Some remarks on the moduli of K3 surfaces

David R. Morrison

A K3 surface is a compact complex surface $X$ which is connected and simply connected and has trivial canonical bundle $K_X$. A K3 surface $X$ is Kählerian if there exist Kähler metrics on $X$; we will call $X$ Kähler only if the metric has been specified. The moduli of K3 surfaces has been extensively studied by using the period map: if a basis $\gamma_1, \ldots, \gamma_{22}$ has been chosen for $H^2(X,\mathbb{Z})$, the periods of a holomorphic 2-form $\omega$ on $X$ give a well-defined point

$$[\int_{\gamma_1} \omega, \ldots, \int_{\gamma_{22}} \omega] \in \mathbb{R}^{21}.$$ 

This approach goes back to work of Andreotti and Weil (cf. [36]). Using a refinement of this period map, Burns and Rapoport [6] have constructed a moduli space for (marked) Kählerian K3 surfaces; their work is reviewed in section 1.

This paper has three goals. First, we will discuss a "moduli space" for (marked) Kähler (rather than Kählerian) K3 surfaces. Strictly speaking, the corresponding moduli functor is not representable, but we will construct a real analytic manifold $M$ and a class of maps from complex analytic varieties to $M$ which in some sense represents the moduli functor. In contrast with the Burns-Rapoport space, $M$ is separated, and the integral automorphism group $\Gamma$ of the K3 lattice operates properly discontinuously on $M$, so that we may form a "coarse moduli space" $M/\Gamma$ of (unmarked) Kähler K3 surfaces. (A similar construction provides in general a good period space for Hodge structures

---

1 Research supported by the National Science Foundation.

303

of weight 2, with $h^{2,0} = 1$.

Second, we will construct extensions of the period maps to families of K3 surfaces which acquire rational double points. This is essential when studying families of algebraic K3 surfaces, and will allow us to regard the moduli spaces of marked algebraic K3 surfaces as "subspaces" of a space $\overline{M}$ (which contains the moduli space $M$ above as an open subset). The embeddings of these subspaces are compatible with the actions of the integral automorphism groups.

Our third goal is to prove a sharpened version of Kulikov's theorem [14] on the surjectivity of the period maps for algebraic K3 surfaces. This version was used by Todorov [33] in his proof of the surjectivity of the Burns-Rapoport period map for Kählerian K3 surfaces.

I would like to thank E. Looijenga, A. Ogus, and A. Todorov for helpful comments on an earlier version of this paper. I would also like to thank Kyoto University and the Taniguchi Foundation for providing the marvelous environment in which the final version of this paper was written.

1. Period maps for K3 surfaces

Fix a free $\mathbb{Z}$-module $L$ of rank 22 which has an even unimodular symmetric bilinear form of signature $(3, 19)$. (All such lattices $L$ are isometric: cf. [30]). We let $L_L = L \otimes \mathbb{R}$ and $L_E = L \otimes \mathbb{E}$. If $X$ is a K3 surface, there exist isometries $a: H^2(X, \mathbb{Z}) \cong L$; a choice of such an isometry is called a marking of $X$. The classical notion of periods of a marked K3 surface arises in the following way: the isometry $a$ determines the subspace $H^{2,0}(X) \subset H^2(X, \mathbb{C})$, and $H^{2,0}(X)$ is a $\mathbb{C}$-vector space of dimension one, and if $e_x \in H^{2,0}(X)$ is a generator, then $\langle e_x, e_x \rangle = 0$ and $\langle e_x, e_x \rangle > 0$. We can thus associate to $(X, a)$ a
point in the classical period domain

\[ \Omega = \{ \omega \in \mathbb{P}^I \mathbb{C} \mid \langle \omega, \omega \rangle = 0, \langle \omega, \overline{\omega} \rangle > 0 \} / \mathbb{P}^1 \mathbb{C} \mathbb{P}^1. \]

(Note that \( \Omega \) is a complex manifold of dimension 20.) Every point \( x \in \Omega \) determines a Hodge structure of weight 2 on \( \mathbb{L}_g \) as follows: if \( \omega \in \mathbb{L}_g \) is a representative of \( x \), define

\[
\begin{align*}
\mathbb{H}^{0,0}(x) &= \mathbb{C} \omega \subset \mathbb{L}_g \\
\mathbb{H}^{0,2}(x) &= \mathbb{C} \overline{\omega} \subset \mathbb{L}_g \\
\mathbb{H}^{-1,1}(x) &= (\mathbb{H}^{0,0}(x) \otimes \mathbb{H}^{0,2}(x))^\perp \subset \mathbb{L}_g.
\end{align*}
\]

Let \( \chi + S \) be a family of K3 surfaces. A marking in this case is an isomorphism of local systems

\[ a: \mathbb{R}_S^2 \rightarrow \mathbb{L}_g. \]

A marked family of K3 surfaces thus has a classical period map \( \Gamma_S: S + \Omega \) which associates to each marked fiber \( (X_s, a_s) \) the corresponding point of \( \Omega \). This is a holomorphic map, and if \( (\mathcal{X}, \mathcal{X}) + (S, \ast) \) is a local universal deformation of the K3 surface \( X \), the corresponding classical period map \( S + \Omega \) is a local isomorphism at \( \ast \) (the "local Torelli theorem").

Unfortunately, certain information about families \( \chi + S \) is "lost" by the classical period map: it is possible to have two non-isomorphic families with the same classical period map. For Kählerian K3 surfaces, this defect is remedied by the "Burns-Rapoport period map."

Define two real manifolds \( \mathcal{M} \subset \overline{\Omega} \) by

\[ \overline{\Omega} = \{ (\omega, \kappa) \in \Omega \times \mathbb{P}^I \mathbb{C} \mid \langle \omega, \kappa \rangle = 0 \text{ and } \langle \kappa, \kappa \rangle = 1 \}, \]

and
\[ M = \{ (\omega, \kappa) \in \tilde{M} \mid \text{for all } \delta \in L \text{ with } \langle \delta, \delta \rangle = -2, \]
\[ \text{if } \langle \omega, \delta \rangle = 0 \text{ then } \langle \kappa, \delta \rangle = 0 \}. \]

(We call \( M \) the polarized period domain and \( \tilde{M} \) the weakly polarized period domain.) Define an equivalence relation on \( M \) by setting \((\omega, \kappa) \sim (\omega', \kappa')\) if \( \kappa \) and \( \kappa' \) are in the same connected component of the fiber \( pr^{-1}_1(\omega) \cap M \). The Burns-Rapoport period domain is the space \( \tilde{M} = M / \sim \).

Burns and Rapoport [6] prove that \( \tilde{M} \) is a (non-separated) complex analytic space, and the induced map \( \pi: \tilde{M} \to M \) is étale. A point \( x \in \tilde{M} \) corresponds to

1) the Hodge structure determined by \( \pi(x) \)
2) a choice \( V^+ \) of one of the connected components of
\[ V = \{ \kappa \in H^{1,1} \cap L \mid \langle \kappa, \delta \rangle = 1 \} \]
3) a partition \( \Delta = \Delta^+ \cup \Delta^- \) of the set \( \Delta = \{ \delta \in H^{1,1} \cap L \mid \langle \delta, \delta \rangle = -2 \} \)
such that
a) if \( \delta_1, \ldots, \delta_\ell \in \Delta^+ \) and \( \delta = \sum n_i \delta_i \in \Delta \) with \( n_i \geq 0 \) then \( \delta \in \Delta^+ \), and
b) \( V^+_\Delta = \{ \kappa \in V^+ \mid \langle \kappa, \delta \rangle > 0 \text{ for all } \delta \in \Delta^+ \} \neq \emptyset \).

These data satisfy a "continuity condition:" for every \( x \in \tilde{M} \) and every \( \kappa \in V^+_{\Delta}(x) \), there is an open neighborhood \( K \) of \( \kappa \) in \( L \) and an open neighborhood \( U \) of \( x \) in \( \tilde{M} \) such that for every \( y \in U \),
\[ \Delta^+(y) = \{ \delta \in \Delta(y) \mid \langle \kappa, \delta \rangle > 0 \text{ for all } \kappa \in K \}. \]
The Burns-Rapoport period map associates to a marked Kählerian K3 surface \((X, \sigma)\) the point of \(\tilde{\Omega}\) determined by

1) the Hodge structure of \(X\)
2) the component \(V^s(X)\) of \(V\) containing the cohomology class of any Kähler metric on \(X\)
3) \(\Delta^s(X) = \{ \delta \in \Delta(X) \mid \delta\ is\ an\ effective\ divisor\ on\ X \}\).

Notice that with this definition, we have

\[ \Delta(X) = \{ \delta \in H^{1,1}(X) \cap L \mid <\delta, \delta> = -2 \}, \quad \text{and} \]

\[ V_p^s(X) = \{ \kappa \in V^s(X) \mid <\kappa, \delta> > 0 \text{ for all effective } \delta \in \Delta(X) \}. \]

By Riemann-Roch, \(\pm \delta\) is effective for each \(\delta \in \Delta(X)\) so that

\[ \Delta^s(X) \cup -\Delta^s(X) \]

is a partition of \(\Delta(X)\) as required.

If \(X + S\) is a marked family of Kählerian K3 surfaces, Burns and Rapoport prove that the induced map \(\tilde{\tau}_S: S + \tilde{\Omega}\) is a complex analytic map. For this period map, we have the

**Burns-Rapoport Global Torelli Theorem** ([6] and [18]).

Two smooth marked Kählerian K3 surfaces \(X\) and \(X'\) with the same Burns-Rapoport periods are isomorphic. More precisely, if \(\varphi: H^2(X, \mathbb{Z}) \to H^2(X', \mathbb{Z})\) is an isometry which preserves the Hodge structures, maps \(V^s(X)\) to \(V^s(X')\) and \(\Delta^s(X)\) to \(\Delta^s(X')\), then there is a unique isomorphism \(\Phi: X \cong X'\) with \(\Phi^* = \varphi\).

Let us indicate briefly how the Burns-Rapoport global Torelli theorem is used in the study of the fine moduli space for marked Kählerian K3 surfaces (cf. [6] or [18] for more details). Consider the
functor which associates to each complex analytic space $S$ the set of isomorphism classes of pairs

$$\left( p: \mathcal{X} \to S, \alpha: \mathbb{R}^2 \mathfrak{p}_p(z) \to \mathfrak{U} \right)$$

where $p: \mathcal{X} \to S$ is a family of Kählerian K3 surfaces, and $\alpha$ is a marking of the family. For each Kählerian K3 surface $X$, there is a local universal deformation $p: (\mathcal{X}, X) \to (S, *)$ which has a natural marking $\alpha: \mathbb{R}^2 \mathfrak{p}_p(z) \to H^2(X, \mathbb{Z})$. If we choose an isomorphism $H^2(X, \mathbb{Z}) \cong \Lambda$, we get a period map $\tilde{\gamma}: S \to \tilde{\mathfrak{U}}$, and the Torelli theorem guarantees that $\tilde{\gamma}$ is injective. A fine moduli space is now constructed by gluing the versal families $\mathcal{X} + S$ together by using the period maps $\tilde{\gamma}$; this space can be identified with an open subset $\tilde{\mathfrak{U}}_0 \subset \tilde{\mathfrak{U}}$, which has a universal marked family $\mathcal{X}_{\tilde{\mathfrak{U}}_0} + \tilde{\mathfrak{U}}_0$.

2. The moduli of Kähler K3 surfaces

There are two disadvantages inherent in the Burns-Rapoport period map. The first is its compatibility with period maps for algebraic K3 surfaces: as will be discussed in section 5, there is no (canonical) way to embed the moduli spaces of marked algebraic K3 surfaces in the Burns-Rapoport space. The second problem is that for the Burns-Rapoport period map (as well as the classical period map), the marking is absolutely essential: the automorphism group $\Gamma$ of the lattice $L$ does not operate in a properly discontinuous fashion on $\tilde{\mathfrak{U}}$ or $\mathfrak{U}$. We thus introduce a polarized period map for Kähler K3 surfaces.

Let $X$ be a Kählerian K3 surface. A polarization\(^2\) on $X$ is a

\(^2\) Our use of the term polarization is a departure from previous usage: our polarizations are not required to be integral.
class $k \in V^1(X)$, in other words, a real $(1,1)$ class which has positive intersection with every effective divisor and lies in $Y^1(X)$. If $X$ is a Kähler K3 surface, then the cohomology class of the Kähler metric (after suitable renormalization) gives a polarization $\kappa$; such a polarization is called a Kähler polarization. We shall assume henceforth that all of our Kähler metrics are normalized so that $\langle \kappa, \kappa \rangle = 1$.

If $p: X + S$ is a family of Kählerian K3 surfaces with a marking $\alpha: R^2_{\text{H}}(X) \to L_0$, then a polarization on the family is a section $\kappa \in \Gamma(S, L_0 \otimes \mathcal{O}) = L_0$ such that $\kappa_s$ is a polarization on $X_s$ for every $s \in S$. $\kappa$ is Kähler if $\kappa_s$ is Kähler for every $s \in S$. One common way to obtain a Kähler polarization is from a Kähler metric on $\mathcal{X}$: if $\mathcal{X}$ is a Kähler manifold and $p$ is smooth, the family of induced Kähler metrics gives a polarization on $X + S$.

Recall that in section 1 we defined the polarized period domain $M$ and the weakly polarized period domain $\overline{M}$ with $M \subset \mathcal{M} \subset \Omega \times L$. The fibers of the map $\overline{M} \rightarrow \Omega$ are real analytic manifolds of dimension 19, so that $\overline{M}$ is not a complex manifold. However, for a complex analytic space $\Omega$, we say that $f: S + \overline{M}$ is quasi-analytic if

1) the composite $(pr_1 \circ f): S + \Omega$ is analytic, and
2) the composite $(pr_2 \circ f): S + L$ is constant.

Suppose that $\mathcal{X} + S$ is a family of K3 surfaces with a marking $\alpha: R^2_{\text{H}}(X) \to L_0$ and a polarization $\kappa \in \Gamma(S, L_0 \otimes \mathcal{O}) - L_0$. The classical period map together with $\kappa$ gives a map $S + \Omega \times L$, whose image is contained in $M$, we call the induced map $\mathcal{P}_S: S + M$ the polarized period map. Regarded as a map $S + \overline{M}$, this is clearly a quasi-analytic map.

For this period map, we have the
Polarized Global Torelli Theorem

Let \((X, \alpha)\) and \((X', \alpha')\) be two K3 surfaces with Kähler polarizations. Suppose that \(\phi : H^2(X, \mathbb{Z}) \to H^2(X', \mathbb{Z})\) is an isometry preserving the Hodge structure such that \(\phi(\alpha) = \alpha'\). Then there is a unique isomorphism \(\Phi : X \cong X'\) with \(\Phi^* = \phi\).

Proof: This follows immediately from the Burns-Rapoport Global Torelli theorem, and the definitions. Q.E.D.

When \(\alpha\) and \(\alpha'\) are algebraic polarizations (that is, when the Kähler metrics are [renormalized] Hodge metrics), then the global Torelli theorem in this form was first proved by Prasolov-Shapiro and Shafarevich [25].

Consider now the moduli functor which associates to each complex analytic space \(S\) the set of isomorphism classes of triples

\[(p: \mathcal{X} \to \mathcal{S}, \alpha : H^2_{\mathbb{R}}(\mathcal{X}) \to L_0, \kappa \in \Gamma(S, L_0 \otimes \mathcal{E}))\]

of marked families of K3 surfaces with a Kähler polarization. This functor is not representable in the category of complex analytic spaces. However, there is an open subset \(M_0 \subset M\), and a family \(\mathcal{X}_{M_0} \to M_0\) with the property that the set of quasi-analytic maps \(S \to M_0\) (together with the induced families of marked polarized K3 surfaces) coincides with our functor. \(\mathcal{X}_{M_0} \to M_0\) is constructed in the same way as the moduli space for Kählerian K3 surfaces: for each Kähler K3 surface \(X\) (with Kähler polarization \(\kappa\)), there is a local universal deformation \((\mathcal{X}, X) \to \{S, \kappa\}\). Moreover, there is a hypersurface \(T \subset S\) such that on each fiber of the restricted family \(\mathcal{X}_{\mathcal{T}} \to T, \kappa\) is the cohomology class of a Kähler metric. We use the period maps

\[\mathcal{P}_T : T \to \mathcal{M}\]

to glue together the families \(\mathcal{X}_{\mathcal{T}} \to T\) as before, and obtain the "moduli space" \(\mathcal{M}_0 \subset M\).
Let $X_{diff}$ denote the underlying $C^\infty$ manifold of a K3 surface. The moduli space $\mathcal{M}_0$ is closely related to the moduli space $\mathcal{M}_0$ of Ricci-flat Kähler metrics on $X_{diff}$ which has been studied by Bourgignon [3] and Todorov [34]. By a theorem of Yau [37], [38], every Kähler metric on a K3 surface is cohomologous to a unique Ricci-flat Kähler metric (so that there is a Ricci-flat Kähler metric corresponding to each Kähler polarization). If we fix the Ricci-flat metric, the set of complex structures for which it is a Kähler metric forms a complex line $\mathbb{C}^2 \subset \mathcal{M}_0$. $\mathcal{M}_0 + \mathcal{N}_0$ is in fact a $C^\infty$ fiber bundle with fiber $\mathbb{C}^2$, and sits inside a similar fiber bundle $\mathcal{M} + \mathcal{N}$.

3. Families of surfaces with rational double points

Let $(X,P)$ be a germ of a surface with a rational double point, and let $\rho: (Y,C) \rightarrow (X,P)$ be the minimal resolution of singularities. We write $\rho^{-1}(P) = C = \bigcup C_i$ as a sum of irreducible components, and let $A = A(X)$ be the free abelian group generated by $\{C_i\}$. $A$ has a quadratic form $<,>$ induced by the intersection form on $C$, and we may identify $A$ with $R^2(Y,C)$. We let $A_\mathbb{R} = A \otimes \mathbb{R}$ and $A_\mathbb{Z} = A \otimes \mathbb{Z}$. If we define

$$ R = R(X) = \{ \delta \in A \mid <\delta, \delta> = -2 \}, $$

then $R \subset A_\mathbb{R}$ is a root system (following the definitions\(^3\) of Bourbaki [2]) and $C_i \in R$ for each $i$. For each $\delta \in R$, let $s_\delta \in \text{Aut}(A)$ be the reflection in $\delta$.

\(^3\) Actually, our definition differs from Bourbaki's in that for us, the bilinear form on a root system is negative (rather than positive) definite; we have simply changed the sign on the bilinear form.
and let $W$ be the subgroup of $\text{Aut}(\Lambda)$ generated by \{ $s_\delta \mid \delta \in \mathbb{R}$ \}; $W$ is the Weyl group of the root system.

Let $(Y, \mathcal{Y}) + (\text{Def}_Y, \ast)$ and $(X, \mathcal{X}) + (\text{Def}_X, \ast)$ be the versal deformations. In any deformation of $Y$, a contraction can be made to yield a deformation of $X$ [29]; this gives a natural map $j: (\text{Def}_Y, \ast) \to (\text{Def}_X, \ast)$.

For $t \in \text{Def}_Y$, let $Y_t$ be the corresponding fiber of $\mathcal{Y} + \text{Def}_Y$ (so that $Y = Y_0$). $j$ induces a map $Y_t \to X_j(t)$ with the property that $X_j(t)$ has a finite number of rational double points, and $Y_t + X_j(t)$ is the minimal resolution of singularities. We define the root system of $X_j(t)$ to be the direct sum of the root systems of the individual double points; this is naturally a subset of $\mathbb{Z}^2(Y_t, \mathcal{X})$.

**Theorem ([4], [5], [26], [32])**

There are representatives of the versal deformations $(Y, \mathcal{Y}) + (\text{Def}_Y, \ast)$ and $(X, \mathcal{X}) + (\text{Def}_X, \ast)$ such that

1) $\text{Def}_Y = \Lambda_0$, $\text{Def}_X = \Lambda_0 / W$ (with $\ast = 0$), and $\text{Def}_Y + \text{Def}_X$ is the natural quotient by the action of the Weyl group.

2) If $q: \mathcal{Y} + \Lambda_0$ is the versal family, then there is a trivialization $i: q_t(\mathcal{Y}) \to \Lambda$ such that for each $t \in \Lambda = \text{Def}_Y$,

$$i_t (R(Y_t)) = \{ \delta \in \mathbb{R} \mid <\delta, t> = 0 \}.$$

**Corollary 1 ("Simultaneous resolution")**

Let $(X, \mathcal{X}) + (S, \ast)$ be an arbitrary local deformation of $X$. Then there is a finite map $T + S$ such that the induced family $\mathcal{X}_T + T$ admits a simultaneous resolution, in other words, a diagram

$$
\begin{array}{ccc}
\mathcal{Y}_T & \longrightarrow & \mathcal{X}_T \\
\downarrow & & \downarrow \\
T & \longrightarrow & T
\end{array}
$$
such that the induced map on fibers $Y_t + X_t$ is a minimal resolution of singularities for each $t \in T$.

**Proof:** Define $T \to S$ by means of the base change $\text{Def}_Y + \text{Def}_X$ as follows:

$$
\begin{align*}
T & \to S \\
\downarrow & \downarrow \\
\text{Def}_Y & \to \text{Def}_X
\end{align*}
$$

and let $Y_T$ be the family induced by the map $T \to \text{Def}_Y$. The corollary is now immediate. Q.E.D.

**Corollary 2**

Let $p: Y \to D$ be a one-parameter family of surfaces, where $D$ is the unit disk. Let $C \subset Y_0 = p^{-1}(0)$ be a smooth rational curve of self-intersection $-2$ which is disjoint from the singular locus of $Y_0$. Then either there is a divisor $E \subset Y$ with $C_t = E \cap Y_t$ a smooth rational curve of self-intersection $-2$ for each $t \in D$, or there is a birational map

$$
\begin{align*}
e: Y & \dashrightarrow Y' \\
\Downarrow & \\
D & \to
\end{align*}
$$

whose indeterminacy locus is $C$. In the latter case, $X_0 \cong Y_0'$ (although the isomorphism is not induced by the rational map $e$) and if $\delta \in H^2(X_0, \mathbb{Z})$ is the class of $C$, then $e$ induces a map

$$
e^*: H^2(Y_0, \mathbb{Z}) \to H^2(Y_0, \mathbb{Z})
$$

which coincides with the reflection $s_\delta$. 
Proof: Consider the contraction \( Y_0 \rightarrow X_0 \) of the curve \( C \) on the central fiber. By [29], there is a contraction \( Y \rightarrow X \) which induces this, so that

\[
Y \rightarrow X
\]

is a simultaneous resolution of singularities of \( X \). \( X_0 \) has an ordinary double point, so if we let \( A = ZC \), then the family \( Y + D \) determines a map \( D + A \).

If the image of \( D \) in \( A \) is a point, we get the first alternative: the nearby fibers \( X_t \) all have ordinary double points, so that their resolutions \( Y_t \) have a family of curves \( C_t \subset Y_t \). If the image of \( D \) is a curve, then letting the Weyl group \( W = \mathbb{Z}/2\mathbb{Z} \) act, we get a second map \( D + A \) which induces the family \( Y' \); the natural birational map \( Y \rightarrow Y' \) is an isomorphism outside \( C \). The statement about \( e^* \) is proved in [6]. Q.E.D.

Definition

The birational map constructed in corollary 2 is called the elementary modification with center \( C \). We remark that the elementary modification also has a description in terms of blowups and blowdowns: cf. [9], [12], [23], [28].

Suppose now that \( X \) is a compact surface with rational double points, and \( \psi: Y + X \) be the minimal resolution. We define the root system, (resp. the Weyl group) of \( X \), denoted \( \{X\} \) (resp. \( W(X) \)), to be the direct sum of the root systems (resp. the direct product of the Weyl groups) of the individual double points. Let

\[
\delta_1, \ldots, \delta_k \in H^2(Y, \mathbb{Z})
\]
be the classes of the irreducible curves which are contracted by $\rho$. Then

$$R(X) = \{ \delta = \sum a_\delta \delta_\delta \in H^2(Y, \mathbb{Z}) \mid a_\delta \in \mathbb{Z} \text{ and } \langle \delta, \delta \rangle = -2 \},$$

and $W(X)$ has a natural representation on $H^2(Y, \mathbb{Z})$ generated by the reflections $\{ \delta_\delta \mid \delta \in R(X) \}$. We define $R^2(X) = H^2(Y, \mathbb{Z}) W(X)$; this is exactly the set of cohomology classes which are orthogonal to the classes in $R(X)$.

**Corollary 3**

Let $p: \tilde{X} \to S$ be a proper family of surfaces with only rational double points as singularities. There is a sheaf $R^2(\tilde{X}/S)$ such that for each $s \in S$, if $U$ is a sufficiently small neighborhood of $s \in S$, then

$$R(U, R^2(\tilde{X}/S)) \cong H^2(Y_s, \mathbb{Z}) W(X_s),$$

where $\delta_s: Y_s \times X_s$ is the minimal resolution of $X_s$ and $W(X_s)$ is the Weyl group.

**Proof.** Let us call a neighborhood $U$ of $s$ small if the germ $(U, s) + (\text{Def}_s X_s)$ has a representative $U + \text{Def}_s X_s$. If $U$ is a small neighborhood, we define $\tilde{U} = U$ by means of the $W(X_s)$ base change:

$$\begin{array}{ccc}
\tilde{U} & \longrightarrow & U \\
\downarrow & & \downarrow \\
\text{Def}_s X_s & \longrightarrow & \text{Def}_s X_s
\end{array}$$

and let $\tilde{q}: Y_{\tilde{U}} \to \tilde{U}$ be a simultaneous resolution of $\tilde{p}: \tilde{X}_{\tilde{U}} \to \tilde{U}$. For a small neighborhood, there is a trivialization...
\[ H^2_{\overline{s}}(Z) \cong H^2(Y_s, Z). \]

We will define sections and restriction maps for \( \Gamma^0(\mathcal{X}/S) \) over small neighborhoods; a slight modification of the usual sheafification construction then produces the desired sheaf. First define, for every small neighborhood \( U \) of \( s \),

\[ \Gamma(U, \Gamma^0(\mathcal{X}/S)) \cong H^2(Y_s, Z)^{W(X_s)}. \]

Next suppose that \( U \) is a small neighborhood of \( s \in S \), \( V \) is a small neighborhood of \( t \in S \), and \( V \subset U \). Let \( \overline{U} + U \) be the \( W(X_s) \) basechange, and pick a point \( r \in \overline{U} \) in the inverse image of \( t \). If \( \beta : \mathcal{Y} \to \overline{U} \) is a simultaneous resolution, then a trivialization

\[ H^2_{\overline{s}}(Z) \cong H^2(Y_s, Z). \]

induces an isomorphism

\[ i : H^2(Y_s, Z) \cong H^2(Y_t, Z) = H^2(Y_s, Z). \]

Thus, to construct a restriction map

\[ \Gamma(U, \Gamma^0(\mathcal{X}/S)) \to \Gamma(V, \Gamma^0(\mathcal{X}/S)) \]

we only need to verify that

\[ i(H^2(Y_s, Z)^{W(X_s)}) \subset H^2(Y_t, Z)^{W(X_t)}. \]

and that the induced map is independent of choices. But this is clear, by the identication of the root systems of \( X_s \) and \( X_t \) given in the theorem above. Q.E.D.
Notice that the sheaf \( I^2(\mathcal{A}/S) \) has a natural bilinear pairing to \( \mathbb{Z}_S \) induced by the intersection form in the fibers; by Poincaré duality, and the fact that the Weyl group representations preserve the intersection pairing, this is a perfect pairing after tensoring with \( \mathbb{R} \).

In fact, \( I^2(\mathcal{A}/S) \otimes \mathbb{R} \) admits an alternate description as the relative intersection homology (cf. [11]) of the family \( \mathcal{X} \times S \). This follows from the Brieskorn-Grothendieck description of the simultaneous resolution in group theoretic terms (cf. [5], [32]) together with a result of Borho-MacPherson [1] which characterizes the intersection homology as the \( W \)-invariant part of the cohomology of the simultaneous resolution.

**Definition**

Let \( \mathcal{X} \times S \) be a proper family of surfaces with only rational double points as singularities, let \( Y_t \times S \) be the minimal resolution of one fiber, and let \( L \cong H^2(Y_t, \mathbb{Z}) \) be the cohomology lattice. A *marking* of the family \( \mathcal{X} \times S \) is a metric injection

\[
a: I^2(\mathcal{A}/S) \otimes \mathbb{R} \to L_S
\]

such that for each \( t \in S \), \( a|_t \) extends to an isometry of \( H^2(Y_t, \mathbb{Z}) \) with \( L \).

4. Extensions of the period maps

A *generalized K3 surface* is a compact complex surface \( X \) with at worst rational double points, whose minimal resolution \( Y + X \) is a K3 surface. We call the generalized K3 surface \( \text{Kählerian} \) if its minimal resolution is a Kählerian K3 surface. If \( X \) is a Kählerian generalized K3 surface with minimal resolution \( Y + X \), then we have the root
system $R(X) \subset H^2(Y,\mathbb{Z})$ and the Weyl group $W(X)$ as in section 3; in addition, we define

$$V^+_p(X) = \{ \kappa \in V^+_p(Y) \mid \text{for all } \delta \in \Delta^+(Y), \langle \delta, \kappa \rangle = 0 \text{ if and only if } \delta \in R(X) \}.$$ 

Notice that $V^+_p(X) \subset \Gamma^2(X) \otimes \mathbb{K}$, and that this agrees with our earlier definition if $Y = X$.

Since $\Gamma^2(X) \subset H^2(Y,\mathbb{Z})$ is the orthogonal complement of a collection of integral $(1,1)$ classes, $\Gamma^2(X) \otimes \mathbb{K}$ inherits a Hodge structure from the one on $H^2(Y,\mathbb{Z})$. Thus, given a marking $\alpha: \Gamma^2(X) \otimes L$, we may put a Hodge structure on $L^2_\mathbb{K}$ by defining $H^{0,2}$ and $H^{1,1}$ to be the corresponding subspaces of $\Gamma^2(X) \otimes \mathbb{K}$, and $H^{1,1}$ to be the orthogonal complement; we thus get a point in the classical period domain $\Omega$ corresponding to a marked generalized K3 surface. If $p: \mathcal{X} \to S$ is a family of generalized K3 surfaces with marking $\alpha: \Gamma^2(\mathcal{X}/S) \otimes L_0$, the corresponding map $\gamma: S \to \Omega$ is clearly holomorphic.

Suppose now that $X$ is a Kählerian generalized K3 surface, and $\rho: Y \to X$ its minimal resolution. A weak polarization on $X$ is a class $\kappa \in V^+_p(X) \subset \Gamma^2(X) \otimes \mathbb{K}$ (so that if $X$ is smooth, a weak polarization is just a polarization). If $\mathcal{X} \to S$ is a marked family of Kählerian generalized K3 surfaces, with marking $\alpha: \Gamma^2(\mathcal{X}/S) \otimes L_0$, a weak polarization on $\mathcal{X} \to S$ is a section

$$\kappa \in \Gamma(S, \Gamma^2(\mathcal{X}/S) \otimes \mathbb{K}) \oplus \Gamma(S, L_0 \otimes \mathbb{K}) \equiv L^2_\mathbb{K}$$

such that $\kappa|_s$ is a weak polarization on $X_s$ for every $s \in S$.

Thus, for a marked, weakly polarized family $\mathcal{X} \to S$ of Kählerian generalized K3 surfaces, we get the weakly polarized period map $\gamma^2_p: S \to \Omega$ by using the classical period map together with the class $\alpha(\kappa) \in L^2_\mathbb{K}$. This is again a quasi-analytic map, and $\gamma^2_p(s) \in \Omega - \Omega$ if and only if $X_s$ is singular.
Weakly Polarised Global Torelli Theorem

Let \((X, \kappa)\) and \((X', \kappa')\) be Kählerian generalized K3 surfaces with weak polarization, and let \(\rho: Y \rightarrow X\) and \(\rho': Y' \rightarrow X'\) be the minimal resolutions. Suppose that \(\psi: \Gamma^2(X) \rightarrow \Gamma^2(X')\) is an isometry preserving the Hodge structure such that \(\psi(\kappa) = \kappa'\), which extends to an isometry \(\psi: H^2(Y, \mathbb{Z}) \rightarrow H^2(Y', \mathbb{Z})\). Then there is a unique isomorphism \(\phi: X \rightarrow X'\) such that \(\phi^* = \psi\).

Proof: Consider the induced isometry \(\bar{\psi}: \Gamma^2(X) \rightarrow \Gamma^2(X')\). The root system \(R(X)\) is characterised as

\[ R(X) = \{ \delta \in \Gamma^2(X) \mid \langle \delta, \delta \rangle = -2 \} \]

(and similarly for \(R(X')\)), so \(\bar{\psi}\) establishes an isomorphism of root systems. Define

\[ C(X) = \{ v \in \Gamma^2(X) \mid \langle v, \delta \rangle > 0 \text{ for every } \delta \in \Delta^+(X) \cap R(X) \} \]

(and similarly for \(C(X')\)). \(\bar{\psi}(C(X))\) and \(C(X')\) are both (open) fundamental domains for the action of \(W(X')\) on \(\Gamma^2(X')\). Thus, there is some \(v \in W(X)\) such that \(v \circ \psi(C(X)) = C(X')\). Since \(\bar{\psi}(\Gamma^2(X)) = v \circ \psi(\Gamma^2(X))\), by replacing \(\psi\) with \(v \circ \psi\) we may assume that \(\psi(C(X)) = C(X')\).

We now apply the Burns-Rapoport Global Torelli Theorem to \(\psi\). We have \(\kappa \in \mathcal{V}^+(Y)\), \(\kappa' \in \mathcal{V}^+(Y')\) and \(\psi(\kappa) = \kappa'\), so that \(\psi(\mathcal{V}^+(Y)) = \mathcal{V}^+(Y')\). Since \(\psi(C(X)) = C(X')\), if \(\delta \in \Delta^+(Y) \cap R(X)\) then \(\psi(\delta) \in \Delta^+(Y') \cap R(X')\). Also, if \(\delta \in \Delta^+(Y)\), \(\delta \notin R(X)\) then \(\langle \kappa, \delta \rangle > 0\); hence \(\langle \kappa', \psi(\delta) \rangle > 0\) so that \(\psi(\delta) \notin \Delta^+(Y')\). Thus, \(\psi(\Delta^+(Y)) = \Delta^+(Y')\) and the Burns-Rapoport Global Torelli theorem applies: there is a unique isomorphism \(\psi: Y \rightarrow Y'\). Since this induces isomorphisms on the exceptional sets of \(\rho\) and \(\rho'\), \(\psi\) descends to a unique isomorphism \(\phi: X \rightarrow X'\). Q.E.D.
Unfortunately, the condition that \( \psi: I^2(X) \rightarrow I^2(X') \) extend to an isometry \( \psi: H^2(Y, \mathbb{Z}) \rightarrow H^2(Y', \mathbb{Z}) \) cannot be relaxed. In an appendix to this paper, we give an example of two non-isomorphic, weakly polarized \( \mathbb{K} \text{-} \text{Kählerian} \) generalized K3 surfaces \((X, \kappa)\) and \((X', \kappa')\) with an isometry \( \psi: I^2(X) \rightarrow I^2(X') \) preserving the Hodge structure and the polarization; of course, \( \psi \) does not extend to an isometry \( \psi: H^2(Y, \mathbb{Z}) \rightarrow H^2(Y', \mathbb{Z}) \).

We now consider the moduli of weakly polarized, marked, \( \mathbb{K} \text{-} \text{Kählerian} \) generalized K3 surfaces, beginning with local moduli. If \( X \) is a generalized K3 surface, there is a local universal deformation \( (\bar{X}, \mathcal{X}) + S \) of \( X \). Let \( P_1, \ldots, P_k \) be the singular points of \( X \), and let \( X_{P_1}, \ldots, X_{P_k} \) be the germs of \( X \) at its singular points. Since \( S \) is smooth, by a theorem of Burns and Wahl \([7]\), there is a map

\[
J: S \rightarrow \text{Def}_{X_{P_1}} \times \cdots \times \text{Def}_{X_{P_k}}
\]

which is a local fibration. In order to get a local universal marked family for \( X \), we form the \( \text{Def}(X) \) base change \( S \rightarrow S \) (using the map \( J \)), and let \( \bar{X} \rightarrow \bar{S} \) be the induced family; this is clearly universal among marked families (by the theorem in section 3). Note that the local Torelli theorem for a simultaneous resolution \( \bar{Y} \rightarrow \bar{S} \) (for the classical period map) gives a local Torelli theorem for the classical period map of the universal marked family as well.

As in section 2, we also need a local marked polarized family. Suppose that \( \kappa \in \mathcal{V}_p(X) \) is a weak polarization, and \( \bar{X} \rightarrow \bar{S} \) is the universal marked family. We consider the hypersurface \( T \subset \bar{S} \) on which the class \( \kappa \) remains of type \((1,1)\). We claim that in fact \( \kappa \) is a weak polarization on all nearby fibers of the induced family \( \bar{X} \rightarrow T \). This is due to the description of the root systems of the nearby fibers
given in the theorem in section 3: since for each \( t \in T \) (sufficiently close to the origin) we have \( R(X_t) \subset R(X_0) \), we get that \( \kappa \in R(X_t) \), which guarantees that \( \kappa \in V_p(X_t) \) (since \( \kappa \) is of type \((1,1)\)).

To construct a global moduli space, consider the moduli functor which associates to each complex analytic space \( S \) the set of isomorphism classes of triples

\[
(p: \mathcal{X} \to S, \quad \alpha: T^2(\mathcal{X}/S) \to \mathbb{L}_S, \quad \kappa \in \Gamma(S, T^2(\mathcal{X}/S)) \sqcup \mathbb{N})
\]

of marked families of generalized K3 surfaces with a weak polarization. This functor is again not representable in the category of complex analytic spaces, but we can "represent" it by a subset \( \overline{M}_0 \subset \overline{M} \), a family \( \mathcal{X}_{\overline{M}_0} \to \overline{M}_0 \) and the quasi-analytic maps \( S \to \overline{M}_0 \). We construct \( \mathcal{X}_{\overline{M}_0} \to \overline{M}_0 \) by the same methods we have used before: for each marked, generalized Kählerian K3 surface \( X \) (with weak polarization \( \kappa \)), there is a versal deformation \( (\mathcal{X}_X, X) \to (T, \alpha) \) of marked, weakly polarized K3 surfaces, and the period map \( T^2: T \to \overline{M} \) is a local isomorphism onto its image.

Using the period maps \( T^2 \), we may glue together the families \( \mathcal{X} + T \) to obtain the "moduli space" \( \overline{M}_0 \subset \overline{M} \).

The action of the automorphism group \( \Gamma \) of \( L \) on \( \overline{M} \) is discrete and properly discontinuous. Thus, we may also form the quotient \( \overline{M}_0/\Gamma \), which we regard as a "coarse moduli space" of weakly polarized Kählerian generalized K3 surfaces. \( \overline{M}_0/\Gamma \) has no universal family, so this is not a fine moduli space. Note that if \( X \) is a singular generalized K3 surface, \( p: \mathcal{X} \to S \) its local universal deformation, and \( S + \mathcal{S} \) is the \( \mathcal{W}(X) \) cover, then the map \( \mathcal{P}: S + \mathcal{M}_0 \to \mathcal{S} \) descends to a map \( \mathcal{P}: S + \mathcal{M}_0/\Gamma \) (since the \( \mathcal{W}(X) \)-action is compatible with the \( \Gamma \)-action). This local moduli map has been studied by Looijenga [16], using other methods.
5. Period maps for algebraic K3 surfaces

Let $\kappa$ be a weak polarization on a generalized K3 surface $X$. We call the polarization algebraic if there is some $\ell \in L$ with $<\ell,\ell> > 0$ and $\kappa = 1/<\ell,\ell>$. For each such $\ell$, we define the algebraic period domain (of type $\ell$) to be

$$\Omega_\ell = \{ x \in \Omega : \ell \text{ is type (1,1) on } x \}.$$

A marked weakly polarized family $X + S$ of K3 surfaces for which the weak polarization is algebraic on each fiber induces a holomorphic map $S + \Omega_\ell$.

If we embed $\Omega_\ell + S + L$ by using the constant class $\kappa = 1/<\ell,\ell>$ on the second factor, then the image lies in $M$; the map $\Omega_\ell + M$ can be regarded as a natural transformation between two moduli functors, in which we "forget" that the weak polarization is algebraic. Notice that the image of $\Omega_\ell$ meets $\overline{M} - M$, so there is no corresponding natural transformation $\Omega_\ell + M$; in particular, there is no natural transformation $\Omega_\ell + \overline{M}$, i.e., the algebraic period domain cannot be naturally embedded in the Borel-Napoletani period domain.

Algebraic polarizations are closely related to ample divisors. Recall that a divisor $D$ on a smooth surface $X$ is pseudoample if the linear system $|nD|$ gives a birational map for $n$ sufficiently large.

Theorem (Mayer [19])

Let $\ell$ be the cohomology class of an effective divisor $D$ on a smooth K3 surface $X$. Then the linear system $|D|$ is ample (resp., pseudoample) if and only if $<\ell,\ell> > 0$ and $<\ell,\delta> > 0$ (resp. $<\ell,\delta> > 0$) for all $\delta \in \Delta(X)$. In the pseudoample case, for $n$ sufficiently large, $|nD|$ contracts all curves $\delta \in \Delta^+$ with $<\ell,\delta> = 0$, and embeds the resulting surface $X$. 
In other words, $|D|$ is ample when $<\xi,\xi_0> > 0$ and $\xi \in V^p(Y)$, and $|D|$ is pseudoeample when $<\xi,\xi_0> > 0$ and $\xi \in V^p(Y)$.

Corollary

Let $X$ be a Kählerian generalized K3 surface. If $\mathcal{L}$ is an ample line bundle on $X$, then $\mathcal{L}$ has a cohomology class $\xi \in \Omega^2(X)$, and

$$\xi = \frac{\xi}{\sqrt{<\xi,\xi>}}$$

is a weak algebraic polarization on $X$. Conversely, every weak algebraic polarization corresponds to an ample line bundle on $X$.

Proof: Let $\rho: Y \dashrightarrow X$ be the minimal resolution. $\rho^* \mathcal{L}$ is pseudoeample on $Y$ and has a cohomology class $\xi \in H^2(Y,\mathbb{Z})$. Since $<\xi,\delta> = 0$ for each $\delta \in \mathbb{R}(X)$, we have $\xi \in \Omega^2(X)$. The conditions in Mayer's theorem now guarantee that $\xi$ is a weak polarization on $X$, which is algebraic by construction.

Conversely, if $\xi$ is a weak algebraic polarization, then the corresponding class $\xi$ is an integral $(1,1)$ class contained in $V^p(Y)$ with $<\xi,\xi> > 0$. By Riemann-Roch, $\xi$ is the class of an effective divisor. But $\xi$ cannot be effective since $\xi \in V^p(Y)$; thus $\xi$ corresponds to a pseudoeample linear system $|D|$, which descends to an ample line bundle on $X$. Q.E.D.

6. Surjectivity of the period maps

In [14], Kulikov proved the following theorem:
Algebraic Surjectivity I

For every point \( x \in \mathcal{Q}_k \) there is a marked K3 surface whose classical periods are \( x \).

Proof sketch: It is well known (cf. [31, Chap. IX]) that the image of the algebraic period map is a dense open subset of \( \mathcal{Q}_k \) (in the classical topology). Let \( D \) be the unit disk, and \( D^* = D - \{0\} \). If \( x \in \mathcal{Q}_k \) is not in the image of the period map, there is a map \( \psi: D \to \mathcal{Q}_k \) such that \( \psi(D^*) \) is in the image, and \( \psi(0) = x \). One first shows that there is a projective family of surfaces (not necessarily smooth or with rational double points) \( \mathcal{X} + D \) such that \( \mathcal{X}^* + D^* \) is a family of smooth marked K3 surfaces with an algebraic polarization whose period map coincides with \( \psi|_{D^*} \). (We may, if we wish, choose \( \psi \) in such a way that each fiber \( X_t \ (t \in D^*) \) has Picard number 1.) The classification of degenerations ([13], [15], and [24]) guarantees that after a basechange, \( \mathcal{X} \) is birational to a family \( \mathcal{X}' + D \) of smooth marked K3 surfaces; since \( \mathcal{Q} \) is separated, the classical periods of \( \mathcal{X}_0 \) coincide with \( x = \psi(0) \). Q.E.D.

Proposition

Let \( \mathcal{X} + D \) be a family of (smooth) marked K3 surfaces over the disk such that the restricted family \( \mathcal{X}^* + D^* \) has an algebraic polarization and such that each fiber \( X_t \ (t \in D^*) \) has Picard number 1. Then there is a marked family of generalized K3 surfaces \( \mathcal{X}' + D \) with a weak algebraic polarization, such that the restricted polarized marked families coincide.

Proof: Let \( W \) be the group generated by the reflections

\[
\{ s_\delta \mid \delta \in \Delta(X_0) \},
\]

and let \( \pm W \) be the group generated by \( W \) and \( \pm 1 \) (acting on \( H^2(X_0) \)).
There is an induced action of $\mathbb{I}$ on $V(X_0)$; by a result of Vinberg [35] (see also [23]), $V^+_\mathbb{I}(X_0)$ is an (open) fundamental domain for the action of $\mathbb{I}$ on $V(X_0)$. Thus, if $\kappa$ is the weak polarization on $X_t$ ($t \in \mathbb{D}^*$), there is some $v \in W$ with $\zeta(v) \in V^+_\mathbb{I}(X_0)$.

We may write $v = s_{\delta_1} \cdots s_{\delta_k}$, where each $\delta_1$ is the class of an irreducible curve $C_{\delta_1}$ on $X_0$. We now perform the corresponding sequence of elementary modifications on $\mathcal{X}$ (centered at $C_1, \ldots, C_k$); these modifications may be performed since the Picard number of $X_0$ is 1. We arrive at a family $\mathcal{X}' \to D$ with the property that $\kappa$ is a weak polarization on $X'_t$ for $t \in \mathbb{D}^*$, and

$$\zeta(v) \in V^+_{\mathbb{I}}(X_0) \subset \mathcal{V}^+(X_0).$$

But the period map $D \to \mathbb{H}$ induces a continuous family of choices of $\mathcal{V}^+$; thus in fact $\kappa \in \mathcal{V}^+(X_0)$, so that $\kappa \in V^+_{\mathbb{I}}(X_0)$.

By Mayer's theorem, since $\kappa = 1/\sqrt{\mathfrak{K}_1 \mathfrak{K}_2}$, $\mathfrak{K}$ is the class of a pseudoelementary divisor $|D|$ on $X_0^\mathfrak{K}$. Let $\rho_0 \colon X_0^\mathfrak{K} \to X_0$ be the map defined by $|D|$; $X_0^\mathfrak{K}$ is a generalized K3 surface on which $\kappa$ is a weak algebraic polarization. By [29], the contraction $\rho_0$ is induced by a map $\phi \colon \mathcal{X}' \to \mathcal{X}'$ which commutes with projection to $D$; $\mathcal{X}'$ is the desired family. Q.E.D.

From this proposition and the proof of "algebraic surjectivity I," we immediately deduce:

**Algebraic Surjectivity II**

For every point $x \in Q_x$, there is a marked generalized K3 surface $(X_0, x)$ whose classical periods are $x$, such that $\zeta \in \mathcal{P}(x)$ is the cohomology class of an ample divisor on $X$.

Todorov [33] has used "algebraic surjectivity II" and Yau's solution [37], [38] to the Calabi conjecture [8] to prove
Burns-Rapoport Surjectivity

For every $x \in \overline{\mathcal{M}}$, there is a marked Kählerian K3 surface whose Burns-Rapoport periods are $x$.

This has also been proved by Looijenga [17] (cf. also Namikawa [21]). In fact, Looijenga proves a stronger theorem (also announced by Todorov):

Polarized Surjectivity

For every $x \in \mathcal{M}$, there is a marked polarized Kähler K3 surface $X$ whose polarized periods are $x$, such that the cohomology class of the Kähler metric corresponds to the polarization (i.e. the polarization is Kählerian).

From this, we can deduce

Weakly Polarized Surjectivity

For every $x \in \mathcal{M}$, there is a marked, weakly polarized, Kählerian generalized K3 surface whose weakly polarized periods are $x$.

Proof: $x \in \mathcal{W}$ corresponds to a Hodge decomposition

$$L_x \cong H^{2,0}(x) \oplus H^{1,1}(x) \oplus H^{0,2}(x)$$

and a class $\kappa \in H^{1,1}(x) \cap L_x$. Let

$$\mathcal{R}(x) = \{ \epsilon \in H^{1,1}(x) \cap L \mid \langle \epsilon, \delta \rangle = -2 \text{ and } \langle \kappa, \epsilon \rangle = 0 \},$$

let $\mathcal{W}(x)$ be the Weyl group determined by $\mathcal{R}(x)$, and let $C \subseteq L_x$ be an (open) fundamental domain for the action of $\mathcal{W}(x)$ on $L_x$.

If $x \in \mathcal{M}$, there is nothing to prove. We may thus assume $x \in \overline{\mathcal{M}} - \mathcal{M}_1$ in this case, $\kappa \in \overline{\mathcal{C}} - \mathcal{C}$. Pick an element $\kappa' \in C \cap H^{1,1}(x)$
which is very close to $\kappa$, with $\langle \kappa', \kappa' \rangle = 1$. The Hodge decomposition

$$L_{\kappa} \cong H^{0,2}(x) \oplus H^{1,1}(x) \oplus H^{0,2}(x)$$

together with the class $\kappa'$ determines a point $\mathcal{Y}(\mathcal{M})$.

By the polarized surjectivity theorem, there is a marked Kähler K3 surface $Y$ with that Hodge structure, whose Kähler metric has cohomology class $\kappa'$. The irreducible curves on $Y$ whose cohomology classes lie in $\Lambda^*(Y) \cap H(x)$ can be contracted to rational double points by a map $\phi: Y \to X$; it is easy to see that $X$ is the required surface, with weak polarization $\kappa$. Q.E.D.

In terms of the moduli spaces described earlier, these surjectivity theorems imply that $\mathcal{Y}_0 = \mathcal{Y}, N_0 = M, W_0 = W, \mathcal{W}_0 = \mathcal{W}$, and $\mathcal{W}_0/T = \mathcal{W}/T$.

The weakly polarized global Torelli and surjectivity theorems above are not in their sharpest possible form. Ideally, each weak polarization should be the cohomology class of a Kähler form (in the sense of Moishezon [20] and Fujiki [10]) on $X$, and the surjectivity theorem should be stated in terms of weak Kähler polarizations. However, the proof would require an analogue of Yau's theorem for these forms — that every Kähler form is cohomologous to a Ricci-flat Kähler form — which is not currently available.

Appendix

A lattice is a free $\mathbb{Z}$-module of finite rank with a bilinear form. If $R$ is a (negative definite) root system, we let $R$ also denote the lattice it generates. In particular, $A_n, B_n,$ and $E_8$ will denote the lattices corresponding to those standard root systems. $L$ denotes the K3 lattice, as before.
Proposition

There is a lattice $A$ of signature $(3,7)$ which has two primitive embeddings $\phi_i: A \to L$ $(i = 1, 2)$ such that

$$\phi_1(A) \cong D_{12}$$
$$\phi_2(A) \cong D_4 \otimes E_8.$$ 

Furthermore, $A$ is unique up to isomorphism.

Proof: We first compute the finite abelian group $G_k = D_k/D_k^*$. In the notation of Pinkham [27], $D_k = \mathbb{Z}/2, k \geq 2$. Lemma 1 of [27] then shows that $G_k$ is generated by 3 elements $a$, $b$, $c$ with the relations

$$a + b + c = 2a = 2b = (k-2)c.$$ 

Elementary algebra now shows that

$$G_k = \begin{cases} 
\mathbb{Z}/4\mathbb{Z} & \text{if } k \text{ is odd} \\
\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } k \text{ is even.}
\end{cases}$$

In particular,

$$D_{12}^*/D_{12} \cong (D_4 \otimes E_8)^*/(D_4 \otimes E_8) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$

(since $E_8$ is unimodular).

We now apply the work of Nikulin [22]. In Nikulin's terminology, we have shown above that $D_{12}$ and $D_4 \otimes E_8$ have the same discriminant form $\Omega_q$, and $\Lambda_q(A)$, which is the minimum number of generators of $G_{12}$ (or $G_k$), is 2. By corollary 1.12.3 of [22], since

$$rk(L) - rk(D_{12}^*) = rk(L) - rk(D_4 \otimes E_8) = 10 \geq 2 = \Lambda_q(A).$$
there are primitive embeddings of $D_{12}$ and $E_6 \oplus E_6$ into $L$. Let $A_1$ and $A_2$ be the orthogonal complements. Each $A_i$ is a lattice of signature $(3,7)$ and discriminant form $(-q)$. But by corollary 1.13.3 of [22], since

$$\text{rk}(A_i) = 10 \geq \frac{1}{2} = 2 + 2\lambda(A_q),$$

there is a unique isomorphism class of such lattices. Thus, $A_1 \cong A_2$; we define this to be $A$. Q.E.D.

**Corollary**

There exist two weakly polarized $K$ählerian generalized K3 surfaces $(X_1, \kappa_1)$ and $(X_2, \kappa_2)$ with an isometry $\phi: \Gamma^2(X_1) \cong \Gamma^2(X_2)$ preserving the Hodge structure and the polarization, such that $X_1$ has a unique singular point (of type $D_{12}$), while $X_2$ has two singular points (of types $D_4$ and $E_6$). In particular, $X_1$ and $X_2$ are not isomorphic.

**Proof:** Choose a Hodge decomposition on $A$

$$A_\mathbb{H} = H^{2,0} \oplus H^{1,1} \oplus H^{0,2}$$

such that $H^{1,1} \cap A = \{0\}$, and choose $\kappa \in H^{1,1} \cap A_\mathbb{H}$ such that $\langle \kappa, \kappa \rangle = 1$. Let $\omega$ be a generator of $H^{2,0}$. For each $i = 1, 2$, the embedding $\phi_i: A \to L$ now induces a Hodge structure on $L$, given by the point $\omega_i = \phi_i(\omega) \in L$. (For this Hodge structure, $\phi_i(A)^+$ is purely of type $(1,1)$.) If we set $\kappa_i = \phi_i(\kappa)$, we get a point $(\omega_i, \kappa_i) \in \mathbb{H}$.

By the weakly polarized surjectivity theorem, there is a marked, weakly polarized, $K$ählerian generalized K3 surface $X_i$ whose weakly polarized periods are $(\omega_i, \kappa_i)$. By construction, $R(X_i) = \phi_i(A)^+$ and $\Gamma^2(X_i) = \phi_i(A)$. Thus, $\phi = \phi_2 \circ \phi_1^{-1}$ gives an isometry preserving the Hodge structure and the polarization.

Moreover, the singularities of $X_i$ are given by the root system $R(X_i) = \phi_i(A)^{\perp}$. By construction of $\phi_i$, we thus see that $X_i$ has a $D_{12}$
singularity, while $X_2$ has a $D_4$ singularity and an $E_6$ singularity; $X_1$ and $X_2$ cannot be isomorphic. Q.E.D.

References


[14] V. Kulikov, "Epimorphicity of the period mapping for surfaces of
Type K3" (in Russian), Uspehi Mat. Nauk. 32, 4 (1977), 257-258.

[15] V. Kulikov, "On modifications of degenerations of surfaces with

degenerations", Compositio math. 30 (1975), 299-316.


[18] E. Looijenga and C. Peters, "Torelli theorems for \(K\)ähler K3

1-17.

[20] B. Moishezon, "Singular \(K\)ählerian spaces", Manifolds and
related topics in topology Tokyo, Univ. of Tokyo Press (1973),
343-351.

[21] Y. Namikawa, "On the surjectivity of the period map of K3
surfaces", this volume.

[22] V. Nikulin, "Integral symmetric bilinear forms and some of their

surfaces", Algebraic geometry and number theory: papers
dedicated to I. R. Shafarevich, to appear.


for algebraic surfaces of Type K3", Math USSR Izvestija 3
(1971), 547-587.

[26] H. Pinkham, "Résolution simultanée de points doubles rationnels",
Lecture Notes in Math. 777 (1980), 179-203.

[27] H. Pinkham, "Smoothes of the \(D_{pqr}\) singularities, \(pq+q = 22\)
appendix to: "The smoothing components of a triangle
singularity" by E. Looijenga, Proceedings of the Arcata


[34] A. Todorov, "How many Kähler metrics has a K3 surface?", Algebraic geometry and number theory: papers dedicated to I. R. Shafarevich, to appear.


