthetic, but there is one objective fact that is relevant, arising from
Morse theory.

By choosing a generic Morse function f : X → R on a closed manifold X we
can slice X up as a union

X = X0 ∪X1 ∪ ....∪Xm,

where each slice Xk = f−1([tk, tk+1]) contains only one critical point of f , and is
a cobordism Yk  Yk+1 between two smooth level sets of f . We cannot assume
that the slices Xk have any simple standard form, though Xk differs from the
cylinder Yk × [0, 1] by attaching a single “handle”. But by cutting the manifolds
Yk into two we can describe the situation much more explicitly. We write

Yk = Y
′

k ∪ (Sp−1 ×Dq),

where p is the index of the handle to be attached, and p+ q = n. The two parts
in this splitting intersect in Sp−1 × Sq−1. Then

Yk+1 = Y
′
k ∪ (Dp × Sq−1),

and the cobordism from Yk to Yk+1 is simply the union of the trivial cobordism
Y
′
k × [0, 1] with the standard cobordism Dp ×Dq from Sp−1 ×Dq to Dp × Sq−1.

Thus in the end everything is reduced to understanding the category ZSp−1×Sq−1 ,
the objects ZSp−1×Dq and ZDp×Sq−1 which belong to it, and the morphism

ZSp−1×Dq → ZDp×Sq−1

defined by the standard cobordism. In principle, at least, this is all very explicit.

We shall return to the preceding considerations in §?. Meanwhile, let us de-
scribe the category ZΣ and its properties. The best known example of a groupoid
is the fundamental groupoid π1(B) of a path-connected space B. This is the cat-
egory whose objects are the points of B, and whose morphisms from b0 to b1 are
the homotopy classes of path in B from b0 to b1. Thus the group of automor-
phisms of b0 is the fundamental group π1(B, b0), and the morphisms from b0 to
b1 form a torsor for this group. Up to equivalence of categories, one can also say
that π1(B) is the category whose objects are the universal covering spaces B̃ of B,
and whose morphisms B̃0 → B̃1 are the covering maps, i.e. the maps which cover
the identity map of B. (The usual construction of the universal covering space
of B as the space of homotopy classes of paths in B with a chosen starting-point
defines a functor from the first definition of π1(B) to the second.)
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The object ZY associated to an odd-dimensional manifold Y was defined as
π0(GrY ), where GrY was a Grassmannian of subspaces of the space ΓY of spinor
fields on Y . The groupoid ZΣ is the fundamental groupoid of an analogous
Grassmannian JΣ formed by a certain class of subspaces of ΓΣ. The space JΣ is
connected, and its fundamental group is Z, so the sets of morphisms in the cate-
gory π1(JΣ) are Z-torsors, as we want. Both points of view on the fundamental
groupoid are relevant. If Y is a manifold with boundary Σ then the boundary
values of harmonic spinor fields on Y form a space belonging to JΣ, and hence
define an object of π1(JΣ) = ZΣ. But a point of JΣ can also, as we shall see, be
regarded as a self-adjoint boundary condition for the Dirac operator on Y . So
each point σ of JΣ defines a polarisation of ΓY , and hence a restricted Grass-
mannian GrY,σ. As σ varies the sets ZY,σ = π0(GrY,σ) from a covering space ZY
of JΣ, and hence an object of the category π1(JΣ).

To define JΣ we begin with the formula which expresses the self-adjointness
of the Dirac operator DY on an arbitrary manifold Y

− 〈DY ϕ1, ϕ2〉+ 〈ϕ1, DY ϕ2〉 = div〈ϕ1, γϕ2〉.(2.6.1)

Here ψ1 and ψ2 are spinor fields, and 〈 , 〉 denotes their pointwise inner product.
The expression 〈ψ1, γψ2〉 denotes the 1-form (or vector field) whose components
with respect to a local orthonormal framing ξi of the tangent bundle are, in
the notation of (2.1.1), the functions 〈ψ1, cξiψ2〉. Integrating (2.6.1) over Y with
∂Y = Σ gives

−
∫
〈DY ψ1, ψ2〉dy +

∫
Y

〈ψ1, DY ψ2〉dy =

∫
Σ

〈ψ1, γψ2〉dσ,(2.6.2)

= B(ψ1, ψ2),

say, where dy and dσ are the Riemannian volume elements. The right-hand
side of (2.6.2) is a hermitian form on the space ΓΣ of spinor fields. If Y is
odd-dimensional, then Clifford multiplication by the unit normal vector to the
boundary Σ splits the spin bundle ∆Σ as ∆0

Σ ⊕∆1
Σ, and so we have

〈ψi, γψ2〉 = 〈ψ0
1 , ψ

0
2〉 − 〈ψ1

1 , ψ
1
2〉

on Σ.

2.7 Determinants

For the remainder of this lecture we turn from the index to the determinant of
the Dirac operator. The next two subsections are concerned with the algebraic
and analytic properties of infinite dimensional determinants, and not with the
Dirac operator directly. We shall make use of this material in later lectures.
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If E is a topological vector space, an operator T : E → E has a determinant
in the most straightforward sense if it is of the form T = 1 + A, where A is of
trace class. For then A has a sequence of eigenvalues {λk}—with multiplicities—
such that

∑
|λk| <∞, and we can define

det(1 +A) = Π(1 + λk).(2.7.1)

We shall say that such an operator T is of determinant class.
Even in finite dimensions the determinant of an operator T : E → F is not a

number. If dim(E) = m and dim(F ) = n we define the determinant line of T as
the one-dimensional space

Det(T ) = (∧mE)∗ ⊗ (∧nF ) = Hom(∧mE;∧nF ),

and then we define the determinant det(T ) as the obvious element of the line
Det(T ) if m = n, and as 0 if m 6= n. The essential properties of Det(T ) and
det(T ) are

(i) det(T ) 6= 0 ⇔ T is invertible;

(ii) Det(T2 ◦ T1) ∼= Det(T2)⊗Det(T1),

and, in terms of this isomorphism,

det(T2 ◦ T1)↔ det(T2)⊗ det(T1);

(iii) if

0→ E1 → E2 → E3 → 0
↓ T1 ↓ T2 ↓ T3

0 → F1 → F2 → F3 → 0

is a commutative diagram with exact rows, then

Det(T2) ∼= Det(T1)⊗Det(T3)

canonically, and

det(T2)↔ det(T3)⊗ det(T3).

Quillen was the first to point out that in this second, slightly more abstract, sense
the determinant can be defined just as easily for an arbitrary Fredholm operator
T : E → F , and has the same three properties. I shall give the definition first in
the case when T has index 0. Then a point of the line Det(T ) is defined as an
equivalence class of pairs (S, λ), where λ ∈ C and S : E → F is an isomorphism
such that S − T is of trace class, and

(S1, λ1) ∼ (S2, λ2)
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if and if only if
λ2 = det(S−1

2 ◦ S1)λ1,

where det(S−1
2 ◦S1) is defined in the straightforward way (2.7.1). The determinant

det(T ) is defined as the point of the line Det(T ) represented by (T, 1) if T is
invertible, and as 0 otherwise.

The first thing to notice about this definition is that if the kernel and cokernel
of T have dimension n then

Det(T ) ∼= (∧nker(T ))∗ ⊗ ∧ncoker(T )(2.7.2)

canonically. For if α1, ..., αn is a basis of ker(T )∗ and v1, ..., vn ∈ F is a basis of
coker(T ) we can map the element

(α1 ∧ ...∧ αn)⊗ (v1 ∧ ... ∧ vn)

of the right-hand side of (2.7.2) to the class of (
∼
T, 1) in Det(T ), where

∼
T = T +

∑
vi ⊗

∼
αi

and
∼
αi ∈ E∗ is an extension of αi. Having made this observation it is clear

that there is a unique way to extend the definition of the Det(T ) to Fredholm
operators of any index so that the following two properties are preserved.

(a) Det(T ) has the usual meaning if E and F are finite dimensional, and

(b) Det(T1 ⊗ T2) ∼= Det(T1)⊗Det(T2).

Of course det(T ) is defined as 0 if the index of T is not zero.
It is completely elementary to check that the definitions of Det and det for

Fredholm operators have the basic properties (i), (ii), (iii) above. One might
wonder, however, what has been achieved, for to give a line with a distinguished
vector conveys no information except whether the vector is non-zero. In fact the
real interest of the construction appears only when we have a family of Fredholm
operators {Tx}x∈X. Then, under exactly the same very general circumstances
which ensure that the index of Tx is locally constant, we find that {Det(Tx)}x∈X
is a complex line-bundle on X, and {det(Tx)} is a continuous section. Once again,
the proof of this presents no difficulty.

A feature of the definition of the line Det(T ) is that it depends on the oper-
ator T only modulo the addition of trace-class operators — and hence does not
depend on T at all in finite dimensions. A situation where this can be exploited
is the following.

The determinant bundle and the extension of GLres
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Whenever we have a polarized topological vector space E we can define not
only the restricted Grassmannian Gr(E) as in §2.4, but also the restricted general
linear group GLres(E), which consists of all isomorphisms E → E which preserve
the class of allowed splittings E = E

′ ⊕ E ′′. Clearly GLres(E) acts on GR(E).
IfW0 and W1 both belong to Gr(E), then we have a preferred class of Fredholm

operators T : W0 →W1 singled out by the polarization : we compose the inclusion
W0 → E with any allowable projection E → W1. For any such T the line Det(T )
depends only on W0 and W1 (and, of course, on the polarization). I shall denote
it by Det(W0 : W1). Clearly we have

Det(W0 : W1)⊗Det(W1 : W2) ∼= Det(W0 : W2)(2.7.3)

and
Det(W0 : W1) ∼= Det(gW0 : gW1)

for any g in GLres(E). Putting these two facts together we see that for g ∈
GLres(E) the line

Lg = Det(W : gW )

is independent of the choice of W ∈ Gr(E), and satisfies

Lf ⊗ Lg ∼= Lfg.

This permits us to define the fundamental central extension GL∼res(E) of
GLres(E) as the group of all pairs (g, λ) with g ∈ GLres(E) and λ a non-zero
element of Lg. It is an extension by C×:

1→ C× → GLsimres (E)→ GLres(E)→ 1.

2.8 The ζ-function determinant

If T : E → E is a self-adjoint Fredholm operator in a vector space with an
inner product then the complex line Det(T ) is “real” i.e. there is an operation of
complex conjugation in Det(T ) which picks out a real line inside it. The element
det(T ) belongs to this real line.

If T is a self-adjoint first order elliptic differential operator, such as the Dirac
operator, we can say a great deal more. Then T has a discrete spectrum {λk}k∈Z
lying on the real axis, with λk →±∞ as k →±∞, and (assuming for the moment
that no λk is zero) we can define the ζ-function

ζT (s) =
∑

λ−sk .

Here λ−sk is defined as |λk|−se−iπs if λk is negative. The ζ-function is initially
defined as a holomorphic function of s in a half-plane Re(s) > a where the series
converges, but it is known that it can be analytically continued to a meromorphic



July 27, 1999 Lecture 2 39

function in the entire complex plane, and that ζT is regular at s = 0. Motivated
by the formula

ζ ′T (s) = −
∑

(logλk)λ
−s
k ,

we can now define the ζ-function determinant detζ(T ) as the complex number

detζ(T ) = e−ζ
′
T (0).

We assumed here that 0 was not an eigenvalue of T . In fact what we have
really found is an isomorphism

detζ : Det(T )→ C,(2.8.1)

for we have

Proposition 2.8.2 If T is a Dirac operator, and S is an invertible operator such
that S − 1 is of trace class, then detζ(S) is defined, and

detζ(PS) = det(P )detζ(S)

if P ∈ 1+ (trace class).

The isomorphism (2.8.1) has no reason to respect the real structure of the line
Det(T ), so detζ gives us a real line contained in C, even when T is not invertible
and det(T ) = 0. This real line can be written eiπη(T )/2R, where η(T ) ∈ R/2Z is
called the η-invariant of T . The Quillen determinant det(T ) ∈ Det(T ) lies in the
real sub-line, so η(T ) is essentially the phase of detζ(T ).

The fact that the phase of the determinant can be defined even when the
determinant vanishes is interesting topologically. It is well known [AS] that the
space of self-adjoint Fredholm operators in Hilbert space has the homotopy type of
the infinite unitary group U∞ =

⋃
Un. If they are given an appropriate topology

the same is true of the unbounded self-adjoint operators we are considering here.
As the fundamental group π1(U∞) is Z, there is a continuous map, defined up to
homotopy, from self-adjoint Fredholm operators to the circle R/Z which induces
an isomorphism of π1. On the subspace of Dirac operators the η-invariant is a
definite choice of this map.

There is yet another way to look at the η-invariant. For each way of splitting
the spectrum of T into two subsets Λ+ and Λ− such that almost all the positive
eigenvalues belong to Λ+ and almost all the negative ones to Λ− we can define a
holomorphic function of s for Re(s)� 0 by

η(T ; s) =
∑
λ∈Λ+

|λ|−s −
∑
λ∈Λ−

|Λ|−s.

It is known that this function can be continued analytically to s = 0, where its
value is the real number η(T ; 0). It jumps by ±2 when an eigenvalue is reassigned
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to the other half of the spectrum, so η(T ; 0) ∈ R/2Z is independent of the chosen
splitting, and is precisely the number η(T ) defined above, as we shall verify in a
moment. But we can say more, for the choice of a splitting of the spectrum picks
out for us the subspace of E spanned by the eigenfunctions with eigenvalues in
Λ−, and this is a point of the restricted Grassmannian Gr(E), and defines a point
of the Z-torsor π0Gr(E). In other words, the η-invariant can be regarded as an
embedding

1
2
η : π0Gr(E)→ R.

2.9 Fock spaces

To understand how the determinant of the Dirac operator behaves when manifolds
are sewn together we need the concept of a Fock space. It is one of the main
ideas in quantum field theory.

If E is a polarized topological vector space the Fock space F(E) is a “renor-
malized” version of the exterior algebra ∧(E), where the renormalization is de-
fined in terms of the polarization. There is a range of possible definitions. The
rough definition used by physicists — due to Dirac — makes sense when the
polarization of E is defined by a self-adjoint operator D : E → E, and one has an
orthonormal basis {ek}k∈Zof E consisting of eigenvectors of D whose eigenvalues
λk tend to ±∞ as k → ±∞. Then F(E) has an orthonormal basis given by the
formal expressions

ek = ek0 ∧ ek1 ∧ ek2 ∧ · · · ,
where the sequence k = {k0, k1, k2, · · · } satisfies k0 > k1 > k2 > · · · , and differs
from {0,−1,−2,−3, · · · } only by including a finite number of positive integers
and omitting a finite number of negative ones. The defect of this as a definition
is that it seems to depend on the operator D. A good feature, however, is that
it makes clear why — even when D is given — it is only the projective space of
rays in F(E), and not the vector space itself, which can be defined canonically.
For if we choose another basis {ẽk} of eigenvectors of D — say ẽk = ukek, where
|uk| = 1 — then

Ω̃ = ẽ0 ∧ ẽ−1 ∧ ẽ−2 ∧ · · ·
should certainly define the same ray as

Ω = e0 ∧ e−1 ∧ e−2 ∧ · · · ,

but there is no way of fixing a scalar κ such that Ω̃ = κΩ. On the other hand,
once the single number κ is prescribed there is no further indeterminacy, in the
sense that we must have ẽk = κukek, where

uk =
∏
r>0

ukr/
∏
r>0

ur
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is a well-defined number.
To give a mathematically more satisfactory definition of F(E) we observe

that we should be able to multiply elements of F(E) by vectors in E, and so
F(E) should be a module for the exterior algebra ∧(E). There should also be an
adjoint action of the exterior algebra ∧(E∗) by the inner product: if α ∈ E∗ then

αek =
∑

(−1)i〈α, eki〉e
(i)
k ,

where e
(i)
k is ek with its ith factor omitted. The action of an element of E on

F(E) is traditionally called a creation operator, and that of an element of E∗

an annihilation operator. The two actions fit together to form an action of the
Clifford algebra C(E ⊕ E∗), where E ⊕ E∗, has its natural hyperbolic quadratic
form, i.e. if ξ ∈ E and α ∈ E∗ then

αξ + ξα = 〈α, ξ〉(2.9.1)

in C(E ⊕E∗). From this point of view, the Fock space F(E) is characterized as
an irreducible C(E⊕E∗)-module which, for each splitting E = E+⊕E− allowed
by the polarization, contains a vector ΩE− which is annihilated by both E− ⊂ E
and (E−)◦ ⊂ E∗. A finite-dimensional Clifford algebra has a unique irreducible
representation, up to isomorphism, but in infinite dimensions the irreducible rep-
resentations of C(E ⊕E∗) are parametrized by the polarizations of E ⊕E∗. For
a given choice of E− ∈ Gr(E) we have a definite Fock space

FE−(E) = ∧((E−)∗)⊗ ∧(E/E−)(2.9.2)

with a definite vacuum vector ΩE−, but for different allowable choices E−1 , E
−
2

the isomorphism

FE−1 (E)→ FE−2 (E)(2.9.3)

is canonical only up to a scalar: Schur’s lemma replaces the physicists’ renormal-
ization constant.

The description just given was vague about the topology of F(E). If E
is a Hilbert space then one can clearly construct FE−(E) as a Hilbert space,
prescribing that the creation and annihilation operators are each others’ adjoints.
But it is worth mentioning a more general and abstract approach. We want
FE−(E) to contain a ray LW for each W ∈ Gr(E) : roughly,

LW = Cw0 ∧ w1 ∧ w2 ∧ · · · ,

where {wi} is a basis of W . Now we have seen that for a given E− ∈ Gr(E) there
is a holomorphic line bundle DetE− on Gr(E) whose fibre at W is Det(E− : W ).
We can characterize FE−(E) by saying that it is a topological vector space with
a holomorphic map

DetE− → FE−(E)(2.9.4)
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which is linear on each fibre of DetE−, and that it is universal among topological
vector spaces with such maps. Then the vacuum vector ΩE− is the image of
1 ∈ Det(E− : E−) in FE−(E), and the isomorphism (2.9.3) arises from a canonical
isomorphism

FE−2 (E) ∼= FE−1 ⊗Det(E−1 : E−2 )(2.9.5)

(cf. (2.7.3)).
The existence of a vector space with the universal property (2.9.4) is clear: we

take the dual of the space of holomorphic sections of the line bundle Det∗(E−). Of
course we shall not get a Hilbert space, but a pre-Hilbert structure in E induces
one in FE−(E). (See [PS] Chapter 10).

One feature of the Fock space which is clear from any of the definitions is that
F(E) is naturally graded by the Z-torsor π0Gr(E) : the degree of the vacuum
vector ΩE− is the virtual dimension of E−.

Finally, we need to know that reversing the polarization of the space E−,
i.e. changing J to −J , or interchanging E+ and E−, essentially changes the
Fock space F(E) to its dual. To be precise, if Ẽ denotes E with the reversed

polarization, and we choose E− ∈ Gr(E) and E+ in Gr(Ẽ), not necessarily
complementary, then there is a canonical pairing

FE+(Ẽ)×FE−(E)→ LE+,E−,(2.9.6)

where LE+,E− is the determinant line of the Fredholm operator E+ ⊕ E− → E
defined by adding the inclusions. Restricted to the rays

Det(E+ : W̃ )×Det(E− : W )

the pairing (2.9.6) is

(S̃, S) 7→ Det(S̃ + S : E+ ⊕ E− → E).

2.10 Patching the determinant

We shall now return to the Dirac operator on a closed even-dimensional manifold
X which is a union of two pieces X = X1 qY X2. We saw how the index of
DX can be calculated from contributions associated to X1 and X2, and now we
should like to do the same for the determinant of DX . There are two aspects
to this. If we forget for a moment that the determinant of DX is not quite a
number, then we expect the operator DX1 on a manifold with boundary to have
a determinant only when we equip it with a boundary condition. An appropriate
boundary condition is defined by a point W of the restricted Grassmannian GrY .
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A boundary condition forDX2 corresponds to a point of the opposite Grassmanian
GrY . Thus, roughly speaking, both det(DX1) and det(DX2) are functions on GrY .
We are aiming for a formula of the type

det(DX ) = 〈det(DX1), det(DX2)〉,(2.10.1)

expressing the result as an L2 inner product, i.e. some kind of integral over the
infinite-dimensional space of all boundary conditions. This fits in well with the
point of view of quantum field theory, where det(DX) is regarded as a path-
integral over the space of all spinor fields on X, but it cannot be interpreted too
literally, for the necessary integration theory is quite out of reach. Instead, we
shall simply prescribe the Fock space FY formed from the space ΓY of spinor
fields on Y as our candidate for the Hilbert space of functions on GrY , and we
shall define elements of FY so that (2.10.1) is true.

Before doing so, however, we must return to the second aspect of the problem,
namely the fact that det(DX) is not a number but actually an element of the
abstractly defined line Det(DX). This fits into the formalism very attractively.
We saw that the object canonically associated to Y is not a Hilbert space FY but
a projective space PFY . Whereas a closed manifold X gives us a line Det(DX),
the corresponding object for a manifold X1 with boundary Y is a vector space
FX1 together with an isomorphism

P(FX1) ∼= PFY .

This makes good sense, for if P is a complex projective space then the category
of vector spaces V with isomorphisms P(V ) ∼= P is equivalent to the category
of complex lines. Indeed if V is one such space then any other is of the form
V ⊗ L for some line L, for an isomorphism P(V0) ∼= P(V1) gives an isomorphism
V0 ⊗ L ∼= V1, where L is the line of homomorphisms V0 → V1 which induce the
given map of projective spaces.

In the present situation we define FX1 as the Fock space FK1(ΓY ) formed from
ΓY and the space K1 of boundary values of harmonic spinor fields on X1. For
the other half, we form FX2 similarly from Γ̃Y = ΓȲ . The projective spaces PFY
and PFȲ are dual, and so FX2 is in duality with FX1 ⊗ L for some line L which
can be denoted by

〈FX1 , FX2〉.

Proposition 2.10.2 We have

(a) 〈FX1 , ,FX2〉 = Det(DX), and

(b) 〈det(DX1) , det(DX2)〉 = det(DX),

where det(Xi) denotes the vacuum vector in FXi.
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Proof. According to (2.9.6) the line 〈FX1 , FX2〉 and the point 〈det(DX1), det(DX2)〉
in it can be identified with the pointed determinant line of

K1 ⊕K2 → ΓY .

But the diagram in the proof of (2.3.2) showed that this Fredholm operator
was equivalent, in a sense which preserves the determinant as well as the index,
to the Dirac operator

DX : ΓevenX → ΓoddX .

2.11 Patching the ζ-function determinant

We now turn to the ζ-function determinant of the self-adjoint Dirac operator
on an odd-dimensional manifold. Essentially the same discussion applies in even
dimensions to the determinant of the self-adjoint operator DX = Deven

X ⊕Dodd
X , in

contrast to the “chiral” operator Deven
X which was treated in the previous section.

We consider a closed manifold X = X1qY X2, as usual, but now dim(Y ) is even.
We shall obtain a formula

detζ(DX ) = 〈detζ(DX1), detζ(DX2)〉,(2.11.1)

where the determinants on the right are elements of dual Hilbert spaces HY ,HȲ

associated to Y , which we think of as consisting of functions of the boundary
data for DX1 and DX2.

We saw in §2.6 that appropriate boundary data in this case are maximal
isotropic subspaces of ΓY belonging to a certain polarization-class, or, equiva-
lently, certain unitary isomorphisms u : ΓevenY → ΓoddY which form a space UY
which is a principal homogeneous space for the group of unitary transformations
of ΓevenY of determinant class. The Hilbert space HY is once again a kind of Fock
space: it can be regarded as

∧middle(ΓY ) ∼= Hom(∧(ΓevenY ) ; ∧(ΓoddY )).

But the important thing is that it is a definite vector space, and not just a
projective space. The most concrete definition is to say that HY contains a unit
vector εu for each u ∈ UY , and is obtained from the formal algebraic span of these
vectors by completing with respect to the inner product defined by

〈εu1 , εu2〉 = det1
2
(1 + u−1

1 u2).(2.11.2)

To see that this does indeed define a positive inner product it is enough, by
continuity, to consider the same formula applied to the unitary group Un. But
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then (2.11.2) is simply the inner product induced by the natural embedding of
Un in End(∧Cn).

For a connected manifold X1 with non-empty boundary Y we can now define

detζ(X1) = εu ∈ HY ,

where u ∈ UY represents the isotropic subspace of ΓY consisting of the boundary
values of harmonic spinor fields on X1. A self-adjoint boundary condition for
DX1 is an element β ∈ UȲ = U−1

Y , and we have

Proposition 2.11.3 (i) The ζ-function determinant of DX1 with boundary
condition β is

detζ(DX1 , β) = 〈detζ(DX1) , εβ〉
= det1

2
(1 + βu).

(ii) For the closed manifold X = X1 ∪X2 we have

detζ(DX) = 〈detζ(DX1) , detζ(DX2)〉.
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