
Lecture 3

Braided tensor categories

3.1 Representations of loop groups

To make this lecture as concrete as possible I shall begin by describing some
remarkable properties of the representations of loop groups. A few preliminary
explanations are needed, though they are irrelevant to the main idea.

We consider unitary representations of the group LG of smooth loops in a
compact connected Lie group G. We are only interested in so-called positive-
energy representations: I shall explain the meaning of that presently. Positive
energy representations are necessarily projective, i.e. they are really representa-
tions of a central extension of LG by the circle group T. The isomorphism class
of the extension which acts is called the level of the representation. If G is simply
connected it is completely determined by the topological type of the central exten-
sion as a circle-bundle on LG, i.e. by its Chern class in H2(LG;Z) ∼= H3(G;Z).
There are only finitely many different irreducible representations of LG at each
level.

Let us fix a level k, and let R be the category of all level k representations
of LG which are finite sums of irreducibles. Then the surprising fact is that a
smooth cobordism Σ : S1  S1 induces an additive functor UΣ : R → R, and,
more generally, a cobordism

Σ : S1⊥⊥ · · · ⊥⊥S1  S1⊥⊥ · · ·⊥⊥S1

←−−− p −−−→ ←−−− q −−−→

induces a functor UΣ : Rp → Rq, where Rp is the category of representations
of (LG)p = LG × · · · × LG which are of level k on each factor. Composition
of cobordisms Σ corresponds to composition of the operators UΣ, and a “trivial”
cobordism Σ = S×I induces the identity functor. Furthermore, a diffeomorphism
f : Σ→ Σ′ between two cobordisms Σ,Σ′ : S0  S1 which is the identity on S0

and S1 induces a transformation of functors Tf : UΣ → UΣ′ .
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In the last sentence I have oversimplified slightly. I should have required the
cobordisms Σ to be rigged surfaces. A rigging of a surface Σ is something anal-
ogous to a choice of a simply connected covering space of Σ — I shall give a
precise definition below. The choice of rigging does not affect the functor UΣ up
to isomorphism, but the diffeomorphisms f can be lifted to the rigging in more
than one way (in fact, a sequence of ways forming a Z-torsor, if Σ is connected),
and changing the lift changes Tf by multiplication by a root of unity.

Postponing discussion of technicalities, let us consider the general implica-
tions of the existence of the functors UΣ.

The first observation is that there is a bi-additive functor R×R→ R induced
by a pair-of-pants cobordism Σ : S1⊥⊥S1 → S1. It is called fusion, and is unique
up to an isomorphism of functors, as Σ is unique up to diffeomorphism. It is a
kind of tensor product on the category R, and I shall write it (H1, H2) 7→ H1∗H2.
(The usual tensor product of Hilbert spaces does not give us a tensor product
on R, for the level of H1 ⊗H2 is the sum of the levels of H1 and of H2). The
same arguments that we used in Lecture 1 tell us that fusion is associative and
commutative up to isomorphism. The commutativity isomorphism

Tθ : H1 ∗H2 → H2 ∗H1,

however, is induced by a diffeomorphism θ of the pair of pants which interchanges
the two incoming circles while being the identity on the outgoing one. Thus
T 2
θ = Tθ2 need not be the identity. We can, however, say something about it. For

this we need a general observation.

Proposition 3.1.1 A finite dimensional representation of the group Diff (Σ rel ∂Σ),
for any manifold Σ, is necessarily trivial on the identity component, i.e. it fac-
torizes through the mapping-class group ΓΣ rel ∂Σ = π0 Diff (Σ rel ∂Σ).

I shall give the proof at the end of this section. We apply the result as
follows. As any object H of our category R is a finite sum of irreducibles, its
group of automorphisms is a product of finite dimensional general linear groups,
and so 3.1.1 tells us that for any action of Diff(Σ rel ∂Σ) on H the operator Tf
depends only on the isotopy class of f . In particular every H has a canonical
automorphism ρH which is obtained by choosing an isomorphism between H and
UA(H), where A = S1×I , and transferring to H the action of the standard “Dehn
twist” f : A → A which generates the mapping-class group ΓA rel ∂A

∼= Z. The
diffeomorphism θ2 of Σ is isotopic to the Dehn twist in an annulus around the
outgoing boundary circle of Σ, and so

T 2
θ = ρH1∗H2.(3.1.2)
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Of course ρh must simply be multiplication by some scalar λ on each irreducible
summand P of H.

More generally, for any H the object

H∗p = H ∗ · · · ∗
←−p−→

H

depends on a choice of a surface Σp which is a disc with p holes. The relevant
mapping-class group is the group diffeomorphisms of Σp which are allowed to
permute the p incoming circles. This is the braid group Brp on p strings, and it
acts on H∗p. The fact that it is the braid group Brp rather than the symmet-
ric group Sp which permutes the factors of H∗p expresses the less-than-perfect
commutativity of the operation of fusion, and explains the name “braided tensor
category”.

If Σ is a surface with p boundary circles, all outgoing, then UΣ is a functor
R⊗0 → R⊗p. As R⊗0 is the category of finite dimensional vector spaces it is
natural to identify UΣ with the object UΣ(C) of R⊗p: it is a unitary represen-
tation of (LG)p with an interwining action of ΓΣ rel ∂Σ. If Σ is closed then UΣ

is simply a finite dimensional unitary representation of ΓΣ (actually a projective
representation because of the question of rigging).

The representation theory of loop groups thus provides us unexpectedly with
a panoply of representations of braid groups and mapping-class groups. But in
fact much more is true. If Σ and Σ′ are cobordisms from S0 to S1 then not only
does a diffeomorphism f : Σ → Σ′ give us a transformation Tf from UΣ to UΣ′,
but a cobordism M : Σ Σ′ does so too. (A cobordism between Σ,Σ′ : S0  S1

means a 3-manifold M with an isomorphism

∂M ∼= Σ̄ ∪ ((S̄0⊥⊥S1) × I) ∪ Σ′

where Σ̄ and Σ′ are joined by a cylinder along their common boundary

∂Σ = ∂Σ′ = ((S̄0⊥⊥S1)× I.)

In particular, if Σ is a closed surface, so that UΣ is a vector space, then a 3-
manifold M with ∂M = Σ gives us a vector TM ∈ UΣ, and a closed 3−manifold
M gives us a number TM ∈ C. This is the next surprise: we now have a 3-
dimensional topological field theory in the sense of Lecture 1, and it turns out to
be Chern-Simons theory, i.e.

TM =

∫
e2πiCS(A)DA,(3.1.3)

where, for a connection A on a G-bundle on the 3-manifold M ,

CS(A) =

∫
M

(〈A, dA〉 + 〈A, [A,A]〉).(3.1.4)
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The integral in (3.1.4) is over all G-bundles-with-connection A on M , while
in (3.1.4) the connection A is written as a Lie-algebro-valued 1-form, which is
only legitimate if the bundle is trivial. Like the category R of representations,
the Chern-Simons action (3.1.4) depends on a choice of level, which enters into
the formula implicitly as the choice of the inner product on the Lie algebra.

3.2 Category-valued field theories

Let us now try to give a definition of a category-valued topological field theory
modelled on the properties of the representations of loop groups. The values
will be assumed to be C-linear categories. I shall take this to mean not only
that the morphisms between any two objects form a complex vector space, and
composition is bilinear, but also that

(i) any two objects have a direct sum, and

(ii) idempotents split, i.e. if f : A → A is a morphism such that f2 = f then
A = ker(f) ⊕ im(f)

Two such categories C1 and C2 have a tensor product C1⊗C2, which is unique
up to canonical equivalence. Any object of C1 ⊗ C2 is a summand in a finite sum⊕

Pi ⊗Qi ,

where the Pi are objects of C1 and the Qi are objects of C2. As an example, if C1

and C2 are the categories of finite dimensional representations of compact groups
G1 and G2 then C1 ⊗ C2 is the corresponding category for G1 ×G2.

Let Vect denote the category of finite dimensional complex vector spaces.
Then there is an equivalence

Vect⊗ C −→ C

for any linear category C (for it makes sense to tensor an object of C by an object
of Vect). I shall denote the category of additive functors C → Vect by C∗.

I shall define a category-valued n-dimensional topological field theory as the
following data.

(i) A functor E from closed oriented (n − 1)-manifolds (and diffeomorphisms)
to linear categories. It is required to take disjoint unions to tensor products,
which implies that Ψ(∅) = Vect.

(ii) An additive functor ΨY : E(X0)→ E(X1) for each cobordism Y : X0  X1,
such that

ΨY2 ◦ΨY1 = ΨY2◦Y1 .(3.2.1)
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If S0 is empty then ΨY will be identified with the object ΨY (C) of E(X1) :
thus ΨY is a finite dimensional vector space if Y is closed.

I shall assume the same kind of compatibility between the data as in Lecture
1. In any discussion of categories it is quite difficult to decide how much to
make explicit, and how much is better left to the reader’s imagination. In the
present situation it does seem important to say that the cobordisms Y : X0  X1

between given manifoldsX0, X1 themselves form a category Cob(X0;X1), in which
the morphisms are diffeomorphisms Y → Y ′, and that Y 7→ ΨY is a functor
from Cob(X0;X1) to the category of functors E(X0) → E(X1). Composition of
cobordisms is really only defined up to isomorphism: to say that Y3 is Y2 ◦ Y1

really means that there is a map f : Y1⊥⊥Y2 → Y3 with certain properties, and
(3.2.1) really means that f induces an isomorphism of functors

f∗ : ΨY2 ◦ ΨY1 → ΨY3 .

I do not think there are any interesting subtleties hidden here. The point to keep
in mind is that the group of diffeomorphisms of a closed n-manifold Y acts on
the vector space ΨY , and if Y : X0  X1 then Diff(Y rel ∂Y ) — the group of
diffeomorphisms which fix the boundary — acts on ΨY (E) for each object E of
E(X0).

The analogue of the non-degeneracy assumption (1.1.7) is

Assumption 3.2.2 The cobordism X × I : X  X induces a functor E(X) →
E(X) which is equivalent to the identity.

Notice that we do not want to assume that the equivalence is given: in the
loop group example we get an equivalence for each choice of a complex structure
on X × I .

As in each of the situations we considered in Lecture 1 there is an analogue of
the finiteness - and - duality result . I shall say that two linear categories C1 and
C2 are in duality if there is a bi-additive functor C1×C2 → Vect and on object ∆
of C1 ⊗ C2 which induce inverse equivalences

C1 � C∗2 and C2 � C∗1 .

The existence of a duality if very restrictive (cf. (1.1.8)):

Proposition 3.2.3 If C1 and C2 are in duality then each is semisimple — i.e.
each object is a finite sum of irreducible objects — and has, up to isomorphism,
only finitely many irreducible objects.
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Corollary 3.2.4 If E is a category-valued topological field theory then each cate-
gory E(X) is semisimple with finitely many irreducible objects, and the cobordism
X × I : X̄⊥⊥X → ∅ induces a duality

E(X̄)× E(X)→ Vect,
which will be denoted (A,B) 7→ 〈A,B〉.

Proof of (3.2.3) The object ∆ of C2⊗C1 is a summand in a finite sum
⊕
Pi⊗Qi,

and it follows at once that each object A of C1 is a summand in⊕
〈A,Pi〉 ⊗Qi.

Thus each A is a summand in a finite sum of copies of Q, where Q = ⊕Qi.
Replacing Q by P = ⊕Pi, the same holds for the objects of C2.

Because C1 → C∗2 is an equivalence to functor A 7→ 〈P,A〉 identifies C1 with
a subcategory of the category of finite dimensional vector spaces. Let R denote
the ring EndC1(Q), which is a finite dimensional algebra over C. The functor

A 7→ HomC1(Q; A)

from C1 to finitely generated projective right R-modules is faithful, and it is easy
to see that it is an equivalence of categories. On the other hand C1 is equivalent
to C∗2 , which is an abelian category, and an abelian category in which every object
is projective is clearly semisimple.

For semisimple categories C with finitely many irreducibles the contravariant
functor Cop → C∗ given by

A 7→ {B 7→ HomC(A; B)}
is an equivalence. Putting C(X)op ' C(X)∗ together with C(X̄) ' C(X)∗ we
see that one can define a functor A 7→ A∗ which is an equivalence C(X)op → C(X̄).
It is characterized by

〈A∗, B〉 ∼= HomC(X)(A;B).

Because the functor A 7→ A∗ must induce an isomorphism

HomC(X)(A;B)→ HomC(X̄)(B
∗;A∗),

while the symmetry of 〈A∗, C∗〉 gives us

HomC(X)(A;C∗) ∼= HomC(X̄)(C;A∗),

we have a natural isomorphism A→ A∗∗.


