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1 The First Variation of Length

Let (M, g) be a Riemannian manifold of dimension n. Let c0 : [a, b]→M be a smooth curve from p to q. A
variation of c0 is a smooth function c : [a, b]×(−ε, ε)→M such that c(t, 0) = c0(t) for all t ∈ [a, b]. If we also
have that c(a, s) = c0(a) and c(b, s) = c0(b) for all s ∈ (−ε, ε), then we say that c is a proper variation of c0.
If, in addition, all the curves t 7→ c(t, s) are regular (i.e. have nowhere vanishing derivative) then we say that
c is a regular variation of c0. (Note that we consider only smooth curves and smooth variations. We refer the
reader to DoCarmo for the more general treatment of piecewise differentiable curves and their variations).
The variational field of a variation c is a smooth vector field V along c0 defined by V (t) = ∂c

∂s (t, 0). Note a
variation is proper if and only if its variational field vanishes on the boundary {a, b}.

Let c0 : [a, b]→M be a smooth curve from p to q with a variation c with variational field V . For each fixed
s we have a curve and we can speak of its length, so we have a (−ε, ε)→ R function:

s 7→ L(c(·, s)) =

∫ b

a

∣∣∣∣∂c∂t (t, s)

∣∣∣∣ dt
Let us assume that c is a regular variation and compute the derivative of this function:

d

ds
L(c(·, s)) =

∫ b

a

∂

∂s

∣∣∣∣∂c∂t
∣∣∣∣ dt

=

∫ b

a

1

2

1∣∣∂c
∂t

∣∣ · 2〈∇ ∂
∂s

∂c

∂t
,
∂c

∂t
〉dt

=

∫ b

a

1∣∣∂c
∂t

∣∣ 〈∇ ∂
∂s

∂c

∂t
,
∂c

∂t
〉dt

=

∫ b

a

1∣∣∂c
∂t

∣∣ 〈∇ ∂
∂t

∂c

∂s
,
∂c

∂t
〉dt (see hw1 to justify this)

=

∫ b

a

1∣∣∂c
∂t

∣∣
(
∂

∂t
〈∂c
∂s
,
∂c

∂t
〉 − 〈∂c

∂s
,∇ ∂

∂t

∂c

∂t
〉
)
dt
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Evaluating at s = 0 and assuming c0 is parameterized by arclength we have

d

ds
L(c(·, s)) |s=0 =

∫ b

a

1∣∣dc0
dt

∣∣
(
d

dt
〈V (t), ċ0(t)〉 − 〈V (t),∇ ∂

∂t
ċ0(t)〉

)
dt

=

∫ b

a

(
d

dt
〈V (t), ċ0(t)〉 − 〈V (t),∇ ∂

∂t
ċ0(t)〉

)
dt

= 〈V (t), ċ0(t)〉 |ba −
∫ b

a

〈V (t), (∇ ∂
∂t
ċ0)(t)〉dt (1)

What we have found is that the first variation of length depends only on the variational field of a variation!
So the following definition is a-okay: Let L : Ωpq → R, where Ωpq is the set of smooth curves from p to
q (Question: Can we give Ωpq a differentiable structure such that the resulting notion of differentiability
is compatible with the following definition?). The first variation of L at the curve c0 in the direction V is
defined to be

δLc0(V ) =
d

ds
|s=0 L(c(·, s))

where c is a variation of c0 with variational field V . Given any choice of smooth vector field along a
curve c0 it is easy to construct a variation with that vector field as its variational field (for example use
c(t, s) = expc0(t)(sV (t))).

We demanded that c be a regular variation during our computation of the first variation of length, but now
that we have an expression for the first variation of length we note that it does in fact work for constant
curves.

The first variation of length at c in the direction of a proper V is given by

δLc0(V ) = −
∫ b

a

〈V (t), (∇ ∂
∂t
ċ0)(t)〉dt

Theorem 1: c0 ∈ Ωpq is a geodesic ⇐⇒ δLc0(V ) = 0 for all proper V .

This means that geodesics are precisely the minimizers for L in Ωpq (restricted to the set of curves that are
parameterized by constant speed).

2 The Second Variation

Our next task will be to compute the second variation. To simplify the calculation, we will only do it in the
case that the variational field is normal to the curve (i.e. V (t) ⊥ ċ0(t) for all t ∈ [a, b]).

Let (M, g) be a Riemannian manifold, let c0 : [a, b]→M be a smooth curve, and let c : [a, b]× (−ε, ε)→M
be a variation of c0 with variational field V . We already found that

d

ds
L(c(·, s)) =

∫ b

a

1∣∣∂c
∂t

∣∣ 〈∇ ∂
∂t

∂c

∂s
,
∂c

∂t
〉dt

So taking another derivative, using compatibility of ∇ with g, and using a lemma proven in homework 2 we
get

d2

ds2
L(c(·, s)) =∫ b

a

1∣∣∂c
∂t

∣∣
(
〈R
(
∂c

∂t
,
∂c

∂s

)
∂c

∂s
+∇ ∂

∂t
∇ ∂

∂s

∂c

∂s
,
∂c

∂t
〉+ 〈∇ ∂

∂t

∂c

∂s
,∇ ∂

∂s

∂c

∂t
〉
)
dt+

∫ b

a

(
∂

∂s

1∣∣∂c
∂t

∣∣
)
〈∇ ∂

∂t

∂c

∂s
,
∂c

∂t
〉dt
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Now let’s make some assumptions: (1) V is normal to ċ0. (2) c0 is a normal geodesic. (3) c is proper. (We will
see later that the first assumption doesn’t lose us much because tangential variational fields correspond to
reparameterizations (although they can correspond to other kinds of variations as well)) Now if we evaluate
at s = 0 the term ∫ b

a

(
∂

∂s

1∣∣∂c
∂t

∣∣
)
〈∇ ∂

∂t

∂c

∂s
,
∂c

∂t
〉dt

vanishes because

〈∇ ∂
∂t

∂c

∂s
,
∂c

∂t
〉 |s=0 =

d

dt
〈V (t), ċ0(t)〉 − 〈V (t),∇ ∂

∂t
ċ0〉 = 0

and c0 is a geodesic and V is normal to it. And the term∫ b

a

1∣∣∂c
∂t

∣∣ 〈∇ ∂
∂t
∇ ∂

∂s

∂c

∂s
,
∂c

∂t
〉dt

also vanishes because∫ b

a

1∣∣∂c
∂t

∣∣ 〈∇ ∂
∂t
∇ ∂

∂s

∂c

∂s
,
∂c

∂t
〉dt |s=0 =

∫ b

a

(
d

dt
〈∇ ∂

∂s

∂c

∂s
|s=0 , ċ0(t)〉 − 〈∇ ∂

∂s

∂c

∂s
|s=0 , ∇ ∂

∂t
ċ0(t)〉

)
dt

=

∫ b

a

d

dt
〈∇ ∂

∂s

∂c

∂s
|s=0 , ċ0(t)〉dt

= 〈∇ ∂
∂s

∂c

∂s
, ċ0(t)〉 |(b,0)

(a,0)

which vanishes because c is proper (so s 7→ c(a, s) and s 7→ c(b, s) are constant curves, which means that
∂c
∂s vanishes along the integral curve of ∂

∂s that passes through (a, 0) and along the integral curve of ∂
∂s that

passes through (b, 0)). So at s = 0 we have

d2

ds2
L(c(·, s)) |s=0 =

∫ b

a

(
〈R(ċ0(t), V (t))V (t) , ċ0(t)〉+

∣∣∣∇ ∂
∂t
V (t)

∣∣∣2) dt
Since ċ0(t) and 1

|V (t)|V (t) are an orthonormal basis for the two-plane they span in Tc0(t)M , the first term in

the integral is −K(ċ0(t), V (t))|V (t)|2 (okay unless V (t) vanishes in which case we make the convention that
K vanishes, so the equality does really hold for all t). So we finally have the second variation of L at c0 in
the direction V (which is proper and ⊥ to c0 where c0 is a normal nontrivial geodesic):

δ2Lc0(V ) =
d2

ds2
L(c(·, s)) |s=0 =

∫ b

a

(∣∣∣∇ ∂
∂t
V (t)

∣∣∣2 −K(ċ0(t), V (t)) |V (t)|2
)
dt

Observation: If the sectional curvature of M is nonpositive, then the second variation is nonnegative for all
proper normal variational fields V and all normal nontrivial geodesics c0.
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3 The Bonnet-Myers Theorem

Let us first observe that the Ricci curvature of Sn is (n − 1) (use the fact that it has a constant sec-
tional curvature of 1). And observe also that the diameter of Sn is π. It turns out that spheres are the
extreme case of the following theorem, which bounds diameter above when Ricci curvature is bounded below.

Theorem 2: (B-M) Let (M, g) be a complete, connected Riemannian manifold. Suppose RicM ≥ (n− 1)κ,
with κ > 0. Then the diameter of M is at most π/

√
κ.

(An interesting theorem which we will not prove is that when the second inequality is an equality, M is
isometric to Snρ where ρ = 1√

κ
, the n-sphere of radius ρ.)

Proof: Assume the hypotheses. Let p, q ∈M . By Hopf-Rinow, there is a minimizing geodesic c from p to
q. Let us parameterize it by arclength, so that c : [0, L] → M and |ċ(t)| = 1, where L = d(p, q). Since c is
minimizing, we have nonnegative second variation of length for all proper and normal variational fields V .
The second variation is ∫ L

0

(∣∣∣∇ ∂
∂t
V (t)

∣∣∣2 −K(ċ(t), V (t)) |V (t)|2
)
dt ≥ 0

We will show that if L > π√
κ

then the above inequality would not hold. Let e0 = ċ, and note that this is a

parallel vector field along c. Let e1, · · · , en−1 be an extension to an orthonormal parallel basis along c. Let
η : [0, L] → R be an arbitrary smooth function which vanishes on {0, L}. Let Vi = ηei for i ∈ n, and note
that (∇ ∂

∂t
Vi)(t) = η′(t)ei(t) since ei is parallel. Now the second variation along Vi is

δ2Lc(Vi) =

∫ L

0

(
η′(t)2 −K(e0(t), ei(t)) η(t)2

)
dt ≥ 0

And since
∑
{K(e0, ei) : i ∈ n} = Ric(e0) we find ourselves with the inequality∫ L

0

(
(n− 1)η′(t)2 − Ric(e0) η(t)2

)
dt ≥ 0

⇒ (n− 1)

∫ L

0

η′(t)2dt ≥
∫ L

0

Ric(e0)η(t)2dt ≥ (n− 1)κ

∫ L

0

η(t)2dt

⇒
∫ L

0

η′(t)2dt ≥ κ
∫ L

0

η(t)2dt

Now let’s try η(t) = sin(πtL ). This gives

π2

L2

∫ L

0

cos2(t)dt ≥ κ
∫ L

0

sin2(t)dt

⇒π2

L2
≥ κ

⇒L ≤ π√
κ

And so the diameter of M is ≤ π
κ

�

One interesting corollary is that if (Mn, g) is connected and complete with RicM ≥ (n − 1)κ and κ > 0
then π1(M) is finite. A completely geometric hypothesis with a topological conclusion! (For example this
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tells us that the torus does not admit a positive-everywhere Riemannian metric) Proving this is not difficult:
Note that the universal cover of M has Ric satisfying the same lower bound (assuming we pull back the
differentiable structure and the metric of M). So by the Bonnet-Myers theorem the universal cover is
bounded and so since it is complete (also a result of pulling back the metric) it is compact (see Hopf-Rinow).
We prove in a homework that a compact universal cover is finitely-sheeted and as a consequence π1(M) is
finite.
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4 Weinstein-Synge Theorem

Theorem 3: (W-S) Let f : M → M be an isometry of a compact oriented Riemannian manifold of
dimension n. Suppose M has positive sectional curvature and that f is orientation preserving if n is even
and orientation reversing if n is odd. Then f has a fixed point.

We will first prove the following consequence of (W-S):

Theorem 4: (Synge) If Mn is a compact manifold with positive sectional curvature then (1) if it is orientable
and n is even then it is simply connected, and (2) if n is odd then it is orientable

Proof: Even case: Suppose M is orientable and n is even. Consider the universal cover p : (M̃, g̃)→ (M, g)
(We get the universal cover as a topological space, then we give it a differentiable structure by pulling back
the differentiable structure of M , and we give it the metric p∗g). Let f : M̃ → M̃ be a deck transformation.
It is an isometry (this is an easy homework: g̃ = p∗g̃ = (f ◦ p)∗g = f∗p∗g = f∗g̃, and of course f is a
diffeomorphism). Does f preserve the orientation of M? Yes, because locally the deck transformation has
the form (π|V2)−1 ◦ (π|V1) for some pancakes V1, V2 of an appropriate plate neighborhood V ; and π is itself
orientation preserving because we used it to pullback the oriented atlas of M to give M̃ its atlas and therefore
its orientation. Therefore we can apply (W-S) to f and see that it has a fixed point. And so f is the identity
map. So the deck transformation group of M is trivial; that is, M is simply connected! Proof of the odd case:
Suppose n is odd. Suppose, by way of contradiction, that (M, g) is nonorientable. Consider the orientable
double-cover π : M̃ → M of M , and of course give it the metric π∗g. Let F : M̃ → M̃ be a nontrivial deck
transformation which reverses orientation (one exists because M ∼= M̃/deck(π). Then by W − S F has a fixed
point, so it’s the identity (which preserves orientation).

�

Let us try to prove W-S theorem. First we need to go back and look at the first and second variations of
length in the more general case of a non-proper variation. Let c : [a, b] × (−ε, ε) → M be a variation of a
normal-speed curve c0, with variational field V (not necessarily proper). Then

δLc0(V ) = 〈V (t), ċ0(t)〉 |ba −
∫ b

a

〈V (t), (∇ ∂
∂t
ċ0)(t)〉dt

This is what we had when we were computing the first variation before; the only difference is that this time
the boundary term does not necessarily vanish. For the second variation we had:

d2

ds2
L(c(·, s)) =∫ b

a

1∣∣∂c
∂t

∣∣
(
〈R
(
∂c

∂t
,
∂c

∂s

)
∂c

∂s
+∇ ∂

∂t
∇ ∂

∂s

∂c

∂s
,
∂c

∂t
〉+ 〈∇ ∂

∂t

∂c

∂s
,∇ ∂

∂s

∂c

∂t
〉
)
dt+

∫ b

a

(
∂

∂s

1∣∣∂c
∂t

∣∣
)
〈∇ ∂

∂t

∂c

∂s
,
∂c

∂t
〉dt

If we assume again that c0 is a normal geodesic and that V is normal to c0 (without assuming that V is
proper, then after evaluating at s = 0 we compute:

d2

ds2
L(c(·, s)) |s=0 =

∫ b

a

(∣∣∣∇ ∂
∂t
V (t)

∣∣∣2 −K(ċ0(t), V (t)) |V (t)|2
)
dt+ 〈∇ ∂

∂s

∂c

∂s
, ċ0(t)〉 |(b,0)

(a,0) (2)

Note that because this expression contains the term ∇ ∂
∂s

∂c
∂s , it actually depends on the variation c itself and

not only on its variational field V ! So a notation like “δ2Lc0(V )” for the second variation would be incorrect.
Notice also that the boundary term that appears at the end vanishes when the transversal curves s 7→ c(t, s)
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are themselves geodesics. We are now ready to proceed with the proof of W-S. We will use the following
lemma in the proof:

Theorem 5: Let A be an orthonormal linear operator on Rn−1 and suppose det(A) = (−1)n. Then 1 is an
eigenvalue of A.

The proof of the lemma appears in DoCarmo, and will be left out here. Finally:

Theorem 6: (W-S) Let f : M → M be an isometry of a compact oriented Riemannian manifold of
dimension n. Suppose M has positive sectional curvature and that f is orientation preserving if n is even
and orientation reversing if n is odd. Then f has a fixed point.

Proof: Assume the hypotheses. Suppose, by way of contradiction, that f has no fixed point. Let p0 be a
point in M at which the mapping p 7→ d(p, f(p)) attains its minimum (M is compact). Let γ : [0, L]→M be
a normalized minimizing geodesic from p0 to f(p0), where L = d(p0, f(p0)) > 0. (Note: The second variation
of length will of course be non-negative if we consider proper variational fields. This just follows from the
fact that γ is a minimizing geodesic. If we want to squeeze any more information out of the second variation
and the hypotheses above we will have to consider nonproper variations, and this is what motivates the rest
of the proof).

Pick some v ∈ γ̇(0)⊥ ⊂ Tp0M (the orthogonal complement of γ̇(0)). This choice is arbitrary for now, but
later in the proof we will go back and make sure v was chosen in a special way. Now parallel transport v along
γ to produce a parallel vector field V along γ. Define c : [0, L]× (−ε, ε)→ M by c(t, s) = expγ(t)(sV (t)), a
variation of γ with variational field V in which every transversal curve is a geodesic. (Question: How was ε
chosen? Is it such that exp is a diffeo on ε-balls in all the tangent spaces along γ?) Because we chose V to
be parallel and the transversal curves to be geodesics, the second variation of length is:

−|v|2
∫ b

a

K(γ(t), V (t))dt

which is clearly strictly negative. (Note: We would get the desired contradiction if we knew for sure that
s 7→ L(c(·, s)) achieves its minimum at s = 0. However this does not follow from γ being a minimizing
geodesic, because the curves in the family c have varying endpoints.) This is the current picture:

Here is how the proof will work: If we had that c(L, s) = f(c(0, s)) then we could get the contradiction we
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need from the following inequality for all s:

L(c(·, s)) ≥ d(c(0, s), f(c(0, s)))

≥ d(p0, f(p0)) = L(γ)

The trouble is that we do not have c(L, s) = f(c(0, s))... unless we choose v very cleverly. f is an isometry,
so it carries geodesics to geodesics. And s 7→ c(L, s) is a geodesic. And c(L, 0) = f(p0) = f(c(0, 0)). So if we
could just get s 7→ c(L, s) and s 7→ f(c(0, s)) to agree on their initial velocity then we would have the desired
equality by uniqueness of geodesics and the proof would be complete. The initial velocity of s 7→ c(L, s)
is V (L) and the initial velocity of s 7→ f(c(0, s)) is d

dsf(c(0, s))|s=0 = dfp0( ddsc(0, s)|s=0) = dfp0(v). So the
entire proof now hinges upon finding a v ∈ γ̇(0)⊥ ⊂ Tp0M such that when V is parallel along γ and V (0) = v,
we have V (L) = dfp0(v).

Consider the linear map Ã = P ◦ dfp0 : Tp0M → Tp0M , where P : Tf(p0)M → Tp0M is parallel transport

along γ (for example P (V (L)) = v). Consider the restriction of Ã to γ̇(0)⊥, and call that A.

Claim: A : γ̇(0)⊥ → γ̇(0)⊥ (i.e. γ̇(0)⊥ contains the range of A)
Pf: dfp0 and P are orthogonal, so Ã is orthogonal. The claim is proven if we can show in addition that

Ã(γ̇(0)) = γ̇(0). That is, we need to show that dfp0(γ̇(0)) = P−1(γ̇(0)) = γ̇(L). Consider an arbitrary
t ∈ (0, L), and let p′ = γ(t). Then

d(p′, f(p′)) ≤ d(p′, f(p0)) + d(f(p0), f(p′))

= d(p′, f(p0)) + d(p0, p
′) (because f is an isometry)

= d(p0, f(p0)) (because those were portions of the same minimizing geodesic)

≤ d(p′, f(p′)) (because d(p0, f(p0)) was minimal)

and so the above is string of equalities. In particular:

d(p′, f(p′)) = d(p′, f(p0)) + d(f(p0), f(p′))

Consider the concatenation of the curves γ and f ◦γ (which would have domain [0, 2L]) restricted to [t, t+L].
The above equality shows that this curve (let’s call it c0) is the shortest between its endpoints, p′ and f(p′).
This implies that the first variation of this curve must vanish for all proper variational fields. Computing
the first variation of length for a proper variational field X along c0 requires dealing with piecewise smooth
curves, which we have not yet done. But the calculation is not very different; we simply perform the same
calculation as before on the two smooth pieces of c0. The calculation gives the following for the first variation
of length at c0 along proper X:

−
∫ t+L

t

〈X(t′),∇ ∂
∂t
ċ0(t′)〉dt′ + 〈ċ0(L)− − ċ0(L)+, X(L)〉

Since c0 is minimizing it must be minimizing on its pieces and so it satisfies the geodesic equation. Therefore
the integral vanishes and we are left with the other term. If we then choose some proper variation in such
a way that X(L) = ċ0(L)− − ċ0(L)+, then we get |ċ0(L)− − ċ0(L)+|2 as the first variation of length. But
we found above that the first variation of length vanishes for c0, and so ċ0(L)− = ċ0(L)+. In other words,
γ̇(L) = df(γ̇(0)), completing the proof of the claim.

We apply theorem 5 to A. γ̇(0)⊥ is (n − 1)-dimensional. We just need to make sure the determinant
condition is satisfied. We have detA = det Ã because Ã(γ̇(0)) = γ̇(0). We have detP = +1 because M
is oriented (showing this is a homework). And we have det dfp0 = (−1)n from the hypotheses on f . So

detA = det Ã = (detP )(det dfp0) = (−1)n. Therefore A has 1 as an eigenvalue, and we can finally choose v!
Get v ∈ γ̇(0)⊥ such that A(v) = v. Then V (L) = P−1(v) = dfp0(v), and the proof is complete.

�
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5 Some Homeworks

Theorem 7: (doCarmo problem 9.4) Let Mn be an orientable Riemannian manifold with positive sectional
curvature and even dimension. Let γ : [0, L] → be a normal geodesic in M such that γ̇(0) = γ̇(L) (so
obviously also γ(0) = γ(L)). Then there is some closed curve γ′ : [0, L]→M smoothly homotopic to γ such
that γ′ is strictly shorter than γ.

Proof: Assume the hypotheses. Let p = γ(0). Let P : TpM → TpM denote parallel transport along γ from
0 to L. Note that since γ̇ is a parallel vector field along γ we have P (γ̇(0)) = γ̇(L) = γ̇(0). Therefore, since
P is orthogonal P restricts to a map P ′ : γ̇(0)⊥ → γ̇(0)⊥ on the orthogonal complement of γ̇(0) in TpM .
Since P preserves orientation (by a previous homework) and M is of even dimension we have

detP ′ = detP = 1 = (−1)n

so P ′ satisfies the conditions of Lemma 3.8 in doCarmo. Get a vector v ∈ γ̇(0)⊥ such that P (v) = v. Let V
be the vector field along γ obtained by parallel transport of v along γ. Note that V (0) = V (L) = v. Since γ
is a geodesic the first variation of length at γ along any proper variational field is 0. However we cannot use
this result on V , because it is not proper. But looking to the expression for the first variation in the first
section of these notes (eqn 1), we see that the boundary term

〈V (L), γ̇(L)〉 − 〈V (0), γ̇(0)〉

still vanishes! Therefore the first variation of length at γ along V is indeed 0. If we can now show that the
second variation of length at γ along V is negative, then we will know that there is a curve near γ with
strictly shorter length.

More explicitly: We know how to use the Riemannian exp to construct a smooth variation c : [0, L]×(−ε, ε)→
M which has variational field V (this is seen on p193 in doCarmo). By applying basic analysis to the function
f : (−ε, ε) → R defined by s 7→ L(c(·, s)) using the fact that f ′(0) = 0 and f ′′(0) < 0, we can find an
s0 ∈ (−ε, ε) such that the curve t 7→ c(t, s0) is the desired γ′, i.e. it is strictly shorter than γ. The smooth
homotopy is c|[0,L]×[0,s0]. Notice that the construction of c as c(t, s) = expγ(t)(sV (t)) automatically ensures
that c(0, s) = c(L, s) for all s. Therefore γ′ is a closed curve. So if we can show that f ′′(0) < 0 this proof
will be complete.

Let c be a variation of γ as described in the paragraph above. From equation 2 in these notes, we have the
second variation of length:

d2

ds2
L(c(·, s)) |s=0 =

∫ L

0

(∣∣∣∇ ∂
∂t
V (t)

∣∣∣2 −K(γ̇(t), V (t)) |V (t)|2
)
dt+ 〈∇ ∂

∂s

∂c

∂s
, γ̇(t)〉 |(L,0)

(0,0)

Now two annoying terms conveniently vanish: The first term in the integral vanishes because V is parallel
along γ, and the final boundary term vanishes because the transversal curves of c are geodesics (remember
that we defined c using exp). We are left with

d2

ds2
L(c(·, s)) |s=0 = −

∫ L

0

K(γ̇(t), V (t)) |V (t)|2dt

which is strictly negative because the sectional curvature of M is strictly positive.

�

Theorem 8: Let N1, N2 be closed disjoint submanifolds of a compact Riemannian manifold M . Then the
distance between N1 and N2 is assumed by a geodesic perpendicular to N1, N2.
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Proof: N1, N2 are compact so their distance is positive and there are two points p ∈ N1 and q ∈ N2 whose
distance is precisely that distance. Let γ be a geodesic in M from p to q (M is complete). It remains to
check that γ is perpendicular to both N1 and N2. Now since the distance between p and q is a minimal
distance for pairs of points from N1 ×N2, the first variation of length at γ along any family of curves with
endpoints in N1, N2 must vanish. Let’s assume γ : [0, L]→M is parameterized by arclength. Then equation
1 and the fact that γ is a normal geodesic tells us that for any variational field V which corresponds to some
variation with endpoints in N1, N2 we have

0 = 〈V (t), γ̇(t)〉|L0

So the proof will be complete if we can show that given any v ∈ TpN1 ⊂ TpM we can find a variation c of γ
with variational field V such that V (0) = v and V (L) = 0, and such that c(s, 0) ∈ N1 and c(s, L) ∈ N2 for
all s ∈ (−ε, ε). (Because then the equation above holds and gives exactly the desired result, and a symmetric
argument could be applies to q and TqN2 to the give the other half of the result. Or we could just flip γ).

Consider any v ∈ TpN1 ⊂ TpM . Get a path σ : (−e′, e′)→ N1 such that σ′(0) = v. Choose e′′ > 0 such that
expp is a diffeo on a ball of radius e′′ at the origin in TpM . Get e > 0 such that σ((−e, e)) ⊆ expp(Be′′(0)).
Define σ̃ : (−e, e)→ TpM to be exp−1

p ◦ σ|(−e,e). Define c′ : (−e, e)× [0, L]→M by

c′(s, t) = expγ(t)(Pγ,0,t(η(t)σ̃(s)))

where Pγ,0,t : TpM → Tγ(t)M denotes parallel transport along γ, and η : [0, L] → R is a smooth function
such that η(0) = 1 and η(L) = 0. Then it is easily checked that c has the desired properties, and the proof
is complete.

�

6 Intro to Spaces of Constant Curvature

This section will be an attempt to classify spaces of constant curvature which are connected, simply con-
nected, and complete. Since we can always rescale curvatures by rescaling metrics, we only really need to
think about curvatures of 1, −1, and 0.

We begin the discussion with three model spaces: Rn, Sn, and Hn. We already know how to construct
Rn. Hn, hyperbolic space, is the upper half plane {(x1, x2, · · · , xn−1, y) : x1, · · · , xn−1 ∈ R � y > 0} with
topology and differentiable structure inherted from Rn and with with metric

gHn =
1

y2
((dx1)2 + · · ·+ (dxn−1)2 + dy2)

Notice that Hn is diffeomorphic to Rn.

We can try to study these model spaces by using so-called “generalized coordinates.” For example, we can
study Rn by defining the following diffeomorphism to Rn \ {0}:

ψ : Sn−1 × R+ → Rn \ {0}, ψ(w, r) = rw

We can use ψ to pull back the euclidian metric on Rn \ {0}: ψ∗gRn . It is true that Sn−1 × R+ already has
the product metric dr2 + gSn−1 , but pulling back the metric on Rn \ {0} gives a slightly different metric:

ψ∗gRn = dr2 + r2gSn−1

(This is not too difficult to compute, just evaluate ψ∗gRn at (w, r) at different combinations of ∂
∂r |w,r and

arbitrary elements of TwS
n−1).

10



We can apply the same method on Sn−1. Choose a north and south pole: say N = (0, · · · , 0, 1) and S = −N .
Then define a diffeomorphism to Sn \ {N,S} as follows:

ψ : Sn−1 × (0, π)→ Sn \ {N,S}, ψ(w, r) = (w sin r, cos r)

(w sin r is the first n − 1 components and cos r is the last component). This in a sense “coordinatizes” the
n-sphere minus the poles by naming each point in terms of some point w on the equator of Sn and some
angle r from the north pole. Pulling back the metric on Sn yields:

ψ∗gSn = dr2 + sin2 rgSn−1

Now we’re not quite going to repeat the process for Hn. Instead of coming up with generalized coordinates
and pulling back the metric, we will invent a metric directly: We will consider Sn−1 × R+ with the metric
gH = dr2 + sinh2 rgSn−1 , which is inspired by the paragraph above. Let ψ : Sn−1 × R+ → Rn \ {0} with
ψ(w, r) = wr as before. Let φ = ψ−1. It turns out that φ∗gH extends smoothly across the origin. (Why?
We showed this in class. Note that in the pulled back r coordinate we have gRn = dr2 + r2gSn−1 and write

φ∗gH as gRn + sinhr −r2
r2 (gRn − dr2) then think about it).

Our next task is to prove some things about gH : That it has constant sectional curvature -1, and that the
extended metric on Rn is complete!

Before we continue studying spaces of constant curvature, we will develop some more advanced techniques
to compute curvature...

7 Connection Forms and the Curvature Form

Let (Mn, g) be a Riemannian manifold with local orthonormal frame {e1, · · · , en} defined on U and with
dual frame ω1, · · · , ωn. Note that since the covariant derivative ∇ is tensorial in its first variable, upon
omitting the first variable we find ourselves left with a (1,1) tensor. The connection forms of ∇ associated
to the local orthonormal frame {ei} are 1-forms ωij such that

∇vei = ωji (v)ej i.e., ∇ei = ωji ⊗ ej

Now since the basis is orthonormal we have for v ∈ TpM , p ∈ U :

0 = v(〈ei, ej〉) = 〈∇vei, ej〉+ 〈ei,∇vej〉
= 〈ωki (v)ek, ej〉+ 〈ei, ωkj (v)ek〉

Or simply:
〈ωki ⊗ ek, ej〉+ 〈ei, ωkj ⊗ ek〉 = 0

where it is understood that the inner product applies to the vector component of the tensor product. This
gives the result

ωij + ωji = 0 (3)

That is, the matrix of 1-forms ω is skew-symmetric.

(Side note on taking the covariant derivative of tensor fields: We define the covariant derivative of a function f
to simply be df . We then start with a definition of covariant derivative for vector fields, which is pinned down
by the requirement that it be linear/tensorial, leibniz, metric-compatible, and torsion-free. And we extend
to tensors of other rank by demanding two properties: commutativity of the connection with contractions,

11



and leibniz rule of the connection over tensor products. In particular the derivative of a 1-form ends up
being defined by (∇vω)(X) = v(ω(X))− ω(p)(∇vX) for X a smooth vector field)

Consider applying a derivative ∇ to the (1,1) tensor ∇ei = ωki ⊗ ek. We get the (1,2) tensor ∇2ei whose
value at smooth vector fields X,Y is:

(∇2ei)(X,Y ) = ((∇ωji )⊗ ej + ωji ⊗ (∇ej))(X,Y )

= (∇Xωji )(Y )ej + ωji (Y )(∇Xej)
= (∇Xωji )(Y )ej + ωji (Y )ωkj (X)ek

The interesting thing about ∇2ei is its close relationship with curvature. We can evaluate its commutator
using the rules for ∇ on (1,2) tensors:

−(∇2ei)(X,Y ) + (∇2ei)(Y,X) = −(∇X(∇ei))(Y ) + (∇Y (∇ei))(X)

= −∇X∇Y ei +∇∇XY ei +∇Y∇Xei −∇∇YXei
= ∇Y∇Xei −∇X∇Y ei +∇∇XY−∇YXei
= ∇Y∇Xei −∇X∇Y ei +∇[X,Y ]ei

= R(X,Y )ei

So let us compute the commutator of ∇2ei in terms of the connection one-forms:

−(∇2ei)(X,Y ) + (∇2ei)(Y,X) = [(∇Y ωji )(X)− (∇Xωji )(Y )]ej + (ωji (X)ωkj (Y )− ωji (Y )ωkj (X))ek

= [Y (ωji (X))− ωji (∇YX)−X(ωji (Y )) + ωji (∇XY )]ej + (ωji ∧ ω
k
j )(X,Y )ek

= [Y (ωji (X))−X(ωji (Y ))− ωji ([X,Y ])]ej + (ωji ∧ ω
k
j )(X,Y )ek

= dωji (Y,X)ej + (ωji ∧ ω
k
j )(X,Y )ek

= −dωji (X,Y )ej + (ωki ∧ ω
j
k)(X,Y )ej

= −(dωji + (ωjk ∧ ω
k
i ))(X,Y )ej

We define the curvature forms Ωji associated with the local orthonormal fram {ei} to be the two-forms:

Ωji = dωji + ωjk ∧ ω
k
i

Note that the matrix of curvature forms is skew-symmetric. Here is the neat result from all this work:

R(X,Y )ei = −Ωji (X,Y )ej

And

K(ei, ej) = 〈R(ei, ej)ei, ej〉 = 〈−Ωki (ei, ej)ek, ej〉
= Ωij(ei, ej) (with no sum over i)

Okay we almost have everything we need to start using this to compute curvature. The missing piece is
having a way to find the connection 1-forms. What remains is to compute dωi and then use that and
skew-symmetry to characterize connection 1-forms. Let’s begin with dωi:

dωi(ek, el) = ek(ωi(el))− el(ωi(ek))− ωi([ek, el])
= −ωi([ek, el])
= −ωi(∇ekel −∇elek)

= −ω i(ωml (ek)em − ωmk (el)em)

= −ωil(ek) + ωik(el)

= (ωj ∧ ωij)(ek, el)

12



So we have
dωi = ωj ∧ ωij (4)

How do we actually calculate the connection one-forms in practice? Well we could use a coordinate basis
which has been gramm-schmidt orthonormalized and compute the connection one-forms from the correspond-
ing christoffel symbols. But that is absolutely disgusting, and the point of this technique was to avoid such
a calculation. The way we compute the connection one-forms is by cleverly finding a matrix of one-forms ωij
that satisfies equations 3 and 4! Check it out:

Theorem 9: The connection one-forms {ωij} corresponding to (M, g) and a local orthonormal coframe

{ω1, · · · , ωn} are completely characterized by equations 3 and 4.

Proof: This proof is a homeowork. Suppose (M, g) is a Riemannian manifold and {ω1, · · · , ωn} is a local
orthonormal coframe with dual frame {e1, · · · , en}. Suppose we have a collection of n2 one-forms {ωij} such
that:

ωij + ωji = 0

and:
dωi = ωj ∧ ωij

Then from the above identity we have

dωi(ej , el) = (ωk ∧ ωik)(ej , el)

= ωij(el)− ωil(ej)

And from the definition of the exterior derivative (or an identity if you prefer):

dωi(ej , el) = ej(ω
i(el))− el(ωi(ej))− ωi([ej , el])

= −ωi([ej , el])
= ωi(∇elej −∇ejel)

So we have
ωij(el)− ωil(ej) = ωi(∇elej)− ωi(∇ejel)

The first term on each side of the equality is skew-symmetric in the indices i, j, and the second term on
each side of the equality is skew-symmetric in the indices i, l. The skew-symmetries on the left-hand-side are
hypotheses of the theorem. The skew-symmetries on the right-hand-side follow from the fact that “ωi(∇elej)”
is a fancy way of saying “the ith component function of the vector field ∇elej .” In other words it is the true
(i, j)th connection 1-form associated with the coframe {ωk} evaluated at el. Keeping this in mind we can
pull the following trick: add the equation to itself with indices permuted cyclically, and then subtract a copy
of the equation with a further cyclic permutation of indices. The result is a lot of nice cancellations and a
final equality:

2ωij(el) = 2ωi(∇elej)

�

We can use the curvature forms to see that under the assumption of constant sectional curvature (i.e.
Ωij = cωu ∧ ωj) we have the following nice equality for curvature:

(X,Y, Z,W ) = c(〈X,Z〉〈Y,W 〉 − 〈Y,Z〉〈X,W 〉)
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We are now ready to use the connection one-forms to calculate the sectional curvature of our model space
for (hopefully) hyperbolic space. But first, just for fun let’s use this machinery to give an alternate proof of
the fundamental theorem of Riemannian geometry:

Theorem 10: Let (M, g) be a Riemannian manifold. Then there exists a unique ∇ : X(M)×X(M)→ X(M)
which is tensorial in the first variable, linear and leibniz in the second variable, torsion free, and compatible
with g.

Proof: Let {e1, · · · , en} be a local orthonormal frame with dual frame {ω1, · · · , ωn}. Define a collection
of one-forms {ωij} by:

ωik(el) =
1

2
(dωi(ek, el) + dωk(el, ei)− dωl(ei, ek)) (5)

Note that we now automatically have ωij = −ωji and dωi = ωk ∧ ωik. Now define

∇(X, ei) = ωji (X)ej

and extend this definition for Y = f iei by

∇(X,Y ) = X(f i)ei + f i∇(X, ei)

Note that this definition is by construction tensorial in the first variable and linear and leibniz in the second.
It remains to check that ∇ is torsion-free, metric-compatible, unique, and that it is well-defined (independent
of choice of orthonormal frame, so we can globally define ∇ using local frames). If we fix a local orthonormal
frame beforehand then uniqueness and well-definedness follow from theorem 9. So we really just need to
ensure that choosing a different orthonormal coframe {ω′1, · · · , ω′n} gives the same ∇. I’m not going to
do this explicitly because it is tedious, but it is not too hard to see. Consider some other connection ∇′
defined similarly to ∇ except using a different local orthonormal coframe {ω′1, · · · , ω′n} with dual frame
{e′1, · · · , e′n}. Then it is easily checked that ∇(X,Y ) and ∇′(X,Y ) are two ways of writing the same thing
in different bases.

Let’s check that ∇ is torsion-free. Note that

ωk([ei, ej ]) = −dωk(ei, ej) + ei(ω
k(ej))− ej(ωk(ei))

= ωkl ∧ ωl(ei, ej) + ei(ω
k(ej))− ej(ωk(ei))

= ωkj (ei)− ωki (ej) + ei(ω
k(ej))− ej(ωk(ei))

= ωkj (ei)− ωki (ej)

For vector fields X = Xiei, Y = Y iei we have

∇(X,Y )−∇(Y,X) = X(Y i)ei − Y (Xi)ei + Y i∇(X, ei)−Xi∇(Y, ei)

= (X(Y i)− Y (Xi))ei + Y iωji (X)ej −Xiωji (Y )ej

= (X(Y i)− Y (Xi))ei + ωji (Y
iX −XiY )ej

= (X(Y i)− Y (Xi) + ωij(Y
jX −XjY ))ei
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and we have

[X,Y ] = [Xiei, Y ]

= Xi[ei, Y ]− Y (Xi)ei

= XiY j [ei, ej ] +Xiei(Y
j)ej − Y (Xi)ei

= XiY j [ei, ej ] +X(Y i)ei − Y (Xi)ei

= XiY j [ωkj (ei)− ωki (ej)]ek + (X(Y i)− Y (Xi))ei

= [XiY jωkj (ei)−XjY iωkj (ei)]ek + (X(Y i)− Y (Xi))ei

= [Y jωkj (X)−Xjωkj (Y )]ek + (X(Y i)− Y (Xi))ei

= [ωkj (Y jX −XjY )]ek + (X(Y i)− Y (Xi))ei

= [ωij(Y
jX −XjY ) +X(Y i)− Y (Xi)]ei

So
∇(X,Y )−∇(Y,X) = [X,Y ]

and ∇ is indeed torsion-free.

It remains only to check compatibility of ∇ with g. For vector fields X = Xiei, Y = Y iei, Z = Ziei we
have

Z(〈X,Y 〉) = Z(
∑
i

XiY i)

=
∑
i

(Y iZ(Xi) +XiZ(Y i))

and we have

〈∇(Z,X), Y 〉+ 〈X,∇(Z, Y )〉 = 〈Z(Xi)ei +Xi∇(Z, ei), Y 〉+ 〈X,Z(Y i)ei + Y i∇(Z, ei)〉
= 〈Z(Xi)ei +Xiωji (Z)ej , Y 〉+ 〈X,Z(Y i)ei + Y iωji (Z)ej〉
= 〈Z(Xi)ei +Xjωij(Z)ei, Y 〉+ 〈X,Z(Y i)ei + Y jωij(Z)ei〉

=
∑
i

[Y i(Z(Xi) +Xjωij(Z)) +Xi(Z(Y i) + Y jωij(Z))]

= Z(〈X,Y 〉) +
∑
i

[XjY i +XiY j ]ωij(Z)

= Z(〈X,Y 〉)

where in the last line we have used antisymmetry of {ωij}

�
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8 Back to Spaces of Constant Curvature

Let’s try to apply the results of the previous section to Sn−1 × R+ with the metric

gf = dr2 + f2(r)gSn−1

(where r is the name of the coordinate on the R+ factor of the space.) Let {θi} be a local orthonormal
coframe for Sn−1 with a corresponding local orthonormal frame {εi}. Define the following local orthonormal
frame for our manifold:

ei =
1

f
εi

for 1 ≤ i ≤ n− 1 and

en =
∂

∂r
The corresponding dual frame is:

ωi = fθi for 1 ≤ i ≤ n− 1 and ωn = dr

Let’s check out the derivative so we can get a hint as to what would be a good guess for the connection
one-forms. First note that dωn clearly vanishes. For 1 ≤ i ≤ n− 1 we have:

dωi = f ′(r)dr ∧ ωi + f(r)dθi =
f ′(r)

f(r)
ωn ∧ ωi + f(r)dθi

Let θij denote the connection one-forms for Sn−1. Then:

dωi =
f ′(r)

f(r)
ωn ∧ ωi + f(r)θj ∧ θij =

f ′(r)

f(r)
ωn ∧ ωi + ωj ∧ θij

(keep in mind that the sum over j is from 1 to n− 1). We want to choose wij so that this is ωj ∧ωij summed

from 1 to n. The obvious choice is ωin = f ′(r)
f(r) ω

i, ωij = θij , ω
n
i = − f

′(r)
f(r) ω

i, and ωnn = 0 for all 1 ≤ i, j ≤ n− 1.

Check that this is a skew-symmetric matrix of one-forms and that it satisfies the derivative condition! Then
by the last theorem in the previous section we know that {ωij} is the set of connection 1-forms corresponding
to {ei}.

Let’s get the curvature forms! For 1 ≤ i, j ≤ n− 1 we have

Ωij = dωij +

n∑
k=1

ωik ∧ ωkj

= dθij +

n−1∑
k=1

θik ∧ θkj −
(
f ′(r)

f(r)

)2

ωi ∧ ωj

= Ω̂ij −
(
f ′

f

)2

ωi ∧ ωj

where Ω̂ denotes the curvature forms of Sn−1 corresponding to {θi}. We can show (figure out how) that
since Sn−1 has constant section curvature +1, Ω̂ij = θi ∧ θj . So

Ωij = θi ∧ θj −
(
f ′

f

)2

ωi ∧ ωj

=
1

f2
ωi ∧ ωj −

(
f ′

f

)2

ωi ∧ ωj

=
1− f ′2

f2
ωi ∧ ωj
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So this gives us the sectional curvature for 1 ≤ i, j ≤ n− 1, i 6= j:

K(ei, ej) =
1− f ′(r)2

f(r)2

Notice that if f(r) = sinh(r) then this is just −1, as desired! Now suppose 1 ≤ i ≤ n−1, let’s compute what
is left of sectional curvature, K(ei, en).

Ωin = dωin +

n∑
k=1

ωik ∧ ωkn

= d

(
f ′

f
ωi
)

+

n−1∑
k=1

θik ∧
f ′

f
ωk

=

(
f ′

f

)′
dr ∧ ωi +

f ′

f
dωi +

f ′

f

n−1∑
k=1

θik ∧ ωk

=

(
f ′

f

)′
dr ∧ ωi +

f ′

f
(

n∑
k=1

ωk ∧ ωik) +
f ′

f

n−1∑
k=1

θik ∧ ωk

=

(
f ′

f

)′
dr ∧ ωi +

(
f ′

f

)2

ωn ∧ ωi +
f ′

f

(
n−1∑
k=1

ωk ∧ ωik + θik ∧ ωk
)

=

(
f ′

f

)′
dr ∧ ωi +

(
f ′

f

)2

ωn ∧ ωi

=

((
f ′

f

)′
+

(
f ′

f

)2
)
ωn ∧ ωi

and now it is easily checked that in the case f(r) = sinh(r) we have sectional curvature −1 for ei, en as
desired!

Now let’s go back to the map F : Sn−1 × R+ → Rn \ {0} defined by (ω, r) 7→ ωr. Apparently (F−1)∗gH
extends smoothly across the origin. Let g̃H denote this extended metric on Rn. Then the sectional curvature
of (Rn, g̃H) is −1 and it is a complete manifold. One way to check this is to check that radial lines from the
origin are geodesics. (Their derivatives correspond via F to ∂

∂r so one simply needs to check that ∇ ∂
∂r

∂
∂r = 0.

This is not so hard because we already got the connection 1-forms!)
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Let’s go back to the upper half-space model and also compute the curvature there. This is

Hn = (Rn+ , gHn =
gRn |Rn+
y2

)

Choose the orthonormal frame εi = y ∂
∂xi , where x1, · · ·xn are the identity chart coordinates. The corre-

sponding coframe is θi = 1
ydx

i. We have

dθi = − 1

y2
dy ∧ dxi = −θnθi

We’d like to guess at θij such that dθi =
∑
θj ∧ θij . That is, we want

∑
θj ∧ θij = −θnθi. Let’s try guessing

θij = 0 for j < n and θin = −θni = −θi. Certainly this is an anti-symmetric indexed collection of 1-forms and

it is readily checked that we do indeed get dθi =
∑
θj ∧ θij . And so these are the curvature 1-forms!

Alright let’s compute Ωij = dθij +
∑
θikθ

k
j . For i, j < n the dθij term obviously vanishes and the sum term

leaves us with just Ωij = −θi ∧ θj . And Ωin = dθin +
∑
θik ∧ θkn = −dθi = −θi ∧ θn. So for all i, j we have

Ωij = −θi ∧ θj

So Hn has constant sectional curvature −1. Yay!

Showing that gHn is a complete metric... I did not completely follow this discussion so I will leave this out.

9 Classifying Space Forms

Theorem 11: Let M be a connected complete n-dimensional Riemannian manifold with constant sectional
curvature K. Then the universal cover M̃ of M with the covering metric is isometric to Hn if K = −1, Rn
if K = 0, and Sn if K = 1.

General Strategy of Proof:
Let (Mn, g) be a complete connected simply connected Riemannian manifold of constant sectional curvature
K ∈ {0,±1}. How can we produce an isometry from M to one of our model spaces? Well if K = −1 then
the Hadamard theorem tells us that expq is a global diffeomorphism from TqM to M for q ∈ M . So pick a
linear isometry I : TqM → TpH

n for some choice of q ∈M,p ∈ Hn. The consider the map

expHn

p ◦I ◦ (expMq )−1 : M → Hn

The task is show that this map is an isometry. What about the case K = 1? Then the big difference is that
exp is not a global diffeomorphism, but rather a diffeo on a ball of radius π in the tangent space. So we
must consider something like

(expS
n

p |Bπ(0)) ◦ I ◦ (expMq )−1 : M → Sn \ {−p}

Then we will have to define another one of those cenetered at a different point, show that they are both
isometries, and finally show that they agree on the common part of their domains.

Dealing with exp∗p g on TpM :
This is not quite a metric on TpM \{0}, unless we stick to a ball on which exp is a diffeomorphism. Consider
the vector field ∂

∂r on the manifold TpM , defined by ∂
∂r (v) = v/|v| ∈ Tv(TpM). Then (exp∗p g)( ∂∂r ,

∂
∂r ) = 1,
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because

|(d expp)v(v)| = |(d expp)v(
d

dt
tv|t=1)|

= |( d
dt

expp(tv)|t=1)|

= |( d
dt

expp(tv)|t=0)|

= |v|

and

(exp∗p g)(v)(v, v) = g((d expp)v(v), (d expp)v(v)) = |v|2

So we have that expp is kind of like an isometry in the radial direction. Next consider w ⊥ v in TpM .
Then (exp∗p g)(v)(v, w) vanishes by the Gauss lemma. Another way to see that it vanishes is to use the
first variation of length along a family of radial geodesics (exponentiation of radial lines from the origin in
TpM with transverse curves being circles such that at v ∈ TpM the velocity along a transverse curve is
w ∈ Tv(TpM).

Now let’s handle (exp∗p g)(v)(w,w) for w ⊥ v. To do this we need to compute (d expp)v(w). Consider the
family of curves (t, s) 7→ t(v + sw) in TpM . Let c(t) be the geodesic expp(tv). Define a vector field Y along
c by

Y (t) =
∂

∂s
expp(t(v + sw))|s=0

and note that Y (1) is precisely what we’re trying to compute. Y is a Jacobi field (as is the variational field

corresponding to any family of geodesics. It is clear that Y (0) = 0. For (̇Y )(0) we compute:

Ẏ (0) = (∇ ∂
∂t
Y )(0)

= (∇ ∂
∂t

∂

∂s
expp(t(v + sw)))(0, 0)

= (∇ ∂
∂s

∂

∂t
expp(t(v + sw)))(0, 0)

= (∇ ∂
∂s

(v + sw))(0, 0)

= w

where the second to last line involves the covariant derivative of a vector field along a constant curve, and
the last line follows from the following short theorem (which is a homework):

Theorem 12: Let c : [a, b] → M be a constant curve at p on the Riemannian manifold (M, g). Let
V : [a, b] → TM be a vector field along c. Then (∇ ∂

∂t
V )(t) is the derivative at t of the curve V defines in

TpM , moved from TV (t)(TpM) to TpM .

Proof: Get a coordinate neighborhood (U, x1, · · · , xn) of p. Define ξi(t) = V (t)(xi) so that we have
V (t) = ξi(t) ∂

∂xi |p. Then for t ∈ [a, b] we have:

(∇ ∂
∂t
V )(t) = (ξi)′(t)

∂

∂xi
|p + ξj(t)

(
∇dct( ∂∂t |t)

∂

∂xj
|p
)

= (ξi)′(t)
∂

∂xi
|p

because dct(
∂
∂t |t) = 0.
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So we’ve got that Y satisfies

Ÿ +R(ċ, Y )ċ = 0

Y (0) = 0

Ẏ (0) = w

This is a second order ODE system which completely determines Y (1)! Note that Y is normal to c:

d

dt
〈Y (t) , ċ(t)〉 = 〈Ẏ (t) , ċ(t)〉 which vanishes at 0

d2

dt2
〈Y (t) , ċ(t)〉 = 〈Ÿ (t) , ċ(t)〉 = −〈R(ċ, Y )ċ , ċ〉 which vanishes by antisymmetry of R

=⇒ 〈Y , ċ〉 = 0

Now let’s consider the constant curvature 0 case...

Introduce a parallel orthonormal frame along c, {ei}. Let’s make e1 = 1
|v| ċ(t). Suppose in this frame we have

Y (t) = ξi(t)ei(t). Then clearly ξ1 vanishes because Y is normal to c. Suppose w in this basis is w = wiei(0).
The ODE system for Y in this basis looks like:

ξ̈ = 0

ξi(0) = 0

ξ̇i(0) = wi

The solution is Y (t) = twiei(t). So |Y (t)|2 = t2|w|2. So

(exp∗p g)(v)(w,w) = |Y (1)|2 = |w|2

Now let’s make use of the facts we’ve established:

(TpM, g(p)) is an inner product space. But inner product spaces have a very natural metric given by the
inner product, because the space itself can be identified with its tangent space at any point. So what we
have shown via this identification is that expp is in fact an isometry from the Riemannian manifold TpM , to
(M, g). The three facts that show this are that expp preserves radial lengths, preserves orthogonality with
the radial direction, and preserves lengths orthogonal to the radial direction. Actually we showed that expp
was an isometry at all v ∈ TpM away from the origin, but the origin is very easy to deal with (d(expp)0 is
the identity map on TpM). Let us now find a convenient way to write exp∗p g:

Define a function r : TpM \ {0} → R by r(v) = |v|. And define a function pr : TpM \ {0} → §(TpM) by
pr(v) = v

|v| . Let gS(TpM) = pr∗[the induced metric on the unit sphere in TpM ]. Finally, define:

ĝ = dr2 + r2gS(TpM)

Claim: exp∗p g = ĝ (proving some of this was a homework)
Proof: Consider any v ∈ TpM and any w ∈ Tv(TpM) ∼= TpM , with w ⊥ v wrt exp∗p g (so also wrt g(p) by
what we established).
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In order to do this calculation carefully, let’s make the identification Tv(TpM) ∼= TpM explicit. Choose some
orthonormal (wrt g(p)) basis {ei} for TpM . Let φ : TpM → Rn denote the coordinates given by that basis
(so φ : uiei 7→ (u1, · · · , un)). Let (x1, · · · , xn) denote the coordinate functions of φ. Then the identification
is precisely uiei ↔ ui ∂

∂xi |v. Suppose v = viei and w = wiei.

Let’s now establish the claim, keeping in mind how the correspondence works:

ĝ(v)(v, v) = dr2(v, v) + |v|2gS(TpM)(v)(v, v) = (dr ⊗ dr)(v, v) = (dr(v))2 = v(r)2 =

(
vi
∂r

∂xi
|v
)2

= |v|2

ĝ(v)(w, v) = dr2(w, v) + |v|2gS(TpM)(v)(w, v) = dr(w)dr(v) = |v|dr(w) = |v|wi ∂r
∂xi
|v = |v|

∑
i

wi
vi

|v|
= 0

ĝ(v)(w,w) = w(r)2 + |v|2gS(TpM)(v)(w,w) =

(
wi

∂r

∂xi
|v
)2

+ |v|2gS(TpM)(v/|v|)(dprv(w), dprv(w))

=

(∑
i

wi
vi

|v|

)2

+ |v|2gS(TpM)(v/|v|)(dprv(w), dprv(w)) = |v|2gS(TpM)(v/|v|)(dprv(w), dprv(w))

= |v|2gS(TpM)(v/|v|)(w/|v|, w/|v|) = gS(TpM)(v/|v|)(w,w) = |w|2

This completes the proof of the claim. We are of course already finished with the case K = 0 because
(TpM, g(p)) is isometric to euclidian space.

Case K = −1:
The theorem of Hadamard tells us that expp is a diffeomorphism. Again we need to consider (exp∗p g)v(v, v),
(exp∗p g)v(v, w), and (exp∗p g)v(w,w) where v, w ∈ TvTpM and w ⊥ v wrt g(p). Our proof for the previous
case works here for the first two and gives the same result. (We of course do not expect the same result for
(exp∗p g)v(w,w) because expp is not supposed to be an isometry lol). In order to compute (exp∗p g)v(w,w)
we can define the Jacobi field Y as before to try and compute d(expp)v(w) = Y (1). So we’ve got that Y
satisfies

Ÿ +R(ċ, Y )ċ = 0

Y (0) = 0

Ẏ (0) = w

And as we’ve already shown Y is normal to c. So:

R(ċ, Y )ċ = 〈ċ , Y 〉ċ− 〈ċ , ċ〉Y = −|ċ|2Y = −|v|2Y

So:

Ÿ − |v|2Y = 0

Y (0) = 0

Ẏ (0) = w

Let w̃ be the parallel transport of w along c. To solve for Y , make the guess Y (t) = f(t)w̃(t). This leaves
us with the system

f̈ − |v|2f = 0

f(0) = 0

ḟ(0) = 1
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which has solution f(t) = 1/|v| sinh(|v|t). So

Y (t) =
1

|v|
sinh(|v|t)w̃(t)

Notice that w̃ has constant norm |w| because it is a parallel vector field. We are of course interested in Y (1)
so we can compute:

(exp∗p g)v(w,w) =
|w|2

|v|2
sinh2(|v|) =

g(p)(w,w)

r2
sinh2(r) (where r = |v|)

We are now ready to wrap up the proof for this case. Let ĝ = dr2 + sinh2(r)gS(TpM)

Claim: exp∗p g = ĝ (by the way this claim is a homework)
Proof: Consider any v ∈ TpM and w ∈ Tv(TpM) with w ⊥ v wrt g(p).

ĝ(v)(v, v) = dr2(v, v) + sinh2(|v|)gS(TpM)(v)(v, v) = (dr ⊗ dr)(v, v) = (dr(v))2 = v(r)2 =

(
vi
∂r

∂xi
|v
)2

= |v|2

ĝ(v)(w, v) = dr2(w, v) + sinh2(|v|)gS(TpM)(v)(w, v) = dr(w)dr(v) = |v|dr(w) = |v|wi ∂r
∂xi
|v = |v|

∑
i

wi
vi

|v|
= 0

ĝ(v)(w,w) = w(r)2 + sinh2(|v|)gS(TpM)(v)(w,w) =

(
wi

∂r

∂xi
|v
)2

+ sinh2(|v|)gS(TpM)(v/|v|)(dprv(w), dprv(w))

=

(∑
i

wi
vi

|v|

)2

+ sinh2(|v|)gS(TpM)(v/|v|)(dprv(w), dprv(w))

= sinh2(|v|)gS(TpM)(v/|v|)(dprv(w), dprv(w)) =
|w|2

|v|2
sinh2(|v|)

This proves the claim. Now consider some other simply connected complete n-dim’l manifold (M ′, g′) with
constant section curvature −1. We obtain a similar form for (expM

′

p′ )∗(g′). Choose some linear isometry

L : (TpM, g(p))→ (Tp′M
′, g′(p′))

Then given that both (expMp )∗(g) and (expM
′

p′ )∗(g′) can be written like “dr2 + sinh2(r)gS(TpM)” (with things
defined on the right tangent space), it easy to check that L is in fact automatically a linear isometry:

L : (TpM, (expMp )∗(g))→ (Tp′M
′, (expM

′

p′ )∗(g′))

This implies that
L∗(expM

′

p′ )∗(g′) = (expMp )∗(g)

In other words:
(expM

′

p′ ◦L ◦ (expMp )−1)∗(g′) = g

So we have an isometry
expM

′

p′ ◦L ◦ (expMp )−1 : M →M ′

and we have proven that up to isometry, there is a unique simply connected complete curvature −1 space!

Case K = +1:
This time we cannot use the theorem of Hadamard to get that expp is a diffeomorphism. We do pretty much
the same stuff that we did in the K = −1 case, except this time we get

ĝ = dr2 + sin2(r)gS(TpM)
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as the form of exp∗p g. And if we choose a point q ∈ Sn and a linear isometry L : TqS
n → TpM then we

obtain a local isometry
F = expp ◦L ◦ (expS

n

q |Bπ(0))
−1 : Sn \ {−q} →M

There are a few issues: (1) F is not defined on all of Sn so it needs to be extended, (2) it is not clear that
F is surjective, and (3) it is not clear that F is a diffeomorphism.

To extend F we pick some other point q′ ∈ Sn \ {q,−q}, let p′ = F (q′), and define

G = expp′ ◦H ◦ (expS
n

q′ |Bπ(0))
−1

where H is a linear isometry H : Tq′S
n → Tp′M defined by:

H = dFq′

No matter what our choice of linear isometry H was, we would have that G is a local isometry just as F is.
But the way we chose H is exactly so that F and G actually agree on the common part of their domain:
Sn \ {q,−q}. For we have G(q′) = p′ = F (q′) and we have

dGq′ = d(expp′)0 ◦H ◦ d((expS
n

q′ |Bπ(0))
−1)q′ = H = dFq′

Therefore we have the smooth map and local isometry

F = F ∪G : Sn →M

and it remains only to check that it is a diffeomorphism. It is surjective because F(Sn) is compact (and
therefore closed) and F(Sn) is open (because local isometries are local diffeomorphisms) so we have F(Sn) =
M (because M is connected). Why is F a diffeomorphism? Well, being a surjective local diffeomorphism,
F is a covering map. (Proving this is a homework which I did on paper). And Sn is compact, so F is
a diffeomorphism because M is simply connected. (What does Sn being compact have to do with that
conclusion?). And we have completed the classification theorem for spaces of constant curvature!

10 Some Results that Follow

Theorem 13: Let G be an isometry subgroup for the Riemannian manifold (M̃, g̃). Suppose G acts on M
properly discontinuously. Then g̃ descends to a metric on the quotient M = M̃/G (i.e. such that π : M̃ →M
is a local isometry).

Proof: M is a smooth manifold in a natural way (we will not go over this) such that π is a local
diffeomorphism. π is a regular (or “normal” covering). Moreover, the group of deck transformations of π is
G. Consider any p ∈M . There is a neighborhood U of p such that π−1(U) is the union of the disjoint open
sets {Vα : α ∈ J} each of which is mapped diffeomorphically onto U . Notice that because G is the deck
transformation group and it acts transitively on the fibers of π, we have

(π|−1
Vα

)∗g̃ = (π−1
Vβ

)∗g̃

for all α, β ∈ J . So if we define a metric g on M by letting g(x) be (π|−1
Vα

)∗g̃ (x) for some choice of α ∈ J
for the appropriate set {Vα : α ∈ J} (which is based on π(x)), then it isn’t all that hard to show that g is
smooth and makes π a local isometry.

�

Theorem 14: Let M be a complete connected Riemannian manifold with constant sectional curvature 0, 1,
or −1. Then M is isometric to N/Γ where N is Rn, Sn, or Hn respectively and Γ is some isometry subgroup
of N which acts on N properly discontinously.
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Proof: Consider the universal cover M̃ of M , π : M̃ → M . Let g̃ = π∗g. Then from our classification
theorem we have an isometry Φ : M̃ → N where N is the appropriate model space defined in the statement
of the theorem. Let G be the group of deck transformations of π. Define Γ = {Φ◦h ◦Φ−1 : h ∈ G}. Then it
is easily checked that Γ acts properly discontinuously on N Give N/Γ the induced metric as in the theorem
above. Then there is a well-defined way to write an isometry N/Γ → M (we use Φ the fact that Φ sends
fibers to fibers to define our map, then it is not difficult to verify that it is an isometry).

�

11 Some Hodge Theory

Let (M, g) be a compact oriented Riemannian manifold, and suppose p ∈M and {e1, · · · , en} is a positively
oriented orthonormal basis for TpM . Let {ω1, · · ·ωn} be the corresponding dual basis. The inner product g(p)
for TpM induces an inner product on ΛkTpM , in which we declare the basis {ωi1 ∧ · · · ∧ωik : i1 < · · · < ik}
to be orthonormal. This turns out to be independent of the choice of {e1, · · · , en}. (homework)

We define an inner product on Ω∗(M) as follows: If α, β ∈ Ωk(M), then

〈α , β〉L2 =

∫
M

〈α , β〉 dvol

and if α and β have different degree then they are orthogonal.

We define the Hodge Laplatian by
∆H = dd∗ + d∗d

where d∗ is the formal adjoint of d (that is, d∗ is some linear map that takes k-forms to (k − 1)-forms such
that 〈dα , β〉L2 = 〈α , d∗β〉L2). Let’s calculate d∗. Before we begin, let us define the Hodge star, ∗.

Suppose p ∈M . Define ∗ : ΛkTpM → Λn−kTpM by

α ∧ ∗β = 〈α , β〉 dvol

Let {e1, · · · , en} be a positively oriented orthonormal basis for TpM , with dual basis {ω1, · · · , ωn}. Then
by playing with the formula above we find that

∗ ω1 = ω2 ∧ · · · ∧ ωn

∗ ωi = (−1)n+1ω1 ∧ · · ·ωi−1 ∧ ωi+1 ∧ · · · ∧ ωn

∗ (ω1 ∧ ω2) = ω3 ∧ · · ·ωn

(and so on, they’re easy to compute)

∗2 = (−1)k(n−k) · id(ΛkTpM) for ∗ : ΛkTpM → Λn−kTpM
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And we can now compute, for α ∈ Ωk(M) and β ∈ Ωk+1(M):

〈dα , β〉L2 =

∫
M

〈dα , β〉 dvol

=

∫
M

dα ∧ ∗β

=

∫
M

(d(α ∧ ∗β) + (−1)k+1α ∧ d(∗β)) (btw M is compact)

= (−1)k+1

∫
M

α ∧ d(∗β)

= (−1)k+1

∫
M

α ∧ ∗ ∗−1 d(∗β)

= (−1)k+1

∫
M

〈α , ∗−1d(∗β)〉 dvol

= (−1)k(n−k)+k+1

∫
M

〈α , ∗d(∗β)〉 dvol

= (−1)k(n−k)+k+1〈α , ∗d(∗β)〉L2

So we have found that
d∗ = (−1)k(n−k)+k+1 ∗ d∗

And
∆H = (−1)k(n−k)+k+1(d ∗ d ∗ + ∗ d ∗ d)

I will not show this, but it turns out that ∆H agrees with the ordinary laplacian when applied to 0-forms,
up to a minus sign.

A form ω is harmonic if ∆Hω = 0.

Theorem 15: (Hodge decomposition) Let (Mn, g) be a compact Riemannian manifold. Let ω ∈ Ωk(M),
0 ≤ k ≤ n. Then ω = ωH + dα+ d∗β for some α ∈ Ωk−1(M), β ∈ Ωk+1(M), ωH a unique harmonic k-form.
We also have uniquness for dα (and dβ) as an exact (coexact) form.

This decomposition theorem is used to prove:

Theorem 16: (The Hodge Theorem) Let [α] be a deRham cohomology class. Then there is a unique
harmonic form αH in [α].

And proving the decomposition theorem requires the following existence and uniqueness theorem:

Theorem 17: Let (Mn, g) be a compact Riemannian manifold. Let γ ∈ Ω∗(M) such that γ ⊥ H∗(M),
where H∗(M) is the space of harmonic forms on M and ⊥ is with respect to 〈, 〉L2 . Then there is a unique
α ∈ Ω∗(M) such that ∆Hα = γ and α ⊥ H∗(M).
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