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0.1 Introduction

The goal of this set of notes is to present, from the very beginning, my understanding of Lie derivatives. I
delve into greater detail when I do topics that I have more trouble with, and I lightly pass over the things
I understand clearly. That is, these are more like personal notes than they are like a textbook. Some gaps
would need to be filled in if this were to be used for teaching (and someday I may fill in these gaps). Although
I skip proofs for certain things in the interest of time, I make sure to note what I’ve skipped for the reader.
If you want to jump to the end of these notes because you’re already familiar with the basics of differential
geometry, then make sure you check the notation part of the appendix. Also anyone may easily skip the
first chapter. It didn’t flow into the rest of the paper as well as I’d hoped. I’d probably have to double the
length of that chapter to connect it to everything else, but it isn’t worth it.

I admit that I’m very wordy in my explanations here. If I just wanted to present a bunch of definitions
this wouldn’t be a very useful document. Any textbook serves that purpose. My goal here is to convey my
own thoughts about the topics I present. Aside from things like topology theorems or the tensors section,
this is very much my personal take on the subject. So please excuse the wordiness, and if you just want an
explanation that gets to point this is not the thing to read.

I use the following books:

• Warner’s “Foundations of Differentiable Manifolds and Lie Groups”

• Bishop and Goldberg’s “Tensor Analysis on Manifolds”

• Bernard Schutz’s “Geometrical Methods of Mathematical Physics”

• Frankel’s “The Geometry of Physics”

On a scale from physics to math, I would rate these authors like this: Schutz, Frankel, Bishop and Goldberg,
Warner. Bishop and Goldberg was the most practical book. Warner is a difficult read, but it is the most
mathematically honest (and my personal favorite). Schutz does a great job developing intuitive concepts,
but Schutz alone is absolutely unbearable. Having gone through a good amount of these books, here are my
recommendations:

For the physicist: Schutz with Bishop and Goldberg

For the mathematician: Warner with Bishop and Goldberg

Frankel is more of a reference book. It has good explanations but it doesn’t flow in a very readable order.
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Chapter 1

Preliminaries

I decided to mostly follow Bishop’s treatment for this section. It was the most rigorous set of preliminaries
that wasn’t excessively detailed. It is a lighter version of the one by Warner. Serge Lang has a very nice
introduction that deals with category theory and topological vector spaces, but it’s not necessary for these
notes. Frankel likes to do things a little out of order; he always motivates before defining. It’s good for a
first time reading, but not for building a set of notes.

I assume a basic knowledge of topology, so I go through the definitions as a quick overview, this is not
intended to be read by a first-timer. This section is kind of disconnected from the succeeding sections since
I chose to avoid spending all my time on manifolds and their topology. This section may be skipped without
any problems for now.

1.1 General Definitions

Definition 1.1.1. A topological space is a pair, (X, τ), consisting of an underlying set and a topology. The
underlying set is commonly referred to as the topological space, and the topology must be a set of subsets of
the topological space which is closed under arbitrary unions and finite intersections.

Topological spaces are sets endowed with a very bare structure that just barely gives them the privilege
of being called spaces. The topology contains the set of subsets of the space that we consider to be open.
So a topological space is a set for which we have given a meaning to the word “nearby.” A topological
isomorphism is called a homeomorphism.

Definition 1.1.2. A homeomorphism between a topological space, (X, τX), and a topological space, (Y, τY ),
is a bicontinuous bijection (a continuous 1-1 onto map with a continuous inverse) from X to Y .

How is this a proper definition of homeomorphism? Well a topological isomorphism should take one space
onto another and preserve openness. That is, an element of the topology of one space should have an image
under the homeomorphism which is an element of the topology of the other space, and vice versa. So if

f : X
bij
→ Y is a homeomorphism, then S ∈ τX iff f [S] ∈ τY . This is in fact the case when we define
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continuity. A function from one topological space to another is continuous iff the inverse image of any open
set in the range is open.

If we take a subset A of a topological space, (X, τX), the topological subspace induced by it has the topology
{G ∩A|G ∈ τX}.

A more direct but less general way to give a set this structure is through a metric, a distance function. Now
this use of the word “metric” is not the same as the metric of a manifold in Riemannian geometry. This is
the metric of a metric space, do not confuse the two.

Definition 1.1.3. A metric space is a pair, (X, d), consisting of an underlying set and a distance function
(or metric). The distance function, d : X × X → R, must be positive, nondegenerate, symmetric, and it
must satisfy the triangle inequality. The underlying set is commonly referred to as the metric space.

Positivity means it always gives positive distance, nondegeneracy means that d(x, y) = 0 ⇔ x = y, symmetry
means that d(x, y) = d(y, x), and the triangle inequality means that d(x, y) + d(y, z) ≥ d(x, z). All metric
spaces can be made into topological spaces in the obvious way (use the set of open balls as a base), but not
all topological spaces are metrizable.

Definition 1.1.4. A topological space X is Hausdorff if any pair of distinct points has a corresponding pair
of disjoint neighborhoods. That is, (∀x, y | x, y ∈ X ⇒ (∃G,H | G,H ∈ τX • G neighborhood of x • H
neighborhood of y • G ∩H = {})).

Hausdorff spaces are usually pretty normal, they are all we care about in physics. Metric topologies are
always Hausdorff. Singletons, {x}, are always closed in Hausdorff spaces.

R
n is the set of n-tuples of real numbers. A real n-tuple is a finite length-n sequence of real numbers. Typically

whenever we mention R
n we immediately assume that it is equipped with the “standard topology.” This is

the topology induced by the standard metric, d(x, y) =
√∑n

i=0 (xi − yi)2.

1.2 Connected Sets

We define connectedness in terms of non-connectedness.

Definition 1.2.1. A topological space X is not connected iff there are nonempty sets G, H such that
G ∩H = {} and G ∪H = X.

Theorem 1.2.1 (Chaining Theorem). If {Aa|a ∈ J} is a family of connected subsets of X and
⋂
a∈J Aa 6= {}

then
⋃
a∈J Aa is connected.

Proof. Assume the hypotheses. Suppose
⋃
a∈J Aa is not connected. Get G, H such that G ∩ H = {} and

G ∪H =
⋃
a∈J Aa. We have

⋂
a∈J Aa 6= {}, so get x ∈

⋂
a∈J Aa. x is either in G or it’s in H, say it’s in G.

Since H is not null, get a ∈ J such that Aa ∩H 6= {}. Then G∩Aa and H ∩Aa are disjoint nonempty open
sets who do not meet and whose union is Aa. This contradicts that Aa is connected.

This was a sample of the kinds of theorems that one would deal with when handling connectedness (a
particularly easy one at that). The most important thing that should be clear is that connectedness is
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a topological property, it is preserved under homeomorphisms. I’ll just provide a brief synopsis of some
other theorems, they were worth studying but they take too long to write up: The closure of a connected
set is connected. For continuous functions, connected subsets of the domain have connected images (a
generalization of intermediate value theorem). An arcwise connected topological space has the property
that any two points in it can be connected by a continuous curve in the space, this is more strict than the
condition for connectedness. Bishop and Goldberg additionally show that a topological space can be reduced
to maximally connected components. These are all interesting but not crucial results for the purposes of
these notes.

1.3 Compactness

For A ⊂ X, a covering of A is a family of subsets of X whose union contains A. When the subsets are all
open it’s called an open covering. A subcovering of a covering {Ca | a ∈ I} is another covering where the
index set is just restricted, {Ca | a ∈ J}, J ⊂ K. When the index set is finite it’s called a finite covering.
Compactness is also a topological property, it is preserved under homeomorphisms. The Heine-Borel theorem
for R generalizes to R

n and tells us that closed bounded subsets of Rn are compact. I will not prove all of
the following theorems, the proofs can be found in Bishop and Goldberg on page 16.

Theorem 1.3.1. Compact subsets of Hausdorff spaces are closed.

Theorem 1.3.2. Closed subsets of compact subspaces are compact.

Proof. Consider a closed subset of a compact space. Take the complement of the closed subset, this can be
added to any open covering of the closed subset to get an open covering of the whole compact space. Now
there exists a finite subcovering of the whole space, and the complement of the closed subset can now be
removed to leave a finite subcovering of the closed subset.

Theorem 1.3.3. Continuous functions have maxima and minima on compact domains.

Theorem 1.3.4. A continuous bijection from a compact subspace to a Hausdorff space is a homeomorphism.

A topological space is locally compact if every point of it has a compact neighborhood (compact spaces are
then locally compact). A topological space is separable if it has a countable basis. Another word for this
is second countable. A family of subsets of a topological space is locally finite if every point in the space
has a neighborhood that touches a finite number of subsets. A covering Aa of a topological space X is a
refinement of the covering Bb if for every index a there is a set Bb such that Aa ⊂ Bb. What was the point of
all that gobbledygook? Well now we can finally define paracompactness; a topological space is paracompact
if every open cover has an open locally finite refinement. Some authors require that a space be Hausdorff to
be paracompact (Bishop and Goldberg 17-18), and others do not (Warner 8-10). The ones that do not just
have slightly harder proofs, which can be found on the indicated pages. The bottom line is the following
theorem.

Theorem 1.3.5. A locally compact second-countable Hausdorff space is paracompact.

Why in the world would we need such a thing? Well it just so happens that manifolds have these very
properties.
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Chapter 2

Manifolds

Theoretically oriented books on differential geometry are rich with theorems about manifolds. Since these
notes are geared towards building a foundation to do physics, I will be more interested in definitions and
explanations than pure theorems. I do, however, want to be sure that the definitions presented are completely
precise and coherent. For this reason I chose to use Warner’s treatment. I will supplement this with my
own examples and explanations. If I ever get around to adding them, then for my own reference here is a
short list of the things I’ve left out: inverse function theorem, submanifolds, immersions and imbeddings,
manifolds with boundaries, conditions for smoothness of curves in weird cases, and some application of the
topology theorems from the previous section.

2.1 Definitions

Definition 2.1.1. A function on R
d with an open domain in R

n is said to be differentiable of class Ck if
all its partial derivatives of order less than or equal to k are continuous for all it’s component functions.

This terminology is used to set the level of differentiability available. The term smooth is used for C∞,
differentiability of all orders. In particular, a C0 function is continuous.

Definition 2.1.2. A locally euclidian space M of dimension d is a Hausdorff topological space in which each
point has a neighborhood homeomorphic to an open subset of Rd.

The homeomorphisms of a locally euclidean space are called coordinate systems, coordinate maps, or charts
(e.g. φ : U → R

d, U ⊂M). Their component functions, each a map from the open set in M to R, are called
coordinate functions.

Definition 2.1.3. A differentiable structure of class Ck, F , on a locally euclidean space M of dimension d
is a set of coordinate maps (charts) such that:

• The domains of the coordinate systems cover M .

• All compositions of coordinate maps φa ◦ φ
←
b are Ck differentiable.
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• F is maximal with respect to the first two properties. That is, any coordinate system with the above
properties is in F .

A set of coordinate maps satisfying only the first two properties is usually just called an atlas. A differentiable
structure is then just a maximal atlas. The reason we require the differentiable structure to be maximal is
because we could otherwise have two unequal manifolds that differ only in the particular choice of atlas.

Definition 2.1.4. A d-dimensional differentiable manifold of class Ck is a pair (M,F ) where M is a d-
dimensional, second countable, locally euclidean space and F is a differentiable structure of class Ck on
M .

And we finally have the definition of a manifold. Most authors avoid getting into differentiability classes
throughout their books. They typically comment at the beginning that one may assume either smoothness
or as much differentiability as is needed for a particular discussion. There are also analytic manifolds and
complex manifolds, but we will not get into them.

Now that we’ve defined manifolds, we can immediately start thinking about doing calculus on them. Differ-
entiability of functions is quite simple. Each coordinate system is sort of like a pair of glasses through which
one may view the manifold and the things living on it. If I were to put, say f : U → R (U ⊂ M), on the
manifold, then to view the function through the eyes of a coordinate map φ I just have to look at f ◦ φ←.
This is a map from R

d to R, where d is the dimension of the manifold. This is an object on which we know
how to do regular calculus. We use this object to define Ck differentiability for functions on the manifold:
A function f from a manifold to the real numbers is Ck differentiable iff f ◦ φ← is Ck differentiable for all
coordinate maps φ. If ψ : M → N , where M,N are manifolds, then ψ is Ck differentiable iff τ ◦ ψ ◦ φ← is
Ck differentiable for all coordinate maps φ on M and τ on N .

Notice that the definition of a manifold makes it paracompact, straight from theorem 1.3.5. This is an
important result for mathematicians, but we will not be getting into it too deeply. There are other important
theorems we won’t be using, like the existence of partitions of unity, just because our goal is to apply this
to general relativity.

2.2 Examples

If V is a finite dimensional vector space, we can make a nice manifold out of it. Given a basis, a dual basis
is the coordinate functions of a coordinate map on all of V . It’s C∞ too! This example is particularly
interesting because V also has the group properties of a vector space, which makes it a Lie group. (Read
this statement again after reading section 4.2 if you don’t get it).

The sphere can be made into a manifold if we chart it using, for example, the typical θ and φ coordinates.
Notice, however, that the domain of a coordinate map must be an open set (it has to be a homeomorphism
after all). This makes it impossible to put a global coordinate system on a sphere, more than one coordinate
map is necessary to cover it. Another interesting set of charts is stereographic projection, and yet another
one is projecting the six hemispheres to six open disks.

I’d like to present one very concrete example of a manifold before moving on. The torus as a topological
space is homeomorphic to a half-open square:

Torus = {(x, y) | 0 ≤ x < 1 • 0 ≤ y < 1}
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Chapter 3

Tangent Space

3.1 What we need

When we’re doing calculus in regular old R
n, the notion of directional derivative is quite clear. A scalar

field, for example, would be a function f : Rn → R. Each n-tuple v of real numbers defines a directional
derivative operation, v ·∇f , where ∇ represents the primitive gradient operator ( ∂

∂x
, ∂
∂y
, ∂
∂z

). The derivative

of a path (γ : R → R
n) is also pretty simple, it’s just the component-wise derivative of the three component

functions that make up the path. Then if we want to look at the directional derivative of f along γ, we put
the two together: γ′ · ∇f . Manifolds require us to rethink these ideas.

It is not obvious how one would take a directional derivative of a real valued function on a manifold, or even
just the derivative of a path. What we need is a coordinate-independent object that represents direction of
travel throughout the manifold. Let us state the problem more precisely. Consider a path in the manifold
and a real valued function on the manifold:

γ : R →M

f :M → R

How can we define the derivative of f along the path γ? Intuitively such a thing should exist; the space
is locally euclidean after all. The composite function f ◦ γ would give us the values of f along the path
according to the path parameter. This is an R → R

n function, so we can take it’s derivative at a point and
get an n-tuple of real numbers, (f ◦ γ)′. Such a derivative tells us how “fast” the path γ is traveling through
values of f. Of course the niceness of f and γ are needed to make this work out, but it seems like the speed
at which this path goes through values of f sort of tells us which way it’s going and how fast. But the speed
we will get obviously depends on choice of f ; we need to get the character of f out of our definition, we want
the derivative of the path itself. It makes sense to look at the directional derivative given by γ through any
nice enough function on the manifold. That is, it makes sense to consider the object ( ◦ γ)′ where the “ ”
can be filled in by any nice enough function.

There is a way of defining tangent vectors that directly uses paths. It actually defines tangent vectors as
equivalence classes of paths on the manifold. We will not be doing this. Our definition will take less direct
advantage of the path concept, but it will be more powerful. We will be utilizing the algebraic structure of
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a set of nice functions.

3.2 Definitions

Let Fm,M denote the set of smooth functions on a manifold M that are defined on an open set containing
m.

Fm,M = { f | (∃U | f : U → R • f ∈ C∞M • m ∈ U ∈ τM ) }

This set seems to have a very natural algebraic structure; it can be made into an algebra. This means it
has to have a group operation (“addition”), a multiplication, and a scalar field with a scaling operation.
Two elements of this set f, g ∈ Fm can be added and multiplied by pointwise addition and multiplication of
functions. A real number a can scale a function f ∈ Fm in a similar pointwise way.

(f + g)(x) = f(x) + g(x)

(fg)(x) = f(x) · g(x)

(af)(x) = a · f(x)

It is not difficult to show that these operations produce things that are also members of Fm,M , nor is it
difficult to prove the needed properties of an algebra and more (commutativity, distributivity, associativity,
identity, inverse). It should be known that the domain of a function produced after addition or multiplication
is the intersection of the domains of the two functions being added or multiplied. (Note: I have a confession
to make; this is not really the correct way to construct the algebra. Consider for example the additive inverse
of some f ∈ Fm,M , f : U → R. The inverse should just be (−1)(f) (or −f). However upon addition we
find that f + (−1)(f) is not just the zero function, it is the zero function restricted to the domain U . For
functions to be equal they must have equal domains. For this reason and others, it makes a lot more sense to
construct the algebra out of germs, equivalence classes of smooth functions that agree on some neighborhood
of m ∈M . Warner provides this treatment in his definition of tangent space, and it is very well done. I am
choosing to avoid these complications so as not to lose sight of the basic ideas. It is recommended that the
reader who is already familiar with these concepts consult Warner for a fuller explanation).

An operator in our case would be a function from Fm,M to the real numbers, O : Fm,M → R. A linear
operator has the property O(af + bg) = a · O(f)+ b · O(g) for any f, g ∈ Fm,M , a, b ∈ R. An operator which
is a derivation-at-m has the property O(fg) = O(f) · g(m) + O(g) · f(m) for any f, g ∈ Fm,M . Operators
also have their own pointwise addition and scalar multiplication over the real numbers. For two operators
O,P and a ∈ R

(O + P)(f) = O(f) + P(f)

(aO)(f) = a · O(f)

Definition 3.2.1. The tangent space of the manifold M at m ∈M , Tm,M , is the set of linear derivations-
at-m on Fm,M . This is a vector space over the real numbers, with addition and scalar multiplication being
the above defined operator operations.

Let us now make sure that our space behaves in the way we intended. If a ∈ R, let ā denote the constant
function of value a on the manifold. Clearly ā ∈ Fm,M for any m ∈M .

Theorem 3.2.1. For any t ∈ Tm,M and c ∈ R, t(c̄) = 0.
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Proof. c · t(1̄) = t(c̄ · 1̄) = t(c̄) · 1̄(m) + t(1̄) · c̄(m) = t(c̄) · 1 + t(1̄) · c = t(c̄) + c · t(1̄)
So c · t(1̄) = t(c̄) + c · t(1̄) so t(c̄) = 0

Theorem 3.2.2. For any f, g ∈ Fm,M such that f and g have the same value on some neighborhood U of
m, we have t(f) = t(g) for any t ∈ Tm,M .

Proof. Take f, g ∈ Fm such that f and g have the same value on the neighborhood U of m, and take any
t ∈ Tm,M . Let 1̄↾U denote the function 1̄ restricted to the domain U . Note that our hypothesis on f and g
can be written (1̄↾U ) · f = (1̄↾U ) · g.
t((1̄↾U ) · f) = t(1̄↾U ) · f(m) + t(f) · (1̄↾U )(m) = t(1̄↾U ) · f(m) + t(f) = t(1̄↾U · g) = t(1̄↾U ) · g(m) + t(g) =
t(1̄↾U ) · f(m) + t(g)
where we have used f(m) = g(m). We established t(1̄↾U )·f(m)+t(f) = t(1̄↾U )·f(m)+t(g), so t(f) = t(g).

This basically says that a tangent vector at m only cares about purely local values of functions around m.
If it wasn’t clear already, this theorem should make it clear that it makes a lot more sense to deal with
an algebra consisting of germs of functions rather than actual functions. Nevertheless, we are happy to see
tangent vectors work the way we wanted them to.

Now we may answer the original question. If γ : R →M is a smooth curve and γ(c) = m then we define the
tangent vector to γ at c to be the operator t such that for f ∈ Fm,M ,

t(f) = (f ◦ γ)′(c)

We characterize the speed and direction at which a path is traveling through the manifold by the speed at
which it travels through the values of smooth real-valued functions on the manifold. It is not difficult to
show that the definition above is in fact a linear derivation at m, and thus may be called a tangent vector
at m.

3.3 Coordinate Basis

Now let us consider the dimensionality of Tm,M for some manifold. Wald’s General Relativity (p17) does a
nice proof that the dimensionality of the tangent space is the same as the dimensionality of the manifold. I
will not show this proof here, but the important part is that he does it by constructing a basis for Tm,M .
I recommend Bishop and Goldberg (p52) for proofs about the basis. First, get a chart φ that has m in its
domain (one should exist since the charts cover the manifold). Let {ti} be tangent vectors such that for any
f ∈ Fm,M ,

ti(f) =
∂f ◦ φ←

∂xi

∣∣∣∣
φ(m)

Since f maps from M to R and φ← maps from R
n to M , the object f ◦ φ← is from R

n to R. It is just the
function f viewed in R

n through the eyes of the coordinate system φ. And the ti are the operators that
look at functions through φ and take their derivatives in the directions of the coordinate axes. They form a
very special basis called the coordinate basis. That they form a basis at all is an important theorem whose
proof I will not show, but it is in the references mentioned above. It is an excellent exercise to show, using
the definitions we’ve provided, that the coordinate basis at a point consists of the tangent vectors to the
coordinate axes (coordinate axes are actual paths in the manifold).

13



We conclude this section by examining a property of tangent vectors that many physicists use to define the
word “vector”. This is the transformation law that arises from the coordinate basis expansion of an arbitrary
t ∈ Tm,M , and the chain rule. I like to express operators by using an underscore to show how they behave.
For example the coordinate basis vector at m for the ith coordinate of a coordinate system φ is a map that

takes f ∈ Fm,M and spits out the number ∂(f◦φ←)
∂xi

∣∣∣∣
φ(m)

. My informal way of denoting this operation is

∂( ◦φ←)
∂xi

∣∣∣∣
φ(m)

. The underscore looks like a blank space where the operator is waiting to be fed a function in

Fm,M . Now take any t ∈ Tm,M . Let’s express it in the coordinate basis induced by the coordinate system
φ, and then try to get its expression in terms of the coordinate system ψ.

t =

n∑

i=1

ai
∂( ◦ φ←)

∂xi

∣∣∣∣
φ(m)

=
n∑

i=1

ai
∂( ◦ ψ← ◦ ψ ◦ φ←)

∂xi

∣∣∣∣
φ(m)

=

n∑

i=1

ai
n∑

j=1

∂( ◦ ψ←)

∂xj

∣∣∣∣
ψ(φ←(φ(m)))

∂(ψ ◦ φ←)j

∂xi

∣∣∣∣
φ(m)

=

n∑

j=1

(
n∑

i=1

ai
∂(ψ ◦ φ←)j

∂xi

∣∣∣∣
φ(m)

)
∂( ◦ ψ←)

∂xj

∣∣∣∣
ψ(m)

The superscript in (ψ ◦ φ←)j indicates the jth component function. So the new components in the ψ
coordinate basis depend on the coordinate transformation (ψ ◦ φ←).

bj =

n∑

i=1

ai
∂(ψ ◦ φ←)j

∂xi

∣∣∣∣
φ(m)

t =

n∑

i=1

bi
∂( ◦ ψ←)

∂xi

∣∣∣∣
ψ(m)

This is the tangent vector transformation law.
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Chapter 4

Cotangent Space

I read what four books had to say about this topic since it’s important to understand before getting into
differential forms and tensors. Warner was the most general and the most concise, but I eventually chose to
follow Frankel’s approach. Schutz spent a lot of time on fiber bundles and tangent bundles in particular before
getting into differential forms. His presentation of bundles was extremely good, but since my goal in these
notes is to get to lie derivatives, I’m not doing bundles. Frankel doesn’t assume the reader’s familiarity with
dual spaces. He takes care of the necessary math with good explanations, and then he defines differentials
with the tools he built. The only problem is that he doesn’t treat the more general definition first. So I’m
going to start by presenting the general, formal definition of a differential up front. Then I’ll backtrack to
the beginning and build up to the specific kind of differential we’ll be using. For learning this the first time,
Bishop and Goldberg chapter 2 was the best reading.

Take note that this discussion is limited to finite dimensional vector spaces. I don’t need the infinite
dimensional results, and there are some serious differences. Also, the scalar field over which these vector
spaces lie is the field of real numbers. I didn’t have to do this, but it’s all we really need. It’s easy to make
the discussion general; just replace the word “real number” with “scalar” and replace R with F .

4.1 A Cold Definition

Consider a C∞ map ψ : M → N from one manifold to another. The differential of ψ at m ∈ M is a linear
map dψ : Tm,M → Tψ(m),N defined as follows. For any tangent vector t ∈ Tm,M , feeding it to the differential
should give a tangent vector dψ(t) ∈ Tψ(m),N in the tangent space of the other manifold. This tangent vector
dψ(t) is defined by how it acts on some g ∈ Fψ(m),N :

dψ(t)(g) = t(g ◦ ψ)

So the map ψ is used to view the function on N , g, as it appears on M through ψ’s eyes. This is then what
is fed to t. The notation dψ is actually incomplete; a good notation should indicate information about m
and M (for example dψm,M ). But we’ll stick to crappy notation for now. Well that’s it for the definition, it
doesn’t really tell us much. We will come back to this definition more seriously in section 7.1. For now what
we will be interested in is a special case of this definition where the second manifold, N , is actually just R.
Let us go back to the beginning and make some sense of this.
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4.2 Dual Space

Consider a vector space E over the real numbers. A linear function on a vector space E is a function
h : E → R such that for a, b ∈ R and v, w ∈ E, h(av + bw) = ah(v) + bh(w). The property of linearity is
a pretty big deal here. Since it generalizes to any finite sum by induction, and we can expand any vector
v ∈ E into components of a basis {êj},

h(v) = h




n∑

j=1

êjv
j


 =

n∑

j=1

h(êj)v
j

we see that the action of a linear function on a any vector in E is completely defined by what it does to only
the vectors of a basis of E. This means we can just take any old basis {êj} of E, say what number each
h(êj) gives, and define h to be the “linear extension” of that.

So where do these linear functions live? They live in another vector space E∗ called the dual space of E. E∗

is just the set of all linear functions on E. Its elements are often called dual vectors. It has the pointwise
vector addition and scalar multiplication of functions. So for a ∈ R, w1, w2 ∈ E∗, and any v ∈ E:

(a · w1)(v) = a · w1(v)

(w1 + w2)(v) = w1(v) + w2(v)

It’s easy to show that the dual space is a vector space. Now for any basis of E, {êi}, there is a corresponding
basis of E∗,

{
σ̂i
}
, defined by the linear extensions of:

σ̂i(êj) = δij

It is not difficult to show that these form a basis for E∗. Something interesting happens when we feed a
vector v ∈ E to a basis dual vector σ̂i.

σ̂i(v) = σ̂i




n∑

j=1

êjv
j


 =

n∑

j=1

σ̂i(êj)v
j =

n∑

j=1

δijv
j = vi

So if σ̂i is the dual basis vector corresponding to a basis vector êi, then feeding any v ∈ E to σ̂i gives us
v’s component along êi. Now we can find the basis expansion of an arbitrary dual vector w ∈ E∗ by just
feeding it a vector v ∈ E and using what we just found:

w(v) = w




n∑

j=1

vj êj


 =

n∑

j=1

vjw(êj) =

n∑

j=1

σ̂j(v)w(êj)

w =

n∑

j=1

w(êj) σ̂
j

This means that the component of w along σ̂j is w(êj).

When we talk about a w ∈ E∗, we’re talking about a real valued function of an E-valued variable, v.

w(v), for v ∈ E

We can switch around our view of the real number w(v). Instead of focusing our attention on this particular
w ∈ E∗, we can consider a particular v ∈ E. We can then see w(v) as a real valued function of an E∗-valued
variable, w.

w(v), for w ∈ E∗
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So what we’re really talking about is a v̄ : E∗ → R such that for any w ∈ E∗,

v̄(w) = w(v)

We see that v̄ ∈ E∗∗, it is a member of the dual space to the dual space of E. The map v 7→ v̄ can be shown
to be a 1-1 linear function from E to E∗∗. This makes the dual space of the dual space of a vector space
isomorphic to the original vector space. This is no ordinary vector space isomorphism, however. This is a
natural isomorphism. The real definition of natural isomorphism comes from category theory; the actual
natural isomorphism is the functor one can define from the entire category of n dimensional vector spaces
to itself. There is no real need to get into the details of category theory, so can just be thought of as a
vector space isomorphism that is related only to the vector space structure, not any basis. For example, the
dual space to a vector space is isomorphic to the vector space, but this isomorphism is not natural because
it depends on choice of basis. Any n-dimensional vector space is isomorphic to R

n, but again there is an
isomorphism for each choice of basis.

We could have also viewed the object w(v) in the following symmetric way: w(v) is a real valued function
of two variables, an E-valued variable v and an E∗-valued variable w. The map (v, w) 7→ w(v) is then our
definition of scalar product: < v,w >.

4.3 Cotangent Space

The tangent space at a point in a manifold, Tm,M is a vector space. The dual of this space, T ∗m,M , is called
the cotangent space. We can define an element of the cotangent space at m by using a function f ∈ Fm,M .
It is called the differential of f, df : Tm,M → R. For any v ∈ Tm,M , it is defined by

df(v) = v(f)

So taking a smooth real valued function f on the manifold and putting a d in front of it creates a function
that feeds f to any tangent vector fed to it. This is obviously a linear function on Tm,M , so it must be in
T ∗m,M . I find it helpful to resort to my underscore notation, which I explained in the previous section and
in the appendix. In terms of the components of a tangent vector in a coordinate basis from a coordinate
system φ,

df(v) = df




n∑

j=1

vj
∂ ◦ φ←

∂xj

∣∣∣∣
φ(m)


 =

n∑

j=1

vj
∂f ◦ φ←

∂xj

∣∣∣∣
φ(m)

It’s nice to look at tangent vectors and their duals in terms of the underscore notation, in a coordinate basis.
A vector, given components vj , is just the map

n∑

j=1

vj
∂ ◦ φ←

∂xj

∣∣∣∣
φ(m)

where the underscore is waiting to be fed a smooth function. And a dual vector, given a smooth function f ,
is the map

n∑

j=1

j ∂f ◦ φ←

∂xj

∣∣∣∣
φ(m)

where the underscore is waiting to be fed the components of a vector in the coordinate basis. This view
makes it intuitively clear that the dual of the dual to the tangent space is naturally isomorphic to the tangent
space.
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Let us now consider the differential of a coordinate function. Suppose (x1, ..., xn) are the coordinate functions
(component functions, projections) of a coordinate system φ. First look at how dxi acts on the jth coordinate
basis vector:

dxi

(
∂ ◦ φ←

∂xj

∣∣∣∣
φ(m)

)
=
∂xi ◦ φ←

∂xj

∣∣∣∣
φ(m)

= δij

Now we’re able to decompose the action of the differential on any tangent vector:

dxi




n∑

j=1

vj
∂ ◦ φ←

∂xj

∣∣∣∣
φ(m)


 =

n∑

j=1

vj
∂xi ◦ φ←

∂xj

∣∣∣∣
φ(m)

=

n∑

j=1

vjδij = vi

The differential of the ith coordinate function just reads off the ith component of a tangent vector in the
coordinate basis! The

{
dxi
}
then form a dual basis to the coordinate basis. That is, we can express any

linear function in terms of this dual basis expansion:

w =

n∑

j=1

w

(
∂ ◦ φ←

∂xj

)
dxj

Figure 4.1: For the two-sphere as a manifold, this is an artistic representation of coordinate-basis vectors (top)
and dual vectors (bottom), for the typical theta-phi spherical coordinate system. The shading represents
the value of the coordinate functions. We may visualize a vector t as an arrow pointing in the direction that
a smooth function f would have to change so that t(f) is a big real number. We may visualize dual vectors
as level curves of a function f around a point, level curves that would have to punctured by a vector t so
that df(t) can be a big real number. See if you can pictorially convince yourself that the dual basis pictures
on the bottom each correspond to the basis vectors above them. But don’t make too much of the picture.
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Chapter 5

Tensors

This section will begin with more talk of linear functions on vector spaces. We will discuss matrix forms,
multilinear functions, summation notation, tensor spaces, tensor algebra, natural isomorphisms leading to
different interpretations of tensors, bases of tensor spaces and components of tensors, and transformation
laws. There will be a tiny bit of repetition of the previous section, because this is its ultimate generalization.
I learned most of this material from Bishop and Goldberg chapter 2, which I highly recommend. For someone
who is very familiar with algebra (not me), I would recommend Warner. Schutz gives the typical physics
explanation of tensors, which is a very bad explanation for a newcomer to the subject. Like the previous
section, I’m going to start with general mathematical concepts before applying them to our concrete example
of a vector space, the tangent space. For my own reference, here is a list of topics I missed that I would
like to fill in someday: invariants, formal definition of a contraction, symmetric algebra, grassman algebra,
determinant and trace, and hodge duality.

5.1 Linear Functions and Matrices

Let us expand our previous definition of linear function. A linear function f : V → W may now map from
one vector space V into another W so that for v1, v2 ∈ V and a ∈ R we have

f(v1 + v2) = f(v1) + f(v2)

f(av1) = af(v1)

Bijective linear functions are vector space isomorphisms. The set of linear functions from V to W forms a
vector space with pointwise addition of functions and pointwise scalar multiplication. There are a lot of nice
things we could prove about bases, dimensionality, null spaces, and image spaces. For this I refer the reader
to Bishop and Goldberg pages 59-74, or a linear algebra book. I don’t have time to get that material written
but we’ll build up what we need.

It is still the case that we only have to define linear functions on basis elements to characterize them.
Consider a linear function f : V → W , where dim(V )=dV and dim(W )=dW . Let {v̂i} be a basis of V
and {ŵα} a basis of W , where the indices run over the appropriate dimension. We introduce the hopefully
familiar summation convention, in which any index that appears twice is summed over. Let’s say that we’ve
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determined the action of f on the basis vectors {v̂i}. Since f takes each of those to a particular vector in
W , we will need dW different scalars to represent each f(v̂i) in the basis {ŵα},

f(v̂i) = aαi ŵα

The double-indexed object aαi is a dW by dV matrix, where α is the row index and i is the column index. a
is called the matrix of f with respect to {v̂i} and {ŵα}. Notice that our designation of one index as “row”
and the other as “column” is completely arbitrary. This is the point in our discussion where we make that
arbitrary choice, and any other remark about rows or columns will be with respect to this choice. Now
consider any v ∈ V . Then f(v) is some w ∈W .

f(v) = f(viv̂i) = vif(v̂i) = viaαi ŵα = wαŵα

where wα = aαi v
i

The action of f is in fact determined by our grid of numbers aαi . We let this give us the definition of
multiplication of a matrix by what we now deem to be a column matrix vi to give another column matrix
wi. Let BV : V → R

dV be the function that takes any vector v ∈ V and gives the dV -tuple of components
in the basis {v̂i}, and similarly for BW :W → R

dW . Let A : RdV → R
dW represent matrix multiplication of

aαi by the tuples in R
dV . The following diagram then sums up what we just showed:

We could define matrix multiplication in terms of the composition of operators, and we could prove distribu-
tivity and associativity. I will not do this here.

Summation notation is pretty tricky. It should be noted that the types of sums being done depends on the
context. For example viêi is a sum of vectors, vector addition. But viwi is a sum of scalars, real number
addition. Summation notation makes everyday tasks easy, but it also obscures some other things. For
example, what do we really mean by “aαi ?” Is it a matrix? Or is it a number, the (α, i)th component of a
matrix? Or is it the operator independent of any basis? Authors don’t seem to agree on the answer to this
question. Wald solves the problem by using latin indices for operators and greek indices for components in a
basis. Here is my system: a is the operator, the function on the vector space(s). aαi is still the operator, but
with indices that indicate the structure of the operator if it were to be resolved in a basis. Contractions of
indices in this case are basis independent things done to operators. aαi is the (α, i)th component of a matrix
in some basis, and contractions of these indices are actual sums.

5.2 Multilinear Functions

A function f : V1 × V2 →W is multilinear if it is linear in each individual variable. That is, for v1, y1 ∈ V1,
v2, y2 ∈ V2, and a, b ∈ R

f(av1 + by1, v2) = af(v1, v2) + bf(y1, v2)
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f(v1, av2 + by2) = af(v1, v2) + bf(v1, y2)

The function above is bilinear. The definition of multilinear generalizes to a function of n vectors,

f(v1, . . . , avi + byi, . . . , vn) = af(v1, . . . , vi, . . . , vn) + bf(v1, . . . , yi, . . . , vn)

Now suppose ν ∈ V ∗ and ω ∈W ∗, these are linear real-valued functions on the vector spaces V and W . We
can form a bilinear function on V ×W by taking their tensor product. It is a function such that for v ∈ V

and w ∈W

ν ⊗ ω(v, w) = ν(v) · ω(w)

We can pointwise-add multilinear functions of a certain type to produce more multilinear functions. We can
also scalar multiply multilinear functions pointwise. Thus the set of multilinear functions on some vector
spaces V1, V2, . . . , Vn into W is a vector space. We denote this vector space by L(V1, . . . , Vn;W ).

5.3 Tensors

For a vector space V , the real-valued multilinear functions with any number of variables in V and V ∗ are
called tensors over V . The tensor type is determined by the number of dual vectors it takes and the number
of vectors it takes, in that order. A multilinear function T : V ∗ × V × V → R for example is a type (1, 2)
tensor. We always want to have the dual spaces come first in the list of variables, so we are not interested
in a map V × V ∗ → R. That map is already taken care of by the equivalent one with permuted variables,
V ∗ × V → R. The set of tensors of a particular type form a vector space called a tensor space over V , and
we call that space T ij (V ) for tensors of type (i, j) over V . Addition and scalar multiplication are pointwise

for functions. So for A,B ∈ T ij (V ), a ∈ R, v1, . . . vj ∈ V , and w1, . . . , wi ∈ V ∗

(A+B)(w1, . . . , wi, v1, . . . , vj) = A(w1, . . . , wi, v1, . . . , vj) +B(w1, . . . , wi, v1, . . . , vj)

(aA)(w1, . . . , wi, v1, . . . , vj) = aA(w1, . . . , wi, v1, . . . , vj)

A tensor of type (0, 0) is defined to be a scalar, T 0
0 (V ) = R. Notice that we are treating the vector space V

as if it is V ∗∗. The natural isomorphism we talked about is taken very seriously. People hop between V and
V ∗∗ so effortlessly that we just use V to refer to both.

So T ij (V ) is the set of multilinear real-valued functions on V ∗ i times and on V j times. In particular, T 1
1 (V )

is the set of multilinear maps on V ∗ × V . If we take a v1 ∈ V and a w1 ∈ V ∗, we can form an element of
T 1
1 (V ) using the tensor product we defined earlier, v1 ⊗ w1 ∈ T 1

1 (V ). Can we form any element of T 1
1 (V ) in

this way? The answer is no, if the dimension of V is at least 2. Because for dimension 2 for example, we could
take another linearly independent v2 ∈ V and w2 ∈ V ∗. Then if we were able to formulate v1 ⊗w1 + v2 ⊗w2

as some v̄⊗ w̄, we could partially evaluate the resulting equation, v1 ⊗w1 + v2 ⊗w2 = v̄⊗ w̄, and we would
be forced to violate linear independence. We will soon see how we can form a basis for tensor spaces, but
let’s get some algebra out of the way first.

We should expand our first definition of tensor product to work for tensors of any type. The tensor product
of an (i, j) tensor A with an (r, s) tensor B is an (i + r, j + s) tensor that takes in the combined variables
of A and B, feeds them respectively to A and B to get two real numbers, and then spits out the product.
That is, for a set of wa ∈ V ∗ and vb ∈ V

(A⊗B)(w1, . . . , wi+r, v1, . . . , vj+s) = A(w1, . . . , wi, v1, . . . , vj) ·B(wi+1, . . . , wi+r, vj+1, . . . , vj+s)

Now we can state associative and distributive laws for tensor product, they are easy to prove:

(A⊗B)⊗ C = A⊗ (B ⊗ C)
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A⊗ (B + C) = A⊗B +A⊗ C

(A+B)⊗ C = A⊗ C +B ⊗ C

We already have some examples of tensor spaces. A vector space V ∗∗ (which we identify with V ) contains
linear functions on V ∗, so it is just the tensor space T 1

0 (V ). The dual vector space contains linear functions
on V , so it is just the tensor space T 0

1 (V ).

To resolve the elements of a tensor space T rs (V ) in a particular basis, we need a basis of V , {êi}, and a
basis of V ∗,

{
σ̂j
}
. Just like a linear function is completely determined by its action on a basis and its linear

extension, a multilinear function is determined by its action on the basis
{
êi1 ⊗ . . .⊗ êir ⊗ σ̂j1 ⊗ . . .⊗ σ̂js

}

(for all permutations of the indices) and its multilinear extension. If we can prove that the action of
A ∈ T rs (V ) on

{
êi1 ⊗ . . .⊗ êir ⊗ σ̂j1 ⊗ . . .⊗ σ̂js

}
completely determines A, then we can express A in terms

of the proposed basis and we know that it spans the space. Linear independence is easy to prove using
induction. So we can show that

{
êi1 ⊗ . . .⊗ êir ⊗ σ̂j1 ⊗ . . .⊗ σ̂js

}
is a basis for T rs (V ). Let

Ai1...irj1...js
= A(σ̂i1 , . . . , σ̂ir , êj1 , . . . , êjs)

To feed A an arbitrary set of variables we need a set of r dual vectors ωa ∈ V ∗ and a set of s vectors νb ∈ V .
These can expressed in their components in each basis:

ωa = wak σ̂
k

νb = vlbêl

And just because we’ll need it soon, remember that basis vectors and dual vectors can be used to read off
components of dual vectors and vectors:

wak = êk(ω
a)

vlb = σ̂l(νb)

Now we can feed them to A,

A(ω1, . . . , ωr, ν1, . . . , νs) = A(w1
i1
σ̂i1 , . . . , wrir σ̂

ir , v
j1
1 êj1 , . . . , v

js
s êjs)

and use multilinearity:

= (w1
i1
. . . wrir )(v

j1
1 . . . vjss )A(σ̂i1 , . . . , σ̂ir , êj1 , . . . , êjs)

= (w1
i1
. . . wrir )(v

j1
1 . . . vjss )Ai1...irj1...js

= Ai1...irj1...js
(êi1(ω

1) . . . êir (ω
r))(σ̂j1(ν1) . . . σ̂

js(νs))

=
[
Ai1...irj1...js

(êi1 ⊗ . . .⊗ êir ⊗ σ̂j1 ⊗ . . .⊗ σ̂js)
]
(ω1, . . . , ωr, ν1, . . . , νs)

And we finally have A in terms of the basis:

A = Ai1...irj1...js
(êi1 ⊗ . . .⊗ êir ⊗ σ̂j1 ⊗ . . .⊗ σ̂js)

Notice that the dimension of the tensor space T rs (V ) must then be dim(V )r+s

5.4 Interpretations of Tensors

Consider a tensor A ∈ T 1
1 (V ). There are a couple of ways to view this object. One could see it for what

it is, a multilinear map from V ∗ × V to the real numbers. This isn’t always the geometrically meaningful
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interpretation. If we take a dual vector w ∈ V ∗ and we feed that to A, then we’ve only partially evaluated
it. A still has its mouth open, waiting to be fed a vector. So after feeding only w to A we’re left with a
linear map V → R, which is a dual vector. We can name this function A1 : V ∗ → V ∗, and it is the mapping
w 7→ (v 7→ A(w, v)). Similarly we could have taken a v ∈ V , fed v to A, and left it hungry for a dual vector.
That would have left us with a map V ∗ → R, which is a vector (in the naturally isomorphic sense). We
name that function A2 : V → V and it is the mapping v 7→ (w 7→ A(w, v)). These are three ways to interpret
the same action: producing a real number from two objects. We consider the different mappings A, A1, and
A2 to be the same without any choice of basis; so they are naturally the same. Formally we would say that
T 1
1 (V ), L(V ;V ), and L(V ∗;V ∗) are naturally isomorphic vector spaces.

These interpretations translate over to different designations of rows and columns once A is resolved in
some basis

{
êi ⊗ σ̂j

}
. Higher rank tensors analogously have multiple interpretations, there are more kinds

of interpretations for higher ranks. In practical situations, people treat naturally isomorphic spaces as the
same space without making a fuss over it. Even though different interpretations of the same tensor are
strictly different functions, people mix all of the different mappings into one “index structure”. So when we
say gµν we are referring to all of the interpretations mushed into one object. Once indices are contracted in
a particular way, like gµνx

µ, we pick one interpretation (in this case the V → V ∗ type).

I’d like to do an example of a tensor interpretation with scalar products, before I end this. The scalar
product operation, mentioned at the end of section 4.2, takes a vector and a dual vector and gives back
a real number. It does this in a bilinear way, which makes it a tensor <,>: V ∗ × V → R. That’s one
interpretation, <,>∈ T 1

1 (V ). What about <,>1: V
∗ → V ∗? Well if we feed the scalar product a dual vector

w ∈ V ∗, it’s still waiting to be fed a vector. The map we are left with wants to take the vector we give it
and feed it to w, by definition of scalar product. The remaining map must then be w itself. Okay how about
<,>2: V → V ? Feed <,> a vector v ∈ V , and it is left hungry for a dual vector. When the remaining
map is fed a dual vector, it just feeds that to v and gives us the result. The remaining map must then be v
itself by definition. So <,>1 and <,>2 are identity maps. The components of <,> in a basis

{
êi ⊗ σ̂j

}
are

<,>ij=< σ̂i, êj >= δij . It’s a Kronecker delta in any basis.

We could talk about tensor transformation laws in terms of vector transformation laws completely abstractly,
without using our tangent space. But it’s time we head back home to the manifold; just know that the results
concerning transformation laws for tensors over a tangent space are derivable in general. It’s more instructive
and practical to get the transformation laws through the concrete example of tensor spaces over a tangent
space.

5.5 Back on the Manifold

The vector space we’ve been interested in is the tangent space at a point m in a manifold M , Tm,M . The
tensor spaces we are interested in are then T rs (Tm,M ). Let φ, ψ be coordinate systems with m ∈ M in their
domain. Let the component functions of φ be x1, . . . , xn :M → R, where n is the dimension of the manifold.
Let the component functions of ψ be y1, . . . , yn. Let t ∈ Tm,M be a tangent vector at m, and let φti represent
its components in the φ coordinate basis, and ψti its components in the ψ coordinate basis.

t = φti
∂ ◦ φ←

∂xi

∣∣∣∣
φ(m)

t = ψti
∂ ◦ ψ←

∂xi

∣∣∣∣
ψ(m)
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At the end of section 3, we obtained the tangent vector transformation law using chain rule. We did this by
expressing one coordinate basis in terms of another.

∂ ◦ φ←

∂xi

∣∣∣∣
φ(m)

=
∂ ◦ ψ←

∂xj

∣∣∣∣
ψ(m)

∂(ψ ◦ φ←)j

∂xi

∣∣∣∣
φ(m)

ψtj = φti
∂(ψ ◦ φ←)j

∂xi

∣∣∣∣
φ(m)

Now we’re going to use the tangent vector transformation law to obtain the transformation law for the dual
space. First we name the components of the cotangent vector w ∈ T ∗m,M in terms of the dual bases to the
coordinate bases of φ and ψ.

w = φwi dx
i

w = ψwi dy
i

We want to express the
{
dxi
}
basis in terms of

{
dyi
}
. Look at the values of dxi on the ψ coordinate basis:

dxi

(
∂ ◦ ψ←

∂xj

∣∣∣∣
ψ(m)

)
= dxi

(
∂(φ ◦ ψ←)k

∂xj

∣∣∣∣
ψ(m)

∂ ◦ φ←

∂xk

∣∣∣∣
φ(m)

)

=
∂(φ ◦ ψ←)k

∂xj

∣∣∣∣
ψ(m)

∂xi ◦ φ←

∂xk

∣∣∣∣
φ(m)

=
∂(φ ◦ ψ←)k

∂xj

∣∣∣∣
ψ(m)

δik

=
∂(φ ◦ ψ←)i

∂xj

∣∣∣∣
ψ(m)

Then look at the values of dyk ∂(φ◦ψ←)i

∂xk

∣∣∣∣
ψ(m)

on the ψ coordinate basis:

[
∂(φ ◦ ψ←)i

∂xk

∣∣∣∣
ψ(m)

dyk

](
∂ ◦ ψ←

∂xj

∣∣∣∣
ψ(m)

)
=
∂(φ ◦ ψ←)i

∂xk

∣∣∣∣
ψ(m)

∂yk ◦ ψ←

∂xj

∣∣∣∣
ψ(m)

=
∂(φ ◦ ψ←)i

∂xk

∣∣∣∣
ψ(m)

δkj

=
∂(φ ◦ ψ←)i

∂xj

∣∣∣∣
ψ(m)

They have the same values on the ψ coordinate basis, so they must be the same dual vector. Having expressed{
dxi
}
in terms of

{
dyi
}
, we may then relate the components of w in the different bases.

dxi = dyj
∂(φ ◦ ψ←)i

∂xj

∣∣∣∣
ψ(m)

ψwi =
φwj

∂(φ ◦ ψ←)j

∂xi

∣∣∣∣
ψ(m)

How do we find the transformation law for an arbitrary tensor? The hardest part is actually over, this one
is easy. I’ll do an example with a (1, 2) type tensor, A ∈ T 1

2 (Tm,M ). Remember from section 5.3 that the
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components of A : V ∗ × V × V → R in a basis

{
∂ ◦ψ←

∂xi

∣∣∣∣
ψ(m)

⊗ dyj ⊗ dyk

}
are

ψAijk = A

(
dyi,

∂ ◦ ψ←

∂xj

∣∣∣∣
ψ(m)

,
∂ ◦ ψ←

∂xk

∣∣∣∣
ψ(m)

)

Now we just use the vector and dual vector transformation laws that we got.

= A

(
∂(ψ ◦ φ←)i

∂xa

∣∣∣∣
φ(m)

dxa,
∂(φ ◦ ψ←)b

∂xj

∣∣∣∣
ψ(m)

∂ ◦ φ←

∂xb

∣∣∣∣
φ(m)

,
∂(φ ◦ ψ←)c

∂xk

∣∣∣∣
ψ(m)

∂ ◦ φ←

∂xc

∣∣∣∣
φ(m)

)

Then we can just use multilinearity to take out the scalar factors, and we’re left with the φ coordinate basis
components of A:

ψAijk = φAabc

(
∂(ψ ◦ φ←)i

∂xa

∣∣∣∣
φ(m)

∂(φ ◦ ψ←)b

∂xj

∣∣∣∣
ψ(m)

∂(φ ◦ ψ←)c

∂xk

∣∣∣∣
ψ(m)

)

And that is our tensor transformation law. Applying this simple procedure to any tensor gives its tensor
transformation law. Actually if one is not interested in rigorously setting up the geometry, one can deal only
with the transformation laws. In fact, some people have no idea what manifolds or tangent spaces are, but
they can still do highly geometrical physics because they understand transformation laws.
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Chapter 6

Fields

This discussion follows the treatment of Bishop and Goldberg in chapter three, and it draws information
from Schutz. If I were to provide a treatment of differential forms, this would be the time to do it. But I’m
not going to treat them yet since they are a huge subject of their own and I’m currently in a poor position
to be writing about them. This section is missing examples of solving for integral curves, so if you’re not
already familiar with them please try to do some problems yourself.

6.1 Vector Fields

A vector field on a chunk of a manifold should be an object that assigns to each point in the manifold a
vector, an element of the tangent space there. A vector field X on an open D ⊂ M is a function such that
for any m ∈ D, we get some X(m) ∈ Tm,M . Remember that a vector in a tangent space at m is actually a
linear derivation-at-m, an operator defined by the way it acts on smooth functions around m. So a vector
field returns a particular one of these operators at each point in D ⊂M . This gives us another way to view
(or define) a vector field. Consider a smooth function f ∈ Fm,M defined on some open W ⊂ M . Just as
acting a vector on f gives a real number, we can consider acting a vector field on f to give a real number at
each point. The vector field thus gives back some other function defined on dom(f) ∩ dom(X).

(X(f))(m) = (X(m))(f) for all m ∈ dom(f) ∩ dom(X)

Although the different ways of looking at the vector field, X and X, are strictly different objects, we glide
between the different interpretations naturally enough to think of them as one object. I don’t like this, I
prefer that it’s clear which function we’re talking about. We might like our definition of vector fields to
be analogous to our definition of vectors. In that case we could have directly defined them as operators on
smooth real valued functions to real valued functions that are linear and obey a product rule.

We already defined the coordinate basis of a coordinate system φ at some point m in the coordinate sys-

tem’s domain U as the basis

{
∂( ◦φ←)
∂xi

∣∣∣∣
φ(m)

for i < dimension

}
. The mapping of m ∈ U to the vector

∂( ◦φ←)
∂xi

∣∣∣∣
φ(m)

produces the ith coordinate basis vector field ∂i. To make our notation of ∂i complete we
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would need to know what coordinate system we’re talking about, so we may use φ∂i if the need arises. Now
our vector field X may be expressed in terms of the coordinate basis vector fields:

X = Xi∂i

where the Xi are functions on the manifold Xi : dom(φ) ∩ dom(X) → R, what we call the component
functions of the vector field (note that the multiplication that appears above is the pointwise multiplication
of a scalar function by a field of operators). This expansion into components works because at each m ∈
dom(φ) ∩ dom(X), we may expand X(m) in terms of the coordinate basis there. The actual components
Xi are X(xi) where xi are the coordinate functions that make up φ:

X(xi) = (Xj∂j) (x
i) = Xj ∂j(x

i) = Xi

What does it mean for a vector field to be smooth? A vector field is C∞ (smooth) if for any smooth real
valued function f on the manifold the function X(f) is also smooth. If a vector field is smooth then its
components in a coordinate system must also be smooth. This is because the components are X(xi) and
the xi are obviously smooth functions. Does the converse hold? Suppose the components of a vector field
are smooth in every coordinate system on a manifold. Take any smooth f : W → R on the manifold. The
question to ask is whether X(f) is a smooth function for sure. Well at any point in W ⊂ M there should
be some coordinate system ψ : U → R

n with m ∈ U . The function X(f) in this coordinate system has a

domain D ∩ U ∩W and looks like Xi ψ∂i(f). Since the Xi are smooth functions and the ψ∂i are smooth
vector fields it is clear that X(f) is smooth. So a vector field smooth iff it’s components are smooth in all
coordinate systems.

6.2 Tensor Fields

A tensor field should assign a tensor to each point in some chunk of the manifold. A tensor field T of
type (r, s) on some open subset D of the manifold is a function such that for every m ∈ D we get some
T (m) ∈ T rs (Tm,M ). Just like there were multiple ways to define a vector field, there is another kind of
mapping that we can use to talk about a tensor field. But before we talk about that we need to understand
dual vector fields. A vector field is clearly just a (1, 0) type tensor field. A dual vector field is just a (0, 1)
type tensor field. A dual vector field Y : D → T 0

1 (Tm,M ) can be thought of as function that takes vector
fields to real valued functions. That is, we may consider the alternative mapping Y which takes a vector
field and gives a function defined by

(Y (X))(m) = Y (m)(X(m)) for m ∈ dom(X) ∩ dom(Y )

Just like vector fields, these can be expanded in a basis at each point. The dual basis we’ve been talking
about for T ∗m,M is denoted in a slightly misleading way,

{
dxi
}
, where xi are the coordinate functions of

some coordinate system φ. A better notation, which I will now switch to using, is
{
dxi(m)

}
. This indicates

that we’re talking about the differential of the smooth function xi at a particular m ∈ M . We’re going to
reserve the old notation for a field. We let dxi : dom(φ) → T 0

1 (Tm,M ) refer to the tensor field defined by
dxi(m) = dxi(m). Now we can talk about the components of a dual vector field, which can be expanded in a
coordinate basis field:

Y = Yidx
i

where the Yi are real-valued functions on dom(Y )∩ dom(φ) and the sum and products seen above are of the
pointwise function type. Actually the Yi are just Y (φ∂i), since

Y (φ∂i) = Yjdxj(
φ∂i) = Yi
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Again, in practical situations nobody bothers with the difference between Y and Y ; I’m just more comfortable
pointing it out when we’re doing this for the first time.

Tensors are multilinear functions on vectors and dual vectors, so a tensor field gives us a multilinear function
on the tangent vectors and cotangent vectors at each point. Thus if we have a tensor field T , we can consider
the function T that acts on vector fields and dual vector fields (ω1, . . . , ωr, ν1, . . . , νs) to produce real-valued
functions defined by

T (ω1, . . . , ωr, ν1, . . . , νs) (m) = T (m)(ω1(m), . . . , ωr(m), ν1(m), . . . , νs(m))

Tensor fields also have components in a basis. To express them this we way could define a “super tensor
product” that acts on tensor fields. We can define the tensor field it makes out of tensor fields T and U by

(T ⊠ U)(m) = T (m)⊗ U(m) for m ∈ dom(T ) ∩ dom(U)

We may then express the tensor field T in terms of component functions, T i1...irj1...js
, on a coordinate basis for

φ with coordinate functions xi:

T = T i1...irj1...js
∂i1 ⊠ . . .⊠ ∂ir ⊠ dxj1 ⊠ . . .⊠ dxjs

The component functions can again be expressed as T i1...irj1...js
= T (dxi1 , . . . , dxir , ∂j1 , . . . , ∂js)

What does it mean for a tensor field to be smooth? We already said that a vector field is smooth if feeding
it any smooth function produces a smooth function. We then showed that this was equivalent to having
all the components of a vector field be smooth in every coordinate basis. Let’s see if we can say similar
things about tensor fields. A (0, 1) type tensor field, a dual vector field, is smooth (C∞) if feeding it any
smooth vector field produces a smooth function. An (r, s) type tensor field is smooth if feeding it r smooth
dual vector fields and s smooth vector fields produces a smooth function. We now obtain similar statements
about the smoothness of component functions. We will summarize them below. Consider a vector field X,
a dual vector field Y , and an (r, s) type tensor field T:

X ∈ C∞ =⇒ Xi ∈ C∞ in any coordinate system because Xi = X(xi) and xi ∈ C∞

Xi ∈ C∞ in any coordinate system =⇒ X ∈ C∞ because X = Xi∂i and ∂i ∈ C∞

Y ∈ C∞ =⇒ Yi ∈ C∞ in any coordinate system because Yi = Y (∂i) and ∂i ∈ C∞

Yi ∈ C∞ in any coordinate system =⇒ Y ∈ C∞ because Y = Yidx
i and dxi ∈ C∞

T ∈ C∞ =⇒ T i1...irj1...js
∈ C∞ in any coordinate system because T i1...irj1...js

= T (dxi1 , . . . , dxir , ∂j1 , . . . , ∂js)

and dxi1 , . . . , dxir , ∂j1 , . . . , ∂js ∈ C∞

T i1...irj1...js
∈ C∞ in any coordinate system =⇒ T ∈ C∞ because T = T i1...irj1...js

∂i1 ⊠ . . .⊠ ∂ir ⊠ dxj1 ⊠ . . .⊠ dxjs

and ∂i1 , . . . , ∂ir , dx
j1 , . . . , dxjs ∈ C∞

6.3 Integral Curves

An integral curve γ
... R →M of a vector field X is a path in the manifold whose tangent everywhere is the

value of the field. That is, γ is an integral curve of X if ( ◦ γ)′ = X ◦ γ (hidden in this statement is the
requirement that ran(γ) ⊂ dom(X)). We say that the integral curve “starts at” m if γ(0) = m. It should
be clear that the definition of integral curve has nothing to say about starting point. So what happens
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when we reparameterize the curve? Take an integral curve γ defined on the real interval Ka, bJ. Consider a
reparametrization of γ’s variable, r :Kc, dJ→Ka, bJ. Then ( ◦ γ ◦ r)′ = ( ◦ γ) ◦ r · r′. If we had r′ = 1, a
constant 1 function, then we’d have ( ◦γ◦r)′ = ( ◦γ)′◦r = X ◦γ◦r. The fact that ( ◦(γ◦r))′ = X ◦(γ◦r)
tells us that the reparameterized curve, γ ◦ r, is also an integral curve. When is r′ = 1? This tells us that we
can translate the parameter of an integral curve and we’ll still have an integral curve. It also tells us that
specifying the value of an integral curve at one point completely determines it. (Well, almost. Restricting
the domain of an integral curve specified in this way does also make an integral curve. But we often just
want the “longest” curve we can get.)

Suppose that someone hands you a vector field and asks you for the integral curve that starts at a particular
point in your manifold. To solve this problem, you reach into your atlas and grab an appropriate coordinate
system φ with coordinate functions xi. Let us express the requirement that ( ◦ γ)′ = X ◦ γ in terms of φ.
For s ∈ dom(γ):

( ◦ γ)′(s) = ( ◦ φ← ◦ φ ◦ γ)′(s) =
∂ ◦ φ←

∂xj

∣∣∣∣
φ(γ(s))

· (φ ◦ γ)j ′(s) = (∂j ◦ γ)(s) · (x
j ◦ γ)′(s)

( ◦ γ)′ = (xj ◦ γ)′ · (∂j ◦ γ)

X ◦ γ = (Xj∂j) ◦ γ = (Xj ◦ γ) · (∂j ◦ γ)

The requirement to be an integral curve is then (xj ◦ γ)′ · (∂j ◦ γ) = (Xj ◦ γ) · (∂j ◦ γ). For every s ∈ dom(γ)
and γ(s) ∈ dom(φ), (∂j ◦γ)(s) is a basis vector. So by requiring equality of vector components, the condition
becomes a system of differential equations:

(xj ◦ γ)′ = Xj ◦ γ

This says that the derivative of the jth component of γ as viewed through φ is equal to the jth component
of the vector field at each point in the path. It is a system of first order ordinary differential equations. The
starting point gives us the initial conditions so that it has a unique solution for xj ◦ γ (again, unique up to
a restriction of the domain). It could be that dom(φ) does not cover dom(X). In that case we’d solve the
differential equations for several coordinate systems and glue the pieces together.

I’m now going to skip a lot of differential equation theory. I’ve already skipped some by stating without
proof that the system of equations above has a unique solution. I’m going to skip some powerful theorems
about how big the domains and ranges of our integral curves could be, the reason being that they are too
mathematical for what I want to get to right now. The bottom line is that any integral curve for a smooth
vector field defined on all of a compact manifold can have its domain extended to all of R. Any vector field
with the property that all its integral curves can be extended to R is called complete.

6.4 Flows

Flows add no new information to what integral curves give us; they are just a different way of looking at the
same thing. If you’re standing in a vector field, you can travel along an integral curve by just walking along
the arrows you’re standing on with the appropriate speed. So we have one point in the manifold (say m),
some “time” t passes, and then we’re at another point in the manifold (say p). A particular integral curve
is generated once we pick an m, it maps each t to a p (the integral curve starting at m). Similarly, part of a
flow is generated when we pick a particular t, we get something that maps each m to p. The whole flow is
the object that produces a map from the m’s to the p’s for each choice of t. So the flow is one object that
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summarizes the information contained in all of the integral curves of a vector field. Let’s make this a little
more formal.

The flow of a vector field X is a function X̃ that maps real numbers to functions from the manifold to itself

in the following way. Given an s ∈ R, X̃s

... M →M such that for any m ∈ dom(X̃s), X̃s(m) is γm(s) where

γm is the integral curve of X that starts at m. So X̃s is a function that pushes each point on the manifold
along an integral curve by parameter s. Back in the day, people used to talk about vector fields as generators
of infinitesimal transformations. People thought of pushing points on the manifold just a little bit along all
the arrows. We see that “infinitesimal” values of s make X̃s seem like an “infinitesimal” transformation.
However, we are above using such language; X̃ is the vector field’s flow.

The existence and uniqueness theorems that we skipped for integral curves follow us here. It is their results
that ensure that if X is complete then dom(X̃s) = dom(X) for s ∈ R. Notice that X̃0 is the identity map on

the manifold. And X̃s ◦ X̃t does intuitively seem like X̃s+t. Properties like these make X̃ a one parameter
group.

A one parameter group is not a group! It is a continuous homomorphism from R to a (topological) group.

Our continuous homomorphism is the flow itself, X̃. And the group is its range, ran(X̃). The group

operation is composition of the functions. We have an identity (X̃0), an inverse (X̃s 7→ X̃−s), associativity,

and commutativity. That X̃ is homomorphic comes from X̃s ◦ tX̃t = X̃s+t. To see proofs of this, continuity,
and smoothness I refer the reader to Bishop and Goldberg page 125 or Warner page 37. Again there is too
much differential equation theory that I don’t want to go into. It’s enough to just know that the flows of
smooth vector fields are smooth in their variables (that is, the mapping s,m 7→ X̃s(m) is smooth).
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Chapter 7

Lie Derivatives

This section attempts to combine the intuitive motivation of Schutz, the computational practicality of Bishop
and Goldberg, and the mathematical rigor of Warner. Some of the terminology is my own. I’m going to
do most of the discussion on Lie derivatives of vector fields, to avoid cluttering the calculations. Forms and
other tensor fields come from vectors anyway, and it will not be too hard to generalize at the end. The usual
notation for evaluating a function a point, “f(x),” fails us here; there is just way too much going on. To
make calculations easier on the eyes I’ll be using the alternative notation, “〈f | x〉”.

7.1 Dragging

Good terminology can go a long way when it comes to visualizing advanced concepts. Here we introduce the
notion of Lie dragging. In section 6.4 we examined the one parameter group X̃ made from the C∞ vector
field X. Since each X̃t has an inverse, X̃−t, and both are smooth functions from the manifold to itself, we

know that each X̃t is a diffeomorphism. We may use it to take one point in the manifold, m, to another
point along an X integral curve, 〈X̃t | m〉. We will call this procedure “Lie dragging m along the vector field
X.” The amount of dragging being done is given by the parameter t.

We can drag a real-valued function f
... M → R in the following way. At each point we want the value of the

dragged function to be the value of the function pushed forward along the integral curves of X, so we look
backwards by parameter amount t and return the function’s value there. The Lie dragged function is then
f ◦ X̃−t.

We can drag a curve γ : R → M by simply dragging the points in the range of the curve. The Lie dragged
curve along X is then X̃t ◦ γ.

Now this one is the whopper. How can we Lie drag a vector field? We need a way to take all the vectors
from some vector field Y along the integral curves of the C∞ vector field X. That is, we need a way of
knowing what a vector looks like in a foreign tangent space, given that we used the diffeomorphism X̃t to
take it there. Remember that cold definition in section 4.1? This is a job for the differential map; it’s time
to understand it.
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When we defined it in section 4.1, we only needed to use the differential in the special case where the second
manifold (the range of the diffeomorphism) is R. We were identifying Tm,R with R for each m ∈ R, so we
weren’t really noticing the tangent space to tangent space action of the differential.

When not dealt with carefully, pictures often serve to destroy our mathematical intuition rather than reinforce
it. Upon every utterance of the words “vector field,” the image of scattered arrows is conjured in my head.
What even gives us the right to draw an arrow for a vector?! The tangent vector is nothing more than an
operator on real-valued functions smoothly defined around some point. In pictorial representations all the
information contained in that operator is reduced to a dinky little arrow. What we are really drawing is the
direction in which real-valued functions should change to get a big real number when we feed them to the
tangent vector; and the scale of the arrow just scales that real number. The picture is an abstraction of the
mathematical object. It’s an abstraction of an abstraction.

Figure 7.1: Is this a vector field? No. It’s a picture.

Keeping in mind that that little arrow is just an action on functions, we reapproach the definition of the
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differential. Consider the diffeomorphism ψ :M →M . dψ should take us from Tm,M to T〈ψ | m〉,M using ψ.

For some v ∈ Tm,M , 〈dψ | v〉 is just an action on functions. It makes perfect sense to take whatever function is
fed to it, drag it backwards using ψ so the smooth part is back at m, and then feed that to v. This intuitively
takes the action on functions (vector) in one place to the same action on functions (vector) dragged forward
using ψ, by simply dragging back all the functions using ψ! Indeed we defined 〈〈dψ | v〉 | f〉 = 〈v | f ◦ ψ〉 for
f ∈ F〈ψ | m〉,M (remember that dragging the function forward would have used ψ←).

So to Lie drag a vector v ∈ Tm,M along the vector field X by amount t we just feed it to the differential:

〈dX̃t | v〉. We can Lie drag a vector field Y along the vector field X in the following way. At each point we
wish to look back by integral curve parameter amount t and return the vector there. However we need that
vector to be in the right tangent space, otherwise the result would not really be a vector field (it would be
some horrible function that returns a foreign tangent vector at each point). So we drag it along by t using

the differential. The Lie dragged vector field is then dX̃t ◦ Y ◦ X̃−t.

(Note: We noted before that the notation dψ was incomplete, that dψm,M would be more appropriate. I’m
just using dψ as if it worked for all points, like a mapping between tangent bundles instead of just between
tangent spaces. Set-theoretically, I’m taking dψ to be the union of all the dψm,M for m ∈ dom(ψ))

In case you are still not convinced that this was the “right way” to define the dragging of a vector field, I
have one more trick up my sleeve. Let us consider what happens to the integral curves of a vector field when
we Lie drag it along another vector field. Consider smooth vector fields X and Y (we will drag Y along X
by amount t). Let γ represent arbitrary integral curves of Y . Let γ∗ represent arbitrary integral curves of

the dragged field, dX̃t ◦ Y ◦ X̃−t. We are searching for a relationship between the γ’s and the γ∗’s.

Each γ is a solution to:
Y ◦ γ = ( ◦ γ)′

And each γ∗ is a solution to:

dX̃t ◦ Y ◦ X̃−t ◦ γ
∗ = ( ◦ γ∗)′

〈dX̃t ◦ Y ◦ X̃−t ◦ γ
∗

| s〉 = 〈( ◦ γ∗)′ | s〉

∀ f ∈ F〈γ∗ | s〉,M 〈〈dX̃t | 〈Y | 〈X̃−t ◦ γ
∗

| s〉〉〉 | f〉 = 〈〈( ◦ γ∗)′ | s〉 | f〉

∀ f ∈ F〈γ∗ | s〉,M 〈〈Y | 〈X̃−t ◦ γ
∗

| s〉〉 | f ◦ X̃t〉 = 〈(f ◦ γ∗)′ | s〉

∀ f ∈ F〈γ∗ | s〉,M 〈〈Y | 〈X̃−t ◦ γ
∗

| s〉〉 | f ◦ X̃t〉 = 〈(f ◦ X̃t ◦ X̃−t ◦ γ
∗)′ | s〉

∀ g ∈ F〈X̃−t | 〈γ∗ | s〉〉,M
〈〈Y | 〈X̃−t ◦ γ

∗
| s〉〉 | g〉 = 〈(g ◦ X̃−t ◦ γ

∗)′ | s〉

∀ g ∈ F〈X̃−t | 〈γ∗ | s〉〉,M
〈〈Y | 〈X̃−t ◦ γ

∗
| s〉〉 | g〉 = 〈〈( ◦ X̃−t ◦ γ

∗)′ | s〉 | g〉

〈Y ◦ X̃−t ◦ γ
∗

| s〉 = 〈( ◦ X̃−t ◦ γ
∗)′ | s〉

Y ◦ (X̃−t ◦ γ
∗) = ( ◦ (X̃−t ◦ γ

∗))′

So X̃−t ◦ γ
∗ = γ, an integral curve of Y . Or rather γ∗ = X̃t ◦ γ. The integral curves of the dragged vector

field are just the draggings of the integral curves of the original vector field! In fact we could have just as
well defined the Lie dragging of Y along X in the following way: Take the integral curves of Y , drag them
all along X by amount t, and return the vector field associated with the new set of integral curves. This
result is a nice and simple statement to fall back on if you one day completely forget how to visualize Lie
derivatives (see figure 7.2).
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Figure 7.2: Read the labels starting from the bottom.

One last bit of terminology: Backdragging something by t means dragging it by −t. And when a field doesn’t
change upon Lie dragging, it is said to be drag-invariant.

7.2 The Idea

In section 6.1 we saw how a C∞ vector field X can be viewed as a mapping from C∞ functions to C∞

functions, X. Just like a tangent vector is a linear derivation-at-a-point, X is a linear derivation. It takes
the directional derivative at each point of the function that is fed to it, and gives back the field of directional
derivatives. 〈X | f〉 is the “derivative of f along X.” The Lie derivative is an attempt to generalize the C∞

function to C∞ function derivative-like action of X to a C∞ vector field to C∞ vector field derivative-like
action (and eventually for any rank tensor field).

Suppose I have a field of stuff defined on a manifold, , :M → stuff, and I want to quantify how it changes
along my smooth vector field X. We begin by picking a point m ∈ M , and asking how the field of stuff,
,, changes along X at that point. The natural thing to do would be to step forward from m a little in the
direction dictated by X (to 〈X̃t | m〉), look at the field of stuff there, 〈, | 〈X̃t | m〉〉, and subtract from that

the value of the field at m, 〈, | 〈X̃t | m〉〉− 〈, | m〉. But we know from experience that it’s best not to move
away from m during this procedure; field values at m don’t always play nicely with field values somewhere
else (like if , was a vector field). So instead of stepping forward a little, we backdrag the entire field and
evaluate that at m. We then make it a genuine derivative by dividing by the size of the “step” and taking a
limit:

〈£X, | m〉 = lim
drag amount→0

〈, backdragged | m〉 − 〈, | m〉

amount of dragging

And we call that the Lie derivative of , with respect to X at m. Now let’s do it for real...
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7.3 The Definition

The Lie derivative of a smooth vector field Y with respect to a smooth vector field X is the vector field £XY

defined as follows.

〈£XY | m〉 = lim
t→0

〈dX̃−t ◦ Y ◦ X̃t | m〉 − 〈Y | m〉

t

It is the limit of a Tm,M -valued function at each point m. According to the previous section, all we need to
do to figure out how to define the Lie derivative of something is figure out how to drag it. For example, let’s
apply the same concept to a real-valued function on the manifold, f :M → R. The previous section tells us
to define it’s Lie derivative as:

〈£Xf | m〉 = lim
t→0

〈f ◦ X̃t | m〉 − 〈f | m〉

t

Let γm be the integral curve of X that starts at m. Then

〈£Xf | m〉 = lim
t→0

〈f ◦ γm | t〉 − 〈f ◦ γm | 0〉

t

= 〈(f ◦ γm)′ | 0〉

= 〈〈( ◦ γm)′ | 0〉 | f〉

= 〈〈X ◦ γm | 0〉 | f〉

= 〈〈X | m〉 | f〉

= 〈〈X | f〉 | m〉

So £Xf = 〈X | f〉. This is a pleasant result; it reinforces the notion that the Lie derivative £X generalizes
the action of X on real-valued functions.

7.4 Other Ways of Looking at It

£XY has a pretty simple appearance in a drag-invariant basis. Suppose {Êi} is a drag-invariant basis field.

That is, suppose that for each i we had Êi = dX̃t ◦ Êi ◦ X̃−t for all t. (One could obtain such a basis field by
starting out with a set of basis vectors at some point on each integral curve of X, then dragging them around
to define the rest of the basis field. So if I know 〈Êi | m〉 then I may define 〈Êi | 〈X̃t | m〉〉 = 〈dX̃t | 〈Êi | m〉〉

and this would force Êi to be drag invariant). Now express Y in this basis: Y = Y iÊi, where Y
i
... M → R

are component functions. In the following lines we use the linearity of the differential (which is easy to
prove straight from the definition in section 4.1). We also use the fact that (dψ)← = d(ψ←), which is also
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straight-forward to prove.

〈£XY | m〉 = lim
t→0

〈dX̃−t | 〈Y | 〈X̃t | m〉〉〉 − 〈Y | m〉

t

= lim
t→0

〈dX̃−t | 〈Y i | 〈X̃t | m〉〉 · 〈Êi | 〈X̃t | m〉〉〉 − 〈Y | m〉

t

= lim
t→0

〈Y i | 〈X̃t | m〉〉 · 〈dX̃−t | 〈Êi | 〈X̃t | m〉〉〉 − 〈Y | m〉

t

= lim
t→0

〈Y i | 〈X̃t | m〉〉 · 〈dX̃−t | 〈dX̃t | 〈Êi | m〉〉〉 − 〈Y i | m〉 · 〈Êi | m〉

t

= lim
t→0

〈Y i | 〈X̃t | m〉〉 − 〈Y i | m〉

t
· 〈Êi | m〉

= 〈Êi | m〉 lim
t→0

〈Y i | 〈X̃t | m〉〉 − 〈Y i | m〉

t

The limit that appears here is just, by definition, 〈£XY
i

| m〉. According to what we previously showed,
that’s just 〈〈X | Y i〉 | m〉. So the Lie derivative takes the following simple form in our drag-invariant basis
field:

£XY = 〈X | Y i〉 · Êi

This is yet another way to have defined Lie derivatives. We could have said that the Lie derivative of a vector
field with respect to X is the derivative of its components along X in a drag-invariant basis field. When we
extend our definition this statement will also hold for the components of a tensor field in a drag-invariant
basis field. Another interesting calculation is to examine £∂1Y , the Lie derivative with respect to the first
coordinate basis field for some coordinate system φ.

Consider the basis field {∂i} for a coordinate system φ with coordinate functions xi. First I claim that
∂i is a drag-invariant basis field with respect to ∂1. We showed that dragging a vector field is the same
thing as taking its integral curves, dragging them, and looking at the vector field associated with the new
curves. This means the drag-invariance of a vector field is equivalent to the drag invariance of the set of
integral curves. The integral curves of ∂i are easy to solve for in the φ coordinate system. The result is

〈φ ◦ (̃∂i)t | m〉 = (〈x1 | m〉, 〈x2 | m〉, . . . , 〈xi | m〉+t, . . . , 〈xn | m〉). (Just write down the differential equations
for the components and the initial condition then solve, as explained in section 6.3). So the flow of ∂i just
adds t to the ith coordinate of a point. In particular the flow of ∂1 just adds t to the first coordinate of

a point. Lie dragging a whole integral curve of ∂i, γ 7→ (̃∂1)t ◦ γ, would then just add t (a constant) to
the first coordinate of the curve, which obviously produces some other integral curve of ∂i. So Lie dragging
takes integral curves of ∂i to integral curves of ∂i, leaving the whole set of integral curves drag-invariant.
According to what we said this means that ∂i is drag-invariant with respect to ∂1. Using the results from
the previous calculation, we may now write the Lie derivative in a simple way:

£∂1Y = 〈∂1 | Y i〉 · ∂i

where 〈∂1 | Y i〉 is of course just the real-valued function ∂Y i◦φ←

∂x1 . We have shown that £∂1 takes the derivative
of all the components of a vector field with respect to the first coordinate! This property of £∂1 will also be
valid for tensor components when we extend our definition. Let’s do that now.
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7.5 Extending the Definition

Section 7.2 has already laid out the conceptual framework behind defining Lie derivatives. All that remains
is to figure out how to drag any rank tensor field along a vector field. Let’s start with dual vector fields.
Recall that we were able to drag a vector (an action on functions) along a diffeomorphism by backdragging
the functions it acts on. We essentially moved the vector through a diffeomorphism by moving its effect on
functions. Our dragging tool was thus the differential map, though we don’t really call it dragging unless
the diffeomorphism comes from the flow of a vector field.

Since a dual vector w is just an action on vectors, we may move the dual vector through a diffeomorphism
by moving its effect on vectors, which we now know how to move with the differential. So the dragged dual
vector is that map which upon being fed a vector backdrags it and feeds it to the original dual vector. For
a diffeomorphism ψ : M → M and some m ∈ M we define Dψ : T ∗m,M → T ∗

〈ψ | m〉,M
such that for any dual

vector w ∈ T ∗m,M ,
〈〈Dψ | w〉 | v〉 = 〈w | 〈dψ← | v〉〉 for all v ∈ T〈ψ | m〉,M

(Note: Again Dψm,M or Dψm would be better notation, but I’ll mush together all the Dψm’s when I use
Dψ. Also be warned that authors like to define the inverse of this map instead of what I’ve done, and they
call it δψ. I don’t see the point of this, we would just have to keep taking inverses later on. So that’s why
I’m using capital D instead of δ.)

Now we have the ability to Lie drag dual vectors along vector fields, w 7→ 〈DX̃t | w〉. And similarly we may

Lie drag dual vector fields, W 7→ DX̃t ◦W ◦ X̃−t. We then define the Lie derivative of a dual vector field
according to the same scheme:

〈£XW | m〉 = lim
t→0

〈DX̃−t ◦W ◦ X̃t | m〉 − 〈W | m〉

t

You’ve probably already figured out how we’re going to Lie drag a tensor along a vector field. Being a
multilinear operator on vectors and dual vectors, a tensor may be moved through a diffeomorphism by using
the diffeomorphism to move its effect on vectors and dual vectors, both of which we now know how to move.
For a diffeomorphism ψ :M →M and some m ∈M we define Dr

sψ : T rs (Tm,M ) → T rs (T〈ψ | m〉,M ) such that

for any (r, s) type tensor, T ∈ T rs (Tm,M ) we have:

〈〈Dr
sψ | T 〉 | (w1, . . . , wr, v1, . . . , vs)〉 = 〈T | (〈Dψ← | w1〉, . . . , 〈Dψ

←
| wr〉, 〈dψ

←
| v1〉, . . . , 〈dψ

←
| vs〉) 〉

for all w1, . . . , wr ∈ T ∗
〈ψ | m〉,M

and v1, . . . , vs ∈ T〈ψ | m〉,M

We may now Lie drag (r, s) type tensors, T 7→ 〈Dr
sX̃t | T 〉.

And we may Lie drag (r, s) type tensor fields, U 7→ Dr
sX̃t ◦ U ◦ X̃−t.

And we may define the Lie derivative of an (r, s) tensor field U with respect to a smooth vector field X:

〈£XU | m〉 = lim
t→0

〈Dr
sX̃−t ◦ U ◦ X̃t | m〉 − 〈U | m〉

t

So £XU is another (r, s) tensor field defined in terms of the limit of a tensor-valued function at each point.
Now you are in a good position to go back and verify the properties we claimed would still hold after
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extending the definition. For example, £XU takes the form 〈X | U i1...irj1...js
〉 · Êi1 ⊠ . . .⊠ Êir ⊠ Σ̂j1 ⊠ . . .⊠ Σ̂js if

U is expanded in a drag-invariant basis field {Êi} with a corresponding dual basis field {Σ̂i}. Just use what
you learned in section 6.2 and follow the calculation in 7.4 to prove this.

7.6 Properties of Lie Derivatives

There are a couple of expected properties whose proofs are straight-forward. The first is distributivity of
£X over addition.

〈£X | A+B〉 = 〈£X | A〉+ 〈£X | B〉

for tensor fields A and B. The proof is a trivial consequence of the definition. The other property is Leibniz
rule (product rule behavior).

〈£X | A⊠B〉 = 〈£X | A〉⊠B +A⊠ 〈£X | B〉

I found a couple of ways to prove this. One is to take the limit definition at a point, and feed the tensor
arbitrary vectors and dual vectors. This turns tensor products into multiplication. The proof can be finished
in the same way that product rule is proven for regular R → R functions (add and subtract an appropriate
term). Another way to prove it is to use the extended version of the result obtained in 7.4. Getting a
drag-invariant basis and working with the components makes it pretty trivial to prove.

The property we’re about to prove is pretty exciting. The Lie bracket of two smooth vector fields X and Y
is defined as follows.

[X,Y ] = X ◦ Y + Y ◦X

The usual next step would be to show that [X,Y ] is in fact a vector field (which should be a little surprising
since is a second order operator). We would do this by proving that it’s a linear derivation; some nice
canceling removes the second order effects. But this follows from what we’re about to prove anyway, so I
don’t need to show it. I unfortunately did not have time to get into the details of Lie brackets, but I refer the
reader to Schutz pages 43-49. The Lie bracket has a very important geometrical interpretation that Schutz
does a great job explaining.

7.6.1 Proof That £XY = [X, Y ]

Consider two smooth vector fields X and Y . To prove this, we need to show that 〈£XY | f〉 = 〈[X,Y ] | f〉
for smooth real-valued functions f defined on dom(x) ∩ dom(Y ). Refining it even more, we need to show
that

〈〈£XY | m〉 | f〉 = 〈〈X | 〈Y | f〉〉 | m〉 − 〈〈Y | 〈X | f〉〉 | m〉

In this proof we will repeatedly use the fact that

〈〈X | f〉 | m〉 = 〈£Xf | m〉

= lim
t→0

〈f ◦ X̃t | m〉 − 〈f | m〉

t
=

d

dt

∣∣∣∣
t=0

〈f ◦ X̃t | m〉
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for any smooth vector field and scalar field X and f . We already showed this in section 7.3. We’ll start by
rewriting what we need to show, then we’ll work on the left side of the equal sign.

〈〈X | 〈Y | f〉〉 | m〉 − 〈〈Y | 〈X | f〉〉 | m〉 =
d

dt

∣∣∣∣
t=0

〈〈Y | f〉 | 〈X̃t | m〉〉 −
d

du

∣∣∣∣
u=0

〈〈X | f〉 | 〈Ỹu | m〉〉

=
d

dt

∣∣∣∣
t=0

d

du

∣∣∣∣
u=0

〈f ◦ Ỹu ◦ X̃t | m〉 −
d

du

∣∣∣∣
u=0

d

ds

∣∣∣∣
s=0

〈f ◦ X̃s ◦ Ỹu | m〉

=
∂2

∂t∂u

∣∣∣∣
(t,u)=(0,0)

〈f ◦ Ỹu ◦ X̃t | m〉 −
∂2

∂s∂u

∣∣∣∣
(u,s)=(0,0)

〈f ◦ X̃s ◦ Ỹu | m〉

We used the smoothness of our maps to switch the order of the partial derivatives in the last step. Of course
the choices of letters for parameters like t, u, s were arbitrary. The notation “ d

dt
” is informal anyway. I just

chose letters that will match the result we get at the end. What we must show has been reduced to:

〈〈£XY | m〉 | f〉 =
∂2

∂t∂u

∣∣∣∣
(t,u)=(0,0)

〈f ◦ Ỹu ◦ X̃t | m〉 −
∂2

∂s∂u

∣∣∣∣
(u,s)=(0,0)

〈f ◦ X̃s ◦ Ỹu | m〉

Let’s get to work on the left hand side.

〈〈£XY | m〉 | f〉 =

〈
lim
t→0

〈dX̃−t ◦ Y ◦ X̃t | m〉 − 〈Y | m〉

t
| f

〉

= lim
t→0

〈〈dX̃−t ◦ Y ◦ X̃t | m〉 | f〉 − 〈〈Y | m〉 | f〉

t

= lim
t→0

〈〈Y | 〈X̃t | m〉〉 | f ◦ X̃−t〉 − 〈〈Y | m〉 | f〉

t

= lim
t→0

〈〈Y | f ◦ X̃−t〉 | 〈X̃t | m〉〉 − 〈〈Y | f〉 | m〉

t

=
d

dt

∣∣∣∣
t=0

〈〈Y | f ◦ X̃−t〉 | 〈X̃t | m〉〉

=
d

dt

∣∣∣∣
t=0

d

du

∣∣∣∣
u=0

〈f ◦ X̃−t ◦ Ỹu | 〈X̃t | m〉〉

=
∂2

∂t∂u

∣∣∣∣
(t,u)=(0,0)

〈f ◦ X̃−t ◦ Ỹu ◦ X̃t | m〉

Here’s the tricky bit. We’re going to define a couple of functions so we can formalize away from the “ d
dt
”

notation. This will help us to use the chain rule correctly. Define a function κ
... R3 → R as follows.

〈κ | (t, u, s)〉 = 〈f ◦ X̃s ◦ Ỹu ◦ X̃t | m〉
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So the thing being differentiated above is the mapping (t, u) 7→ 〈κ | (t, u,−t)〉. Notice that κ is well-defined
on some neighborhood of (0, 0, 0). Define j : R2 → R

3 to be the mapping (t, u) 7→ (t, u,−t) with component
functions 〈j1 | (t, u)〉 = t, 〈j2 | (t, u)〉 = u, and 〈j3 | (t, u)〉 = −t. Now the thing being differentiated above is
κ ◦ j. Let number subscripts denote partial derivatives. Then we have

〈〈£XY | m〉 | f〉 = 〈(κ ◦ j)21 | (0, 0)〉

Using chain rule (m© is matrix multiplication):

(κ ◦ j)′ =
[
(κ ◦ j)1 (κ ◦ j)2

]

=
[
κ1 ◦ j κ2 ◦ j κ3 ◦ j

]
m©




j11 j21

j12 j22

j13 j23




=
[
κ1 ◦ j κ2 ◦ j κ3 ◦ j

]
m©




1 0

0 1

−1 0




So the first derivative gives

(κ ◦ j)2 =
[
κ1 ◦ j κ2 ◦ j κ3 ◦ j

]
m©




0
1
0


 = κ2 ◦ j

And similarly the next derivative gives

(κ ◦ j)21 = (κ2 ◦ j)1 =
[
κ21 ◦ j κ22 ◦ j κ23 ◦ j

]
m©




1
0
−1


 = κ21 ◦ j − κ23 ◦ j

And now we may switch back to the less formal notation:

〈〈£XY | m〉 | f〉 = 〈κ21 ◦ j − κ23 ◦ j | (0, 0)〉

= 〈κ21 − κ23 | (0, 0, 0)〉

=
∂2

∂t∂u

∣∣∣∣
(t,u,s)=(0,0,0)

〈f ◦ X̃s ◦ Ỹu ◦ X̃t | m〉 −
∂2

∂s∂u

∣∣∣∣
(t,u,s)=(0,0,0)

〈f ◦ X̃s ◦ Ỹu ◦ X̃t | m〉

=
∂2

∂t∂u

∣∣∣∣
(t,u)=(0,0)

〈f ◦ Ỹu ◦ X̃t | m〉 −
∂2

∂s∂u

∣∣∣∣
(u,s)=(0,0)

〈f ◦ X̃s ◦ Ỹu | m〉

= 〈〈[X,Y ] | f〉 | m〉

Thus £XY = [X,Y ] and the proof is done.
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Chapter 8

Appendix

8.1 Notation

I describe the notation I use within the text where I first use it. However I’m providing a list here in case
you want to skip around the paper.

• Fm,M is the set of real-valued functions smoothly defined on a neighborhood of a point m on the
manifold M .

• Tm,M is the tangent space at the point m in the manifold M .

• V ∗ is the dual space to the vector space V .

• T rs V is the vector space of (r, s) type tensors over the vector space V .

• dom(f) and ran(f) are the domain and range of a function f .

• φ∂i is the ith coordinate basis field that comes from the coordinate system φ. Sometimes I leave out
the φ.

• f
... A→ B is just like f : A→ B except the domain of f is some subset of A.

• Be careful of the differential (like dxi or dX̃t), they tend to have meanings that change in subtle ways.
Their particular usage is described in the text each time.

• X is the C∞ function to function way of looking at a vector field X. Most people just use X to refer
to both.

• X̃ is the flow of the smooth vector field X. When I say flow I mean the one-parameter group associated
with the vector field.

• 〈f | x〉 is an alternative (and better) notation for f(x), evaluating a function at a point. Since it’s
unconventional I avoided it as much as I could, but I was forced to use it at the end.

• The underscore notation is sometimes used to denote a function. For example the parabola defined by
f(x) = x2 is just f = 2. And the tangent vector defined by t(f) = (f ◦ γ)′ is t = ( ◦ γ)′
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