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This document emerged from the notes I took while reading about dual structures on monoidal categories.
Dual structures are often described in terms of rigidity, and it is often desired that rigid monoidal categories
be at least pivotal. Under these circumstances we get relations like (A ⊗ B)∗ ∼= B∗ ⊗ A∗, A∗∗ ∼= A, and
1∗ ∼= 1. A general monoidal category with these relations will be called a monoidal category with duals. We
aim to state and prove a coherence theorem for monoidal categories with duals. The objective is to make
the proof clear, perhaps at the expense of efficiency.

The reader is assumed to be familiar with categories, functors, and natural transformations. Some familiarity
with monoidal categories is assumed as well, although Maclane’s coherence theorem for monoidal categories
is subsumed within the treatment here. For a category C we will denote the collection of objects by C0 and
the collection of arrows by C1.

1 Coherence Conditions

A monoidal category with duals, or MCD, is a decuple (C,⊗, ∗, e0, α, ρ, λ, γ, τ, ν) where (C,⊗, e0, α, ρ, λ) is a
(relaxed) monoidal category, ∗ is a contravariant functor C → C (i.e. a functor Cop → C), τA : A→ A∗∗ and
γA,B : A∗ ⊗B∗ → (B ⊗A)∗ are natural isomorphims, ν : e0 → e0

∗ is an isomorphism, and the following six
diagrams commute for arbitrary objects a, b, c:

e0
τe0- e0

∗∗

e0
∗

(ν∗)−1
6

ν
-
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a∗ ⊗ e0
1a∗ ⊗ ν- a∗ ⊗ e0∗ e0 ⊗ a∗

ν ⊗ 1a∗- e0
∗ ⊗ a∗

a∗

ρa∗

?

(λa)∗
- (e0 ⊗ a)∗

γa,e0

?
a∗

λa∗

?

(ρa)∗
- (a⊗ e0)∗

γe0,a

?

(c∗ ⊗ b∗)⊗ a∗
γc,b ⊗ 1a∗- (b⊗ c)∗ ⊗ a∗

γb⊗c,a- (a⊗ (b⊗ c))∗

c∗ ⊗ (b∗ ⊗ a∗)

αc∗,b∗,a∗

?

1c∗ ⊗ γb,a
- c∗ ⊗ (a⊗ b)∗

γc,a⊗b
- ((a⊗ b)⊗ c))∗

(αa,b,c)
∗

?

a⊗ b
τa⊗b- (a⊗ b)∗∗

a∗∗ ⊗ b∗∗

τa ⊗ τb

?

γa∗,b∗
- (b∗ ⊗ a∗)∗

(γb,a)∗

?

These diagrams are referred to as the coherence conditions, since their commutativity is necessary and
sufficient for coherence. Coherence is roughly the property that the diagrams in a category that really ought
to commute do in fact commute. We will give a precise definition of coherence in MCDs and a proof that it
is a consequence of the coherence conditions. It becomes clear why the coherence conditions take the form
that they do in the proof of lemma 6 below.

The statement of the definition above views ν : e0 → e0
∗ as an isomorphism in C, but it will sometimes be

convenient to view it as a natural isomorphism ν : e→ e∗̂, where e :	→ C is the functor from the one-point
category that picks out the identity object e0, and e∗̂ is the functor that picks out e0

∗

2 Motivation for Upcoming Definitions

Consider an algebraic structure consisting of a set with an associative multiplication, an identity, and a dual
operation that agrees with the multiplication. An expression written in terms of elements of the algebraic
structure can be manipulated by applying the various properties of the multiplication and the dual. One
may ask of any given pair of expressions, “Can we use the axioms to show they are equal?” Often there are
several different sequences of applications of the properties that take one given expression to another.
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A MCD is a categorification of this algebraic structure, where the equations that describe its properties are
weakened to natural isomorphisms. A new question arises: “If we can use the properties to show that two
given algebraic expressions are isomorphic, then can different applications of the properties yield different
isomorphisms?” Coherence is what obtains when the answer is no. A MCD is coherent if every sequence
of “moves” from one expression to another that involve applying α, ρ, λ, γ, τ, ν and their inverses yields the
same isomorphism.

3 Iterated Functors and Iterated Natural Transformations

We will build these sequences of “moves” explicitly. Iterated functors will play the role of “expressions”
from above, and we will recursively construct the sorts of natural transformations that count as “moves” on
expressions. Then we will discuss coherence from this perspective.

Given a MCD C we define a new category Fct (C) with objects being functors from products of C and Cop
to C and with morphisms being all the natural transformations between them. We can write such products
of copies of C as Cα, where α is a finite sequence in {−1, 1} (each -1 denotes a factor of Cop). α + β will
denote concatenation of sequences and (−α) denotes swapping −1 and 1. The length of the sequence α is the
multiplicity of a functor F : Cα → C. For example ⊗ and ∗ are themselves objects of Fct (C), of multiplicity
2 and 1 respectively. Multiplicity 0 is also allowed, and in this case the domain would be the one point
category 	 (an example is e). Now Fct (C) can itself be given the structure of a MCD: For two functors
F : Cα → C, G : Cβ → C we define F ⊗̂G : Cα+β → C to be the composite:

Cα+β ∼= Cα × Cβ F×G−−−→ C × C ⊗−→ C

which has multiplicity n + m. For natural transformations η : F → G, θ : F ′ → G′ define η⊗̂θ : F ⊗̂F ′ →
G⊗̂G′ to be the natural transformation with components given by:

(η⊗̂θ)(A,B) = ηA ⊗ θB

for A ∈ dom(F ), B ∈ dom(F ′). Similarly define ∗̂ by:

F ∗̂ is C−α = (Cα)
op F op

−−→ Cop ∗−→ C

η∗̂ : G∗̂ → F ∗̂ has components (η∗̂)A = (ηA)∗ for A ∈ dom(G)

for any functor F : Cα → C and natural transformation η : F → G. It is easy to check that ⊗̂ and ∗̂ are
functorial. Define ê :	→ Fct (C) to be the functor that picks out e. For F : Cα → C, G : Cβ → C , H : Cγ → C
objects in Fct (C) define α̂F,G,H : (F ⊗̂G)⊗̂H → F ⊗̂(G⊗̂H) by:

(α̂F,G,H)A,B,C = αF (A),G(B),H(C)

for any A ∈ Cα, B ∈ Cβ , C ∈ Cγ . Similarly define:

(ρ̂F )A = ρF (A)

(λ̂F )A = ρF (A)

(γ̂F,G)A,B = γF (A),G(B)

(τ̂F )A = τF (A)

It is easy to check that these are natural isomorphisms (for example α̂ is a natural transformation

(1Fct(C)
ˆ̂⊗1Fct(C))

ˆ̂⊗1Fct(C) −→ 1Fct(C)
ˆ̂⊗(1Fct(C)

ˆ̂⊗1Fct(C))). Also define ν̂ : ê → ê
ˆ̂∗ by ν̂(·) = ν : e → e∗̂. The

coherence conditions are easily checked, and we see that we have a MCD, (Fct (C) , ⊗̂, ∗̂, ê, α̂, ρ̂, λ̂, γ̂, τ̂ , ν̂).
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A certain collection of objects in Fct (C) will play the role of expressions to be manipulated, and a certain
collection of morphisms in Fct (C) will provide the allowed manipulations. We start with some definitions
to efficiently describe it:

Definition 1: Let C be a category, and let S ⊂ Fct (C)1 be a collection of natural transformations. We
define S� ⊂ C1 to be the collection of all components of the natural transformations in S. The elements of
S� are called instances of S.

Definition 2: Let C be a MCD, and let S ⊂ C1 be a collection of morphisms in C.
A reduced expansion of S of depth 0 is an element of [[S ]]0 := {1A | A ∈ C0} ∪ S.
A reduced expansion of S of depth n+ 1 is an element of [[S ]]n+1 :=

{β ⊗ 1A | A ∈ C0 and β ∈ [[S ]]n} ∪ {1A ⊗ β | A ∈ C0 and β ∈ [[S ]]n}

An expansion of S of depth 0 is an element of [∗[S ]∗]0, which we define to be the closure of [[S ]]0 under ∗.
An expansion of S of depth n+ 1 is an element of [∗[S ]∗]n+1, which we define to be the closure of

{β ⊗ 1A | A ∈ C0 and β ∈ [∗[S ]∗]n} ∪ {1A ⊗ β | A ∈ C0 and β ∈ [∗[S ]∗]n}

under ∗.
A reduced expansion of S is an element of [[S ]] :=

⋃
n[[S ]]n.

An expansion of S is an element of [∗[S ]∗] :=
⋃
n[∗[S ]∗]n.

Definition 3: Let C be a category, and let S be a collection of morphisms in C. We define [◦[S ]◦] ⊂ C1 to be
the collection of morphsisms in the wide subcategory of C generated by S. It consists of all identities in C,
and all composites of elements of S. The elements of [◦[S ]◦] are called iterates of S.

Finally we may define the “expressions” and the “moves” allowed on those expressions. The idea is that
we start with a set of natural transformations S that encodes elementary moves that can be made on the
outermost part of an expression, and then we extend to elementary moves made “inside” an expression by
taking expansions of S.

Definition 4: Let C be a MCD. An iterated functor is an element of the smallest subcollection of Fct (C)0
that contains {e, 1C} and is closed under ⊗̂ and ∗̂. An iterated natural transformation is an element of:

[◦[ [∗[{α̂, ρ̂, λ̂, γ̂, τ̂ , ν̂, α̂−1, ρ̂−1, λ̂−1, γ̂−1, τ̂−1, ν̂−1}
�
]∗] ]◦]

We are now ready to give one definition of coherence:

Coherence (iterated functor definition): A MCD C is coherent if any two iterated natural transforma-
tions between the same two iterated functors are equal. In other words, coherence occurs when any diagram
with iterated functors for vertices and expansions of instances of α̂, ρ̂, λ̂, γ̂, τ̂ , ν̂ (and their inverses) for edges
commutes.

One issue that we need to worry about is “vertex collapse.” Consider a diagram with iterated functors for
vertices, and expansions of instances as above for edges. One vertex might be (1C⊗̂1∗̂C)⊗̂1C , while another
might be (e⊗̂1C)⊗̂(1∗̂C⊗̂1C). When thinking about coherence we usually imagine these to be distinct vertices,
but in the context of a specific MCD they could wind up being equal! When this happens it seems possible
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that it could spoil the commutativity of the diagram (I like to think of the equality of vertices as providing
an unnatural “portal” through which one can teleport while considering paths in the diagram). It could be
that iterated functors were constructed carefully enough for this not to be an issue, but I have yet to find a
convincing argument for this. The next construction has the same spirit as the iterated functors definition,
but it ensures in a very direct way that we do not get this vertex collapse. For this reason we pursue a proof
of coherence in terms of the language of the following section.

4 The Free Monoidal Category with Duals

Define a (strict) morphism of MCDs (C,⊗, ∗, e, α, ρ, λ, γ, τ, ν) and
(C′,⊗′, ∗′, e′, α′, ρ′, λ′, γ′, τ ′, ν′) to be a functor F : C → C′ such that F (A ⊗ B) = F (A) ⊗′ F (B), F (A∗) =
F (A)∗

′
, F ◦ e = e′, and:

F (f ⊗ g) = F (f)⊗′ F (g) F (f∗) = F (f)∗
′

F (αA,B,C) = α′F (A),F (B),F (C)

F (γA,B) = γ′F (A),F (B) F (ρA) = ρ′F (A) F (λA) = λ′F (A)

F (τA) = τ ′F (A) F (ν(·)) = ν′(·) (1)

With respect to this notion of morphism between MCDs we will explicitly construct the free MCD on one
object.

4.1 Explicit Construction

Let us define W[x], the free MCD based on {x}. The objects will be called formal expressions. They are
finite proper binary trees (trees with all nodes having 0 or 2 children), with each node bearing a weight in
N and with each leaf bearing a label in {e, x}. Here is a graphic representation:

Define ⊗ and ∗ on formal expressions by:
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Define the ground object e0 to be the single vertex labeled by e with weight 0. Similarly define x to be the
single vertex labeled by x with weight 0.

Arrows between formal expressions will be certain ordered pairs of formal expressions, with the components
being the domain and codomain (so by construction there can be at most one arrow between any two formal
expressions). Let’s start with a much larger category where all pairs are included as arrows (i.e. the complete
directed graph with formal expressions as vertices). Call this category W[x]. Define ⊗, ∗, and ◦ on its arrows
by:

(A,B)⊗ (C,D) = (A⊗ C,B ⊗D) and (A,B)∗ = (B∗, A∗) and (B,C) ◦ (A,B) = (A,C)

For formal expressions A,B,C define arrows:

αA,B,C = ((A⊗B)⊗ C,A⊗ (B ⊗ C)) ρA = (A⊗ e0, A) λA = (e0 ⊗A,A)

γA,B = ((A∗ ⊗B∗), (B ⊗A)∗) τA = (A,A∗∗) ν = (e0, e0
∗)

For (W[x],⊗, ∗, e0, α, ρ, λ, γ, τ, ν) to be a MCD, we need closure of arrows under ⊗ and ∗, naturality of
α, ρ, λ, γ, τ, ν, functoriality of ⊗, ∗, e, and the coherence conditions. All of these hold trivially, including
coherence conditions (all diagrams in this category commute by construction).

Recall that {α, ρ, λ, γ, τ, ν}
�

is the collection of all components of the natural transformations α, ρ, λ, γ,
τ , and ν. Here let us use the word expansion to refer to elements of [∗[{α, ρ, λ, γ, τ, ν}

�
]∗]. The collection of

arrows of W[x] shall be the closure of the collection of expansions under composition and inverse:

W[x]
1

:= {(A,B) | there is a path of expansions from A to B, not necessarily directed}

In other words it is:

W[x]
1

:= [◦[ [∗[{α, ρ, λ, γ, τ, ν, α−1, ρ−1, λ−1, γ−1, τ−1, ν−1}
�
]∗] ]◦]

For (W[x],⊗, ∗, e0, α, ρ, λ, γ, τ, ν) to be a MCD, we still need to verify closure of arrows under ⊗ and ∗.
Closure of arrows under ∗ follows from functoriality of ∗ and the fact that expansions are closed under ∗.
Here is an argument for closure of arrows under ⊗:

First notice that if (A,B), (C,D) are expansions then

(A,B)⊗ (C,D) = (AC,BD) = (AD,BD) ◦ (AC,AD) = ((A,B)⊗ 1D) ◦ (1A ⊗ (C,D))

is a composite of expansions, and so is an arrow in W[x]. If (A,B), (C,D) are arrows, then there is a path of
expansions from A to B and from C to D. By appending sufficiently many identities to the shorter path we
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may take them to be of the same length. Then by ⊗-ing the individual expansions in each path, we obtain
a path of arrows from A⊗ C to B ⊗D. And so W[x] is indeed a MCD.

Observe that the set W[x]
0

of formal expressions can be generated by starting with {x, e} and iteratively
closing under ∗ and ⊗:

Proposition 5: Start with the set E0 of formal expressions of the form x∗···∗ or e0
∗···∗. Let En+1 be the

set of formal expressions of the form (a ⊗ b)∗···∗ for a, b ∈ En (i.e. En+1 is the result of applying “ ” to

expressions of En). Then W[x]
0

=
⋃
nEn.

4.2 Is it really free?

Showing that the construction we gave above actually produces a free MCD is the bulk of the work when it
comes to proving coherence. The following lemma makes the task much easier, and it also explains the six
coherence conditions on the first page.

Lemma 6: Suppose C is a MCD. Let S = {α, ρ, λ, γ, τ, ν, α−1, ρ−1, λ−1, γ−1, τ−1, ν−1}. Then:

[◦[ [∗[S� ]∗] ]◦] = [◦[ [[S� ]] ]◦]

Proof: We must prove “⊆.” It suffices to show that the second collection is closed under ∗ (to see this
look back at the recursive definition of expansions). By functoriality of ∗ we need only show that the ∗ of a
reduced expansion of an instance of S is a composite of reduced expansions of instances of S. For reduced
expansions of depth 1: Identity maps are a trivial case since (1A)∗ = 1A∗ , and instances of S are handled
by the six coherence conditions. Each of the six coherence conditions gives us a way to write the ∗ of an
instance of S as a composite of reduced expansions of instances of S!

We get the result at higher depths by induction: If β : A → B is a reduced expansion of an instance of S
such that β∗ is a composite of reduced expansions of instances of S, then can we say the same of 1C ⊗ β or
β ⊗ 1C? The two cases are similar, and naturality of γ answers in the affirmative:

C∗ ⊗B∗
1C∗ ⊗ β∗- C∗ ⊗A∗

(B ⊗ C)∗

γC,B

? (β ⊗ 1C)∗- (A⊗ C)∗

γC,A

?

The proof of freeness will involve showing that a formal expression can be “simplified” uniquely. The defi-
nitions that follow will help guide this simplification.

Definition 7: A formal expression is reduced if the only nodes with nonzero weight are leaves labelled x
(i.e. if its stars are “pushed all the way in”).

Definition 8: A formal expression is trimmed if it is reduced and has no leaves labelled e unless it is just
one vertex (i.e. all extra copies of the unit have been removed).
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Definition 9: A formal expression is standard if it is trimmed and the right-hand child of any non-leaf node
is a leaf (i.e. all parentheses are in the front).

Lemma 10: Reduced, trimmed, and standard expressions are generated as follows:
• Reduced formal expressions are the smallest collection of formal expressions that (1) contains {e0, x, x∗}
and (2) contains a⊗ b whenever it contains a and b.
• Trimmed formal expressions are the smallest collection of formal expressions that (1) contains {e0, x, x∗}
and (2) contains a⊗ b whenever it contains a and b with a, b 6= e0.
• Standard formal expressions are the smallest collection of formal expressions that (1) contains {e0, x, x∗}
and (2) contains a⊗ x and a⊗ x∗ whenever it contains a with a 6= e0.

Proof: Easy.

Theorem 11: For any MCD C and any object c in C, there is a unique morphism of MCDs, F : W[x]→ C,
sending x to c.

Proof: The behavior of F on the set of objects W[x]
0

is fully determined by the properties:

F (x) = c F (e0) = e0 F (A∗) = F (A)∗ F (A⊗B) = F (A)⊗ F (B)

where e0 is the ground object in C. So we must define the mapping F on objects as above; our task is to see
if it can be uniquely extended to arrows as a morphism of MCDs.

Let us adopt the convention of using an overbar on objects and arrows that are in C. For example α is the
associator for W[x] and α is the associator for C.

For any arrow (A,B) in W[x] we must define F ((A,B)) to be some morphism F (A) → F (B). Let S =
{α, ρ, λ, γ, τ, ν, α−1, ρ−1, λ−1, γ−1, τ−1, ν−1} and let S be similar but using the natural isomorphisms that
came with C. The value of F on identity arrows and on S� is uniquely determined by functoriality and
the properties listed in (1) above. Similarly by functoriality and those properties we see that F is uniquely
determined on [[S� ]] and must take values in [[S� ]]. So now we have a working and unique definition of F on
objects and on reduced expansions. Can we uniquely extend it further to iterates?

If we could extend it to iterates at all then the functoriality of F grants us uniqueness of F on [◦[ [[S� ]] ]◦], which

is equal to all of W[x]
1

by lemma 6. And it tells us that F must take values in [◦[ [[S� ]] ]◦]. However existence
still requires proof; it is not clear that we get a well-defined mapping if we attempt to send any composite
of reduced expansions to the composite of their images. To complete the proof we need to show:

Claim: Define F on W[x]
0

(objects) and on [[S� ]] (reduced expansions) as above. Let overbars denote the
application of this partial definition of F to formal expressions and reduced expansions. If (A,B) is an arrow
in W[x] and fn ◦ · · · ◦ f1, gm ◦ · · · ◦ g1 are paths of reduced expansions from A to B, then

fn ◦ · · · ◦ f1 = gm ◦ · · · ◦ g1

If we proved this claim then we could extend the definition of F uniquely to all of W[x]
1
. It would remain to

check that F (f ⊗ g) = F (f)⊗ F (g) and F (f∗) = F (f)∗ on iterates f, g, but this would follow immediately
because we have it for reduced expansions f, g and because ⊗ and ∗ are functorial. So if we prove this claim,
F will be defined and will be a morphism of MCDs.
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Proof of claim:

Terminology for proof: Let K be a set of natural tranformations in Fct (W[x])
1
. I will refer to elements

of [[K� ]] as “K-moves in W[x],” and their images under F will be called “K-moves in C.” If K ′ is another
set of natural transformations then a “K-move followed by a K ′-move in C” is a composite f2◦f1 where
f2 ◦ f1 is a K-move in W[x] followed by a K ′-move in W[x]. More generally a “K-path in C from A to
B” is a composite fn ◦ · · · ◦f1 where fn ◦ · · · ◦f1 : A→ B is a composite of K-moves in W[x]. The claim

is essentially asserting that there is only one S-path in C from A to B for any arrow (A,B) ∈W[x]
1
.

Subclaim 1: Suppose A is a formal expression. Then there are unique RA, ηA such that RA is a
reduced formal expression and ηA : RA → A is a {γ, τ, ν}-path in C from RA to A.
Proof:

Every formal expression is of one of the seven forms e0, x, e0
∗, x∗, B ⊗ C, (B ⊗ C)∗, or B∗∗, as

is evident from proposition 5. Reducing a formal expression is a matter of “pushing” the stars
all the way inside and “cancelling” extra stars. To make this proof inductive we need a way to
measure “how pushed in” the stars are in an expression, and how many stars there are. And
since we need to work with arbitrarily long expressions we also need to measure the length of an
expression in an appropriate way.

Define the rank ρ(·) and luminosity `(·) of formal expressions by the following recursive formulae:

ρ(e0) = 1 ρ(x) = 1 ρ(A⊗B) = ρ(A) + ρ(B) + 1 ρ(A∗) = ρ(A)

`(e0) = 0 `(x) = 0 `(A⊗B) = `(A) + `(B) `(A∗) = `(A) + ρ(A)

A calculation shows that non-identity {γ, τ, ν}-moves strictly increase luminosity:

`((A⊗B)∗)− `(B∗ ⊗A∗) = 1 > 0

`(A∗∗)− `(A) = 2ρ(A) > 0

`(e0
∗)− `(e0) = 1 > 0

`(A⊗ C)− `(B ⊗ C) = `(A)− `(B) `(C ⊗A)− `(C ⊗A) = `(A)− `(B)

where the last line allows us to use induction on depth to extend the result to all reduced
expansions.

The proof of the subclaim will be by induction on the sum of rank and luminosity. If this quantity
is 1 for a formal expression A, then it must be either e or x (see proposition 5). In this case
RA = A and ηA = 1A is an identity. We have uniqueness because any non-identity {γ, τ, ν}-move
would increase the sum-of-rank-and-luminosity past 1.

Now suppose the subclaim holds for any formal expression with sum-of-rank-and-luminosity lower
than that of A. A is of one of the forms e0, x, x∗, e0

∗, B∗∗, (B ⊗ C)∗, or B ⊗ C. We already
dealt with the first two cases. In the third case A is already reduced and no non-identity reduced
expansion of an instance of {γ, τ, ν} has codomain x∗ so ηA = 1F (A) works and is unique. In the
fourth case set RA = e and set ηA = ν(·). These are unique because only ν(·) has codomain e∗.

If A is B∗∗: Among non-identity {γ, τ, ν}-moves only the instance τB : B → B∗∗ has codomain
B∗∗. B has strictly lower luminosity than A so there are unique RB and η′ : RB → B satisfying
the subclaim. Set RA = RB and ηA = τB ◦ η′. This satisfies the subclaim, and it is unique
because the last move in the composite must be τB , and because η′ is unique.
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If A is (B⊗C)∗: Among non-identity {γ, τ, ν}-moves only the instance γC,B : C∗⊗B∗ → (B⊗C)∗

has codomain (B ⊗ C)∗. Since C∗ ⊗ B∗ has strictly lower luminosity than A we may use the
same argument as above.

For the final case suppose A = B ⊗ C. Since B and C have lower rank, we have unique RB ,
RC , ηB : RB → B, ηC : RC → C satisfying the subclaim. Then RA := RB ⊗ RC is a reduced
formal expression (lemma 10). Let ηA = (ηB ⊗ 1C) ◦ (1RB

⊗ ηC). Observe that in general if

g = fn ◦ · · · ◦ f1 is a K-path in C then

1E ⊗ g = 1E ⊗ (fn ◦ · · · ◦ f1) = (1E ⊗ fn) ◦ · · · ◦ (1E ⊗ f1)

= 1E ⊗ fn ◦ · · · ◦ 1E ⊗ f1

is too. So ηA as we defined it is a {γ, τ, ν}-path in C, and we have proven the existence part of
the subclaim. Uniqueness is the tricky bit.

Suppose we had some reduced formal expression R′A and suppose η′A is a {γ, τ, ν}-path in C from
R′A to A. Write η′A as f ◦ η′′ where f is a non-identity {γ, τ, ν}-move in W[x] and η′′ is some
{γ, τ, ν}-path in C from R′A to dom(f). Since the codomain of f is B ⊗ C we know f must be
either β ⊗ 1C or 1B ⊗ β for some {γ, τ, ν}-move β in W[x]. Suppose we are in the former case,
and β : B′ → B. Then:

B ⊗ C

B′ ⊗ C

β
⊗

1C
-

RB ⊗ C

�
η
B ⊗

1
C

RB′ ⊗ C
==

==
==

==
==

==
=

�
η
B ′ ⊗

1
C

R′A

η′′

6

================= RB ⊗RC

1RB
⊗ ηC

6

commutes. ηB′ and RB′ come from applying the induction hypothesis to B′, which has lower
rank than that of A. Commutativity of the diamond and the equality in the middle come from
applying the induction hypothesis to B, which has lower rank than A. And commutativity of
the bottom portion of the diagram and the bottom equality come from applying the induction
hypothesis to B′ ⊗ C, which has lower luminosity than A because B′ has lower luminosity than
B (β is not an identity because we postulated that f is not an identity). The path on left edge
of the diagram is η′A, and the path on the right is ηA. So ηA = η′A and RA = R′A.

The case A = 1B ⊗ β is similar, if we observe that another way to describe ηA = (ηB ⊗ 1C) ◦
(1RB

⊗ ηC) is (1B ⊗ ηC) ◦ (ηB ⊗ 1RC
).

Subclaim 2: Suppose A is a reduced formal expression. Then there are unique TA, θA such that TA
is a trimmed formal expression and θA : TA → A is a {ρ−1, λ−1}-path in C from TA to A.
Proof:

10



Define the fluff F(·) and length |·| of a reduced formal expression by

F(x) = F(x∗) = 0 F(e0) = 1 F(A⊗B) = F(A) + F(B)

|e0| = 0 |x| = |x∗| = 1 |A⊗B| = |A|+ |B|

Observe that any non-identity {ρ−1, λ−1}-move strictly increases fluff. We will use induction on
the sum of length and fluff of a reduced formal expression to iteratively trim away the “fluff’
until no unnecessary copies of e0 remain. At its lowest this sum would be 1, and it is only 1 for
A ∈ {e0, x, x∗}. These three formal expressions are already trimmed, and so θA = 1A works.
Uniqueness follows from the fact that a nonidentity {ρ−1, λ−1}-move strictly increases fluff.

Now suppose that A has |A| + F(A) > 1 and suppose that the subclaim holds for any reduced
formal expression with sum-of-length-and-fluff less than that of A. A is necessarily B ⊗ C for
some reduced formal expressions B,C.

If B,C are both e0 then θA = ρ−1e0 = (ρe0)−1 would work. So would θA = λ−1e0 , but these two are
equal from the coherence conditions for monoidal categories. And there is nothing else θA could
be since no {ρ−1, λ−1}-moves in W[x] other than ρ−1e0 and λ−1e0 have e0 ⊗ e0 for a codomain.

Now suppose at least one of B, C is not e0. Suppose B 6= e0 (the case C 6= e0 is symmetric to
this one). B could have less fluff than A (if C were e0 ⊗ · · · ⊗ e0) or B could have lower length
than A (if C were otherwise). In either case we may apply the induction hypothesis to obtain a
trimmed TB and a {ρ−1, λ−1}-path θB : TB → B.

There are two subcases we can proceed from: C = e0 and C 6= e0. Consider the former case,

A = B ⊗ e0. Define θA = ρ−1B ◦ θB : TB → A, and define TA = TB . This clearly works, but it
remains to show uniqueness. Suppose we had some T ′A, θ

′
A satisfying the subclaim. Write θ′A as

f ◦θ′′ for a non-identity {ρ−1, λ−1}-move f and a {ρ−1, λ−1}-path θ′′ in C. If f were ρ−1B then we
get uniqueness by applying the induction hypothesis to B (i.e. (θB = θ′′ and T ′A = TB = TA)). If
f is not ρ−1B then it must be β ⊗ 1e0 for some non-identity {ρ−1, λ−1}-move β : B′ → B in W[x].
Applying the induction hypothesis to B′ ⊗ e0 shows the following equality of TB′ → B arrows:

(θB′ ⊗ 1e0) ◦ ρTB′
−1 = θ′′

And it shows TB′ = T ′A. Applying the induction hypothesis to B shows the following equality of
TB′ → B arrows:

β ◦ θB′ = θB

And it shows TB = TB′ . So we have uniqueness:

θ′A = f ◦ θ′′ = (β ⊗ 1e0) ◦ (θB′ ⊗ 1e0) ◦ ρ−1TB′
= ((β ◦ θB′)⊗ 1e0) ◦ ρ−1TB

= (θB ⊗ 1e0) ◦ ρ−1TB
= ρ−1B ◦ θB = θA

(Naturality of ρ is used in the second line).

Finally there is the case in which neither B nor C are e0. We may apply the induction hypothesis
to obtain unique TB , TC and θB , θC satisfying the subclaim. Since {ρ−1, λ−1}-moves never modify
the length of a formal expression, we can be sure that TB and TC are not e0 (since e0 is the only
formal expression of length 0). So TA := TB ⊗ TC is indeed trimmed. Let θA be

(θB ⊗ 1C) ◦ (1TB′
⊗ θC)

11



which is a {ρ−1, λ−1}-path in C from TA to A. For uniqueness let us suppose T ′A, θ
′
A also satisfied

the subclaim. Write θ′A as f ◦ θ′′ for a non-identity {ρ−1, λ−1}-move f and a {ρ−1, λ−1}-path θ′′

in C. f must either be of the form β ⊗ 1C or of the form 1B ⊗ β (i.e. it must work “inside” one
of the factors). Suppose the former, with β : B′ → B. Apply the induction hypothesis to B to
see that TB = TB′ and that we have the following equality of arrows TB′ → B:

β ◦ θB′ = θB

Apply the induction hypothesis to B′ ⊗ C to see that TA′ = TB′ ◦ TC and that we have the
following equality of arrows T ′A → B′ ⊗ C:

(θB′ ⊗ 1C) ◦ (1TB′
⊗ θC) = θ′′

And so we have uniqueness:

θ′A = f ◦ θ′′ = (β ⊗ 1C) ◦ (θB′ ⊗ 1C) ◦ (1TB′
⊗ θC) = ((β ◦ θB′)⊗ 1C) ◦ (1TB′

⊗ θC)

= (θB ⊗ 1C) ◦ (1TB′
⊗ θC) = θA

The other case, f = 1B ⊗ β, can be handled similarly if we write θA as (1B ⊗ θC) ◦ (θB ⊗ 1TC
).

Subclaim 3: Suppose A is a trimmed formal expression. Then there are unique SA, ψA such that SA
is a standard formal expression and ψA : SA → A is an {α}-path in C from SA to A.
Proof:

We will use the definition of length |·| given in the preceding subclaim. Define the parenthesis-rank
“p(·)” of a trimmed formal expression by:

p(e0) = p(x) = p(x∗) = 0

p(A⊗B) = p(A) + p(B) + |B| − 1

First we argue that a trimmed expression A has p(A) = 0 iff it is standard: We will use the
recursive description of trimmed expressions given in lemma 10. First notice that e0, x, x

∗ have a
parenthesis-rank of 0 and are standard. Next suppose that A,B 6= e0 each have the property that
they are standard iff their parenthesis-rank vanishes. Suppose p(A⊗B) = 0, i.e. p(A) + p(B) +
|B| − 1 = 0. Since B 6= e0, we have |B| ≥ 1. So p(A) + p(B) = 1− |B| ≤ 0. So p(A) = p(B) = 0
and |B| = 1. It follows, since A,B are standard and |B| = 1, that A⊗B is standard. Inversely,
suppose p(A⊗B) > 0. Then either A is nonstandard, B is nonstandard, or |B| > 1. In any case,
A⊗B is nonstandard.

For the next step we show that non-identity {α}-moves in W[x] strictly increase parenthesis-rank.
It works out nicely for instances of α:

p(B ⊗ (C ⊗D))−p((B ⊗ C)⊗D)

= p(B) + p(C ⊗D) + |C ⊗D| − p(B ⊗ C)− p(D)− |D|
= p(B) + p(C) + p(D) + |D|+ |C ⊗D| − p(B)− p(C)− |C| − p(D)− |D|
= |D| > 0 (because we cannot have |D| = 0 for a trimmed expression)

The rest is by induction on the depth of reduced expansions of instances of α. If the {α}-move
β : B′ → B strictly increases rank then so does β ⊗ 1C :

p(B ⊗ C)− p(B′ ⊗ C) = p(B)− p(B′)

12



If the {α}-move β : C ′ → C strictly increases rank then so does 1B ⊗ β:

p(B ⊗ C)− p(B ⊗ C ′) = p(C)− p(C ′) + |C| − |C ′| = p(C)− p(C ′)

where we have used the fact that |C ′| = |C| if C and C ′ are trimmed expressions related by an
{α}-move (this is also easy to see by induction on the depth of reduced expansions of instances
of α).

Now we may prove the subclaim by induction on parenthesis-rank. If p(A) = 0 then A is already
standard, so ψA = 1A will do. Uniqueness follows from the fact that any non-identity {α}-move
would strictly increase parenthesis-rank.

Suppose A has p(A) > 0 and suppose the subclaim holds for any trimmed expression with lower
parenthesis-rank. Then A is of the form B ⊗ C for B,C 6= e0.

Consider the case p(C) = 0. Apply the induction hypothesis to B to obtain SB , ψB . Let
SA = SB ⊗ C, a standard formal expression. Let ψA = ψB ⊗ 1C , an {α}-path in C from SA
to A. For uniqueness: Suppose S′A, ψ

′
A also satisfy the subclaim. Write ψ′A as f ◦ ψ′′ for some

non-identity {α}-move f and for an {α}-path ψ′′ in C. Since |C| = 0, f must be of the form
β ⊗ 1C for some non-identity {α}-move β : B′ → B. The diagram

commutes. The left side commutes and SB = S′B by an application of the induction hypothesis to
B. The bottom-right commutes and S′B ⊗C = S′A by an application of the induction hypothesis
to B′ ⊗ C.

Now consider the case p(C) 6= 0. C is then of the form D ⊗ E for D,E 6= e0, so A = B ⊗
(D ⊗ E). Apply the induction hypothesis to the lower rank object (B ⊗ D) ⊗ E to obtain
S(B⊗D)⊗E , ψ(B⊗D)⊗E . Let SA = S(B⊗D)⊗E and let ψA = αB,D,E ◦ ψ(B⊗D)⊗E . It remains to

prove uniqueness. Suppose S′A, ψ
′
A also satisfy the subclaim, and write ψ′A as f ◦ ψ′′ for some

non-identity {α}-move f and for an {α}-path ψ′′ in C. Since the codomain of f is B ⊗ (D ⊗ E)
we know that f has one of the three forms:

αB,D,E , β ⊗ 1, 1⊗ β

where β denotes an {α}-move. We can subdivide the final case into three subcases to see that f
is one of:

(1) αB,D,E , (2) β ⊗ 1, (3) 1⊗ αD,F,G, (4) 1⊗ (β ⊗ 1), (5) 1⊗ (1⊗ β)

where in case (3) we have written E as F ⊗G with F,G 6= e0. In case (1) we may simply apply

13



uniqueness of ψ(B⊗D)⊗E to see that SA = S′A and ψA = ψ′A. Cases (2), (4), and (5) are handled
similarly using the naturality of α, so we will only show case (2) and then case (3).

Suppose f = β⊗1D⊗E , where β : B′ → B. In this case we get uniqueness from the commutativity
of the following diagram:

B ⊗ (D ⊗ E)

(B ⊗D)⊗ E

αB
,D
,E
-

B′ ⊗ (D ⊗ E)

�
f

=
β ⊗

1

(B′ ⊗D)⊗ E

αB
′ ,D

,E
-

� (β ⊗
1)⊗

1

SA

ψ(B⊗D)⊗E

6

======== S(B′⊗D)⊗E

ψ(B′⊗D)⊗E

6

======== S′A

ψ′′

6

The diamond commutes by the naturality of α. Commutativity of the left side and SA =
S(B′⊗D)⊗E are obtained by applying the induction hypothesis to (B ⊗D) ⊗ E. Commutativity
of the right side and S′A = S(B′⊗D)⊗E are obtained by applying the induction hypothesis to
B′ ⊗ (D ⊗ E). The left and right edges of the diagram are ψA and ψ′A, so we get ψA = ψ′A and
SA = S′A.

Only case (3) remains. Suppose f = 1B ⊗ αD,F,G, and A = B ⊗ (D ⊗ (F ⊗ G)). Uniqueness is
obtained using a similar method to the other cases, but this time the diamond is replaced by the
pentagon from the coherence condition that C satisfies!

Subclaim 4: A {γ, τ, ν}-move followed by an {α, ρ−1, λ−1}-move in C can be written as an {α, ρ−1, λ−1}-
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move followed by a {γ, τ, ν}-move in C.
Proof:

Let η be a {γ, τ, ν}-move in W[x] and let θ be an {α, ρ−1, λ−1}-move in W[x] such that dom(θ) =
cod(η). Let n be the depth of η and let m be the depth of θ. The goal is to show that θ ◦ η can
be written as some η′ ◦ θ′ with η′ a {γ, τ, ν}-move and θ′ an {α, ρ−1, λ−1}-move. We will use
induction on (n,m). There will be a “diagonal” induction step deducing the (n+ 1,m+ 1) case
from the (n,m) case, and then we will have to prove the “edge” cases (n, 0) and (0,m).

If either θ or η are identities then we are done, so suppose neither is an identity.

Diagonal induction part: Suppose n,m > 0. If η = η0⊗ 1A and θ = θ0⊗ 1B then dom(θ0)⊗B =
dom(θ) = cod(η) = cod(η0)⊗A, so dom(θ0) = cod(η0) and A = B. (This sort of argument works
due to the construction of the free MCD. From now on I will be less explicit about it). Then
applying the induction hypothesis to η0, θ0, which have strictly lower depth, handles the case.

Consider the case where η = η0 ⊗ 1A and θ = 1B ⊗ θ0. We get cod(η0) = B and dom(θ0) = A,
and an easy commutative diagram finishes off the argument:

dom(η0)⊗A
η = η0 ⊗ 1 - B ⊗A

dom(η0)⊗ cod(θ0)

1⊗ θ0
?

η0 ⊗ 1- B ⊗ cod(θ0)

θ = 1⊗ θ0
?

The remaining two cases are symmetric to the two we already handled.

“Corner” base case (0,0): Suppose both η and θ have zero depth. Then η is an instance of γ,
τ , or ν. So cod(η) has one of the forms: e0

∗, (A ⊗ B)∗, or A∗∗. It follows that θ cannot be an
instance of α, for then dom(θ) would be of the form (A ⊗ B) ⊗ C. So θ must be an instance of
ρ−1 or λ−1. The two cases are similar; we will treat the case θ = ρ−1A : A→ A⊗ e0. In this case
cod(η) = dom(θ) = A, and we are done by the naturality of ρ−1:

dom(η)⊗ e0
η ⊗ 1e0- A⊗ e0

dom(η)

ρ−1domη

6

η - A

θ

6

Edge base case (n,0): Suppose n > 0 and m = 0. If θ is an instance of λ−1 or ρ−1 then the
method applied in the corner base case above applies, since η is either of the form η0⊗1 or 1⊗η0
(i.e. use the naturality of ρ−1 or λ

−1
). So suppose that θ is an instance of α, say θ = αA,B,C .

Then cod(η) = dom(θ) = (A ⊗ B) ⊗ C. If η = 1A⊗B ⊗ η0 then cod(η0) = C and we need only
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cite the naturality of α:

(A⊗B)⊗ dom(η0)
η - (A⊗B)⊗ C

A⊗ (B ⊗ dom(η0))

αA,B,domη0

?
1A ⊗ (1B ⊗ η0)

- A⊗ (B ⊗ C)

θ

?

If η = η0 ⊗ 1C on the other hand, then cod(η0) = A ⊗ B, and we need to consider the depth
of η0. If the depth of η0 were zero, then cod(η0) would have the form e0

∗, D∗∗, or (D ⊗ E)∗,
which could not be. So η0 has positive depth and we can write η as either (η1 ⊗ 1B) ⊗ 1C or
(1A ⊗ η1)⊗ 1C for some η1 of depth n− 2. In either case we are done by the naturality of α:

(dom(η1)⊗B)⊗ C
(η1 ⊗ 1)⊗ 1- (A⊗B)⊗ C

dom(η1)⊗ (B ⊗ C)

α

?
η1 ⊗ 1 - A⊗ (B ⊗ C)

α

?

(A⊗ dom(η1))⊗ C
1⊗ (η1)⊗ 1- (A⊗B)⊗ C

A⊗ (dom(η1)⊗ C)

α

?
1⊗ (η1 ⊗ 1)- A⊗ (B ⊗ C)

α

?

Edge base case (0,m): Suppose m > 0 and n = 0. Then cod(η) has one of the forms e0
∗, A∗∗,

(A⊗ B)∗. But dom(θ) cannot have this form unless θ were an instance of ρ−1 or λ−1, in which
case the method applied in the corner base case applies here (i.e. use the naturality of ρ−1 and

λ
−1

).

Subclaim 5: A {ρ−1, λ−1}-move followed by an {α}-move in C can be written as an {α}-move followed
by a {ρ−1, λ−1}-move in C.
Proof:

Let θ be a {ρ−1, λ−1}-move in W[x] and let ψ be an {α}-move in W[x] such that dom(ψ) = cod(θ).
Let n be the depth of ψ and let m be the depth of θ. The goal is to show that ψ ◦ θ can be
written as some θ′ ◦ ψ′ with θ′ a {ρ−1, λ−1}-move and ψ′ an {α}-move. We will use induction
on (n,m). There will be a “diagonal” induction step deducing the (n + 1,m + 1) case from the
(n,m) case, and then we will have to prove the “edge” cases (n, 0) and (0,m).

If either θ or ψ are identities then we are done, so suppose neither is an identity.

Diagonal induction part: Suppose n,m > 0. In the case that θ = θ0⊗ 1A and ψ = ψ0⊗ 1B (with
θ0 a {ρ−1, λ−1}-move in W[x] and ψ0 and {α}-move in W[x]) we can deduce that A = B and
dom(ψ0) = cod(θ0). Applying the induction hypothesis to θ0 and ψ0 (i.e. applying the induction
hypothesis to the move ψ0 ◦ θ0) then handles the case.
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Consider now the case where θ = θ0 ⊗ 1A and ψ = 1B ⊗ ψ0. We have dom(ψ0) = A and
cod(θ0) = B, and the following easy commutative diagram finishes off the argument:

dom(θ0)⊗A
θ = θ0 ⊗ 1 - B ⊗A

dom(θ0)⊗ cod(ψ0)

1⊗ ψ0

?
θ0 ⊗ 1- B ⊗ cod(ψ0)

ψ = 1⊗ ψ0

?

The remaining two cases are symmetric to the two we already handled.

“Corner” base case (0,0): Suppose both θ and ψ have zero depth. Then ψ = αA,B,C for some
formal expressions A,B,C, so cod(θ) = dom(ψ) = (A⊗B)⊗ C. θ is either an instace of ρ−1 or
an instance of λ−1, but it cannot be the latter because e0 cannot have the form A⊗B. It follows
that we must have C = e0 and θ = ρ−1A⊗B . The commutativity of

(A⊗B)⊗ e0
ψ = αA,B,e0- A⊗ (B ⊗ e0)

A⊗B

1⊗ ρ−1B

6
�

θ

is then all we need. Showing this from the coherence conditions for a monoidal category is a
(good) exercise in [1, p161].

Edge base case (n,0): Suppose n > 0 and m = 0. We know θ is an instance of ρ−1 or λ−1.
The two cases are similar so let show the former. Suppose that θ = ρ−1A . Note that ψ cannot
have the form 1B ⊗ ψ0, for this would imply that A ⊗ e0 = cod(θ) = dom(ψ) = B ⊗ dom(ψ0)
which gives dom(ψ0) = e0, forcing ψ0, and thereby ψ, to be an identity. It follows that ψ has the
form ψ0 ⊗ 1B . Then A ⊗ e0 = cod(θ) = dom(ψ) = dom(ψ0) ⊗ B, so dom(ψ0) = A and B = e0.
Naturality of ρ−1 does the trick:

A⊗ e0
ψ = ψ0 ⊗ 1- cod(ψ0)⊗ e0

A

ρ−1A

6

ψ0 - cod(ψ0)

ρ−1cod(ψ0)

6

Edge base case (0,m): Suppose m > 0 and n = 0, and assume the subclaim for smaller m. We
know ψ = αA,B,C for some formal expressions A,B,C. θ can take one of two forms; suppose first
that θ = 1⊗ θ0. Then θ0 : D → C for some D and we have

ψ ◦ θ = αA,B,C ◦ (1A⊗B ⊗ θ0)

= (1A ⊗ (1B ⊗ θ0)) ◦ αA,B,D

from the naturality of ᾱ. Now consider the remaining case where θ takes the form θ = θ0 ⊗ 1.
Then θ0 : dom(θ0)→ A⊗B, so we must consider the possibilities for θ0. If it has positive depth
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(i.e. m > 1), then θ is one of the two forms

1⊗ (1⊗ θ1)

1⊗ (θ1 ⊗ 1)

We can then prove the subclaim by using the naturality of α in a manner similar to the previous
case we handled. If, on the other hand, the depth of θ0 is zero (i.e. m = 1), then θ0 is either ρ−1A
or λ−1B . We can handle these cases with the following diagrams, respectively:

(A⊗ e0)⊗ C
ψ = αA,e0,C- A⊗ (e0 ⊗ C)

A⊗ C

1⊗ λ−1C

6
�

θ

(e0 ⊗B)⊗ C
ψ = αe0,B,C- e0 ⊗ (B ⊗ C)

B ⊗ C

λ−1B⊗C

6
�

θ

The first diagram commutes because it is one of the original coherence conditions! The second
diagram is a mirror image of the exercise that appeared in the (0, 0) case.

Subclaim 6: Suppose A is a formal expression. Then there are unique SA, φA such that SA is a
standard formal expression and φA : F (SA)→ F (A) is a {γ, τ, ν, α, ρ−1, λ−1}-path in C from SA to A.
Proof:

Existence is a straight-forward application of subclaims 1-3; reduce, trim, and standardize to
obtain a composite

STRA

ψTRA−−−−→ TRA

θRA−−−→ RA
ηA−−→ A

which we define to be φA. Rename the arrows above to

SA
ψA−−→ TA

θA−−→ RA
ηA−−→ A

for convenience. Each arrow in the composite above is itself a composite of {γ, τ, ν, α, ρ−1, λ−1}-
moves in W[x]. The composite of the images of all those moves under F gives an isomorphism
SA → A. To show uniquness, suppose that fn ◦ · · · ◦ f1 is another {γ, τ, ν, α, ρ−1, λ−1}-path in
C from S′A to A, with f1, · · · , fn being the {γ, τ, ν, α, ρ−1, λ−1}-moves in W[x] that make up the
path, and with S′A being a standard formal expression. By subclaim 4 we may write fn ◦ · · · ◦ f1
as

gn ◦ · · · ◦ gk+1 ◦ gk ◦ · · · ◦ g1
where gk ◦ · · · ◦ g1 is a {α, ρ−1, λ−1}-path in C and gn ◦ · · · ◦ gk+1 is a {γ, τ, ν}-path in C. Let
R′A = dom(gk+1) = cod(gk). R′A must be reduced because {α, ρ−1, λ−1}-moves preserve rank
and luminosity and S′A is reduced. Then by subclaim 1 we have R′A = RA and

gn ◦ · · · ◦ gk+1 = ηA
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By subclaim 5 we may write gk ◦ · · · ◦ g1 as

hk ◦ · · · ◦ hl+1 ◦ hl ◦ · · · ◦ h1 ,

where hk◦· · ·◦hl+1 is a {ρ−1, λ−1}-path in C and hl◦· · ·◦h1 is an {α}-path in C. Let T ′A = cod(hl).
T ′A must be trimmed because S′A is trimmed and {α}-moves preserve fluff and length. It follows
from subclaim 2 that T ′A = TA and

hk ◦ · · · ◦ hl+1 = θA.

Subclaim 3 then ensures that S′A = SA and

hl ◦ · · · ◦ h1 = ψA.

This shows uniqueness:
fn ◦ · · · ◦ f1 = ηA ◦ θA ◦ ψA = φA

Back to proof of claim: LetK = {γ, τ, ν, α, ρ−1, λ−1} and let “K−1 ” denote {γ−1, τ−1, ν−1, α−1, ρ, λ}.
Suppose (A,B) is an arrow in W[x] and fn ◦ · · · ◦ f1 is a path of reduced expansions of instances of S
from A to B. We will show that fn ◦ · · · ◦ f1 is something that depends only on the endpoints A and B
of the path. Suppose fi : Ai−1 → Ai for 1 ≤ i ≤ n, with A0 = A and An = B. f1 is either a K-move
in W[x] or a K−1-move in W[x] (since S = K ∪K−1). In the former case we have (using the notation
of subclaim 6) SA1 = SA0 and φA1 = f1 ◦ φA0 from the uniqueness in subclaim 6. In the latter case
we have SA1

= SA0
and (f1)−1 ◦ φA1

= φA0
for the same reason, so again we have φA1

= f1 ◦ φA0
.

Iterating this result gets us φAn
= fn ◦ · · · ◦ f1 ◦ φA0

. In other words:

fn ◦ · · · ◦ f1 = φB ◦ φ−1A

Here is an illustration of reducing, trimming, and standardizing a formal expression:
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5 Coherence

Let (C,⊗, ∗, e0, α, ρ, λ, γ, τ, ν) be an arbitrary MCD. Theorem 11 shows that W[x] is free on {x}. It follows
that there is a unique morphism of MCDs

F : W[x]→ Fct (C)

sending x to the identity functor 1C . The iterated functors and iterated natural transformations of section
3 are the results of applying F to formal expressions and the arrows between them. Recall that in section 3
we used hats to denote the natural isomorphisms associated to Fct (C).

Coherence (formal expression definition): C is coherent if any diagram with formal expressions for

vertices and suitable expansions of instances of α̂, ρ̂, λ̂, γ̂, τ̂ , ν̂ (and their inverses) for edges commutes. An
expansion is suitable as an edge from formal expression A to formal expression B if it is an arrow F (A)→
F (B).

Notice that the issue of vertex collapse is avoided by letting the vertices be formal expressions. The sort of
diagram considered in this definition of coherence has vertices in W[x] and edges in

[∗[{α̂, ρ̂, λ̂, γ̂, τ̂ , ν̂, α̂−1, ρ̂−1, λ̂−1, γ̂−1, τ̂−1, ν̂−1}
�
]∗] ⊂ Fct (C)1 .

Diagrams of this form are images under F of diagrams in W[x]. But all diagrams in W[x] commute by
construction, so coherence always holds. That is, the coherence conditions described in section 1 were
indeed sufficient to ensure coherence.
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things to add to this:

6 perhaps a section on strictification?

see Joyal’s “cliques”

7 perhaps a section showing how to get γ, τ, ν for a pivotal cat?

see personal notes from muger, and 8 exercises
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