LINEAR ODE SYSTEMS

(version 11 of notes) September 12, 2017

1 Setup

An ODE is an equation involving an unknown function y and some of its derivatives. An ODE
system is possibly multiple equations involving possibly multiple unknown functions vy, ..., y, and
some of their derivatives. We will be concerned with systems of first order ODEs. In the technical
definition, these are ODE systems that have the form
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A convenient way to organize multiple unknown functions is as a list of functions
y(t)
gty =1
Yn(t)

Note that the list of functions is written vertically. You could also call ¢(t) a “vector-valued
function,” meaning a function of one variable with outputs in R".

Just like ODEs, ODE systems can be linear or nonlinear. Let’s see what this could mean.

For ODEs, “linear” meant that the ODE had the form L(y(t)) = Q(t), where L is a linear map
that operates on functions. The vectors in this picture are functions. For example, % =ty +t3is
a linear ODE, since it can be written as (% — t?)y(t) = ¢, and £ = (% — t?) operates linearly on

_ dt
functions.

For ODE systems, “linear” means essentially the same thing: the ODE system has the form
L(F(t)) = Q(t), where L is a linear map. But the vectors in this picture are lists of functions,
aka vector-valued functions. For example,

d
d
% = e'y; — tyy + cos(t)

is a linear ODE system, since it can be written as
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(Convince yourself that those really are the same equation!) The general form for a linear first
order ODE system is

S0~ AW (0 = G0),

where A(t) is a matrix of functions (or, if you prefer, a “matrix-valued function”). When Q(¢) is

zero, we call the linear ODE system homogeneous. When the matrix A(¢) is a matrix of constants,
we say the linear ODE system has constant coefficients.

Applying the same old concepts of linear algebra to homogeneous linear ODE systems L(y(t)) = 0,
we have the following fact: The set of solutions is a vector space; i.e. any linear combination of
solutions is a solution. Thus, one seeks a basis for this solution space, and then the general solution
is an arbitrary linear combination of those basis solutions.

Our concern in these notes is to deal with first order homogeneous linear ODE systems with constant
coefficients. We will focus on systems with only two unknown functions; much of the reasoning can
be extended once we have that down. So the things we're interested in all have the form

d

() = Ag(t)

for a constant 2 x 2 matrix A. If A is { ZH 312 ] , then the ODE system is
21 022

Y1 = anyr + ainys

yé = Q21Y2 + A22Y2.

2 Uncoupled Systems

Let’s focus on a very specific case of the problem:

LY
The ODE system is now
/
=1 ] g
which becomes
Y1 = ayi
Yo = —Yo.

There is no ys in the y; equation, and no y; in the y; equation... these two equations are uncoupled.
They are really just two individual ODEs, and we know how to solve them. The first has general
solution 1; = c;e® and the second has general solution ys = coet. The two-parameter family of

solutions to the system can be described as

. Ceat eat 0
- [9%] —a [ ] va 4.
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The problem is technically solved now, but let’s try to understand what the solution is doing. First,
some conventions for picturing things: Think of ¢ as time. As the system evolves in time, y; and
y2 change. Think of the pair (y;,y2) as describing the state of the system at any given time. That
is, points in the y;-yo plane represent possible states of the system. So a trajectory in the yi-ys
plane represents a possible time-evolution of the system. And the general solution of the system is
a whole family of trajectories in the y;-y2 plane.

Now in order to picture what the system does, we need to know more about the constant a.

Assume that a < —1 in (1). The trajectories in y;-yo space look like:

The horizantal axis is y; and the vertical axis is y; the exact dependence of these two functions on
time is not really displayed in the picture. As t — 0o, each of y;(t) and y»(t) decays to zero, hence
the trajectories all heading towards the origin. As t — oo, each trajectory decays into the origin
in a vertical manner, i.e. in a direction tangent to the 1y, axis. Why this shape of trajectories?
It’s because y; is decaying faster than ys, due to our assumption that a < —1. A good way to
understand the shape is to imagine that a is extremely negative— then y; would decay very quickly
and we would see the curve almost slam into the y, axis, after which it would crawl down to the
origin due to the slow decay of y5. Looking at ¢ — —oo, each trajectory comes in from a horizantal
direction, i.e. parallel to the y; axis

Notice the two very simple trajectories along the axes themselves. These correspond to

et 0
The other trajectories are obtained as various linear combinations of those two simple ones.

There is also an invisible trajectory which just stays put at the origin. Here, the origin is called a
stable node. The origin is “stable” in the sense that trajectories that start near to the origin tend
to the origin as t — oo.

Assume that —1 < a <0 in (1). This time the trajectories in y;-y» space look like:



The origin here is also called a stable node, and in fact we're looking at basically the same picture
as the previous one. The axes are just swapped.

Assume that ¢ = —1 in (1). This is a special case, in which y; and y, decay at exactly the
same rate:

In addition to all the straight-line trajectories decaying towards the origin, there is also a fixed
trajectory that stays put at the origin. The origin here is called a stable star.

Assume that ¢ =0 in (1). This is another special case. The solutions now all involve y; being
some constant, with y, decaying as usual. So the trajectories just decay straight towards the y;
axis:

Note that with all the previous cases, the origin was both the only location where there was a fixed
trajectory, and it was the only point that attracted all trajectories. In this case, however, every



point on the y; axis has a fixed trajectory on it. And every point on the y; axis attracts some of
the trajectories near it.

Assume that a > 0 in (1). Now y; grows exponentially while y, decays:

The origin has become unstable. Almost all trajectories veer away from the origin towards larger and
larger y;. The exception is the trajectories that start with y; = 0; they travel precariously towards
the origin along the y, axis. If you run time forward then you see all trajectories approaching the
¥y axis, and if you run time backward then you see all trajectories approaching the y, axis. In this
situation, the origin is called a saddle point.

By the way, those pictures are called “phase portraits.” In each picture the origin was a fized
point— it had a fixed trajectory sitting on it. We’ve named the type of fixed point in some of the
pictures: stable node, stable star, and saddle point. There are also unstable nodes and unstable
stars; they look the same as stable nodes and stable stars but with the arrows flipped around. And
four more types of fixed points can occur: stable spirals, unstable spirals, centers, and degenerate
nodes. Those did not make an appearance in our uncoupled example, but they are coming up.

3 Coupled Systems

Let’s shift our focus back to the general problem:

Cy= A7 ¢
The obstacle here is that the equations are coupled; the | equation can involve y, and the
equation can involve y;. However, we can still draw inspiration from the uncoupled situation. For
one thing, there is still a fixed solution ¥(t) = 0 at the origin. Perhaps there are also straight-line
trajectories decaying towards or growing away from the origin? Let us search for such solutions;
they would have the form

jit) = M,

where 77 is a constant vector pointing in the direction of the straight line solution.
Substituting e into ‘;—g = Ay, we get
NeMi = eM A7,
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It’s harmless to divide out the never-zero scalar function e:
A7 = A7

Conclusion: j(t) = e*i] is a straight-line solution to Z—g =

with eigenvalue A!

Ay if and only if 77 is an eigenvector of A

This would be a good point for you to pause and review some linear algebra if you need a refresher.
Here are some linear algebra facts that are good to have available:

e An n x n matrix A has at least one (possibly complex) eigenvalue, and it can have up to n
eigenvalues.

e The characteristic polynomial of A is the polynomial det(A — AI) in the variable A, where I
is the identity matrix. The eigenvalues of A are the roots of this polynomial.

e The eigenvectors of A that have eigenvalue A can be found by solving (A — AI)7j = 0. In
other words, they are the nonzero vectors in the nullspace of A — \I.

e A collection of eigenvectors of A that have distinct eigenvalues are necessarily linearly inde-
pendent (this is a theorem). So if an n x n matrix A has n distinct eigenvalues, then it has
enough eigenvectors to make a basis for R™ out of them. But if A has repeated eigenvalues,
then there may or may not be enough eigenvectors to make a basis.

e When there are enough eigenvectors of A to make a basis, then using that basis to represent
A as a linear map yields a diagonal representation of A. We then say that A is diagonalizable.
Otherwise, we say that A is defective.

The possible scenarios for a 2 X 2 matrix A are then:

1. A has two distict and real eigenvalues \{, Ay, with respective eigenvectors 7, 7.

2. Eigenvalues are repeated instead of distinct, but with there still being two linearly independent
eigenvectors 77, and 7.

3. Eigenvalues are repeated instead of distinct, with a merely one-dimensional eigenspace (the
“defective” case).

4. Eigenvalues are complex instead of real.

3.1 Cases 1 and 2: real eigenvalues, enough eigenvectors

In case 1, eM'if; and e??!

can be written as

7> are two linearly independent solutions of (2), and the general solution

J(t) = 1M + ™',
Case 2 is actually handled in exactly the same way; the general solution of (2) is

y(t) = 016/\7:771 + 026/\%727
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where ) is the single repeated eigenvalue.

Suppose we are in case 1, and \; < Ay < 0. What is the picture? There are two “eigensolutions”
with directions given by 7; and 7,; they are ¢ = '}, and i = €*?'7f,. They both decay towards
the origin, but the one along 7> decays more slowly. This looks a lot like the stable node we saw
before. To draw the picture, use the same reasoning we used to picture the solutions of (1) in the
case a < —1, but replace the y; and y, axes by the eigenvector directions. The following sort of
phase portrait emerges:

né (slower eigendirection) nl(faster eigendirection)

N ¥

e

/

So a stable node is what you get when the eigenvalues are distinct and both negative. You can also
get an unstable node— that happens when the eigenvalues are distinct and both positive.

How about when A\; < 0 < Ay? Then one eigensolution dominates in forward time, and the other
dominates in backward time. It’s a saddle point! It’s similar to what we we got in the phase portrait
of (1) when we assumed a > 0. It can look something like

Wi
A

Can you tell which eigendirection in the picture is 77; and which is 757

Suppose we are in case 2 from the numbered list above. Let A be the repeating eigenvalue. In this
case, every vector of R? is an eigenvector of A with eigenvalue \. Thus, 7(t) = e*# is a solution for
any vector ¥ of R%2. The phase portrait shows straight line solutions decaying towards or growing
out from the origin. It’s a star, stable when A\ < 0 and unstable when A > 0.



3.2 Case 4: nonreal (complex) eigenvalues
In this case, one still has the solutions e*'ij; and e*?'7f,, but they are complex solutions. To get
real solutions out of them, we use the principle we established before in lecture:

If L is a linear map of real vector spaces and we find a complex solution § = Ve + @ Yim to the
homogeneous linear system L(y) = 0, then its real and imaginary parts, ¥y and Yi,, are real
solutions.

The two complex eigenvalues will come as a complex conjugate pair \y = a + fi, Ay = a — Si.
Similarly, the eigenvectors 77;, 7, will have complex entries and will in fact come in a complex
conjugate pair; so 17; = 4 + 7 and 17> = 4 — v1 for some real vectors @ and v. Using the identity
et = ¢%(cos(b) + isin(b)), the solution e*'7; is

Mg = e (cos(Bt) 4 i sin(Bt)) (@ + i)
= e (cos(Bt)i — sin(Bt)v) + e (cos(Bt)v + sin(Bt) ).

5]
I
>
<y

Picking out the real and imaginary parts, we obtain two linearly independent solutions of

y(t) = e (cos(Bt)ii — sin(Bt)),
g(t) = e™(sin(Bt)d + cos(Bt)7).

<9

t

The solutions of z—f = Ay are then linear combinations of those two.

Phase trajectories are inward spirals about the origin if a < 0, outward spirals if a > 0, and ellipses
centered at the origin if a = 0. Example pictures:

"~

\/




There is a fixed point at the origin in each case, and it is referred to as a stable spiral, unstable
spiral, or center respectively.

3.3 Case 3: repeated eigenvalues, not enough eigenvectors

Recall our earlier conclusion: #(t) = eij is a straight-line solution of (2) if and only if 77 is an
eigenvector of A with eigenvalue A. In case 3, there simply aren’t enough straight-line solutions to
form a basis for the solution space of (2)! There is only one, and we need two.

I'm punting on writing the general solution of (2) in this case; it will come later. You might like to

see a typical phase portrait of it though:

—

The one eigendirection in the picture is horizantal. This picture is something between a node and
a spiral. You can see it’s kind of trying to be a spiral, but doesn’t quite make it. The origin here
is called a degenerate node. Degenerate nodes can be stable or unstable (the one pictured is clearly
unstable).

4 Exercises

Exercise 1: For each, write the general solution and sketch and describe the phase portrait:
a. Yy = Y2, Yo = =241 — Y2
b, y1 =4y — yo, Yo = 2y1 + ¥o
c. ¥’ = =3r+4y,y = —2x+ 3y

d. o/ =5x+10y,y = —x—y

Exercise 2: Linear second order ODEs, which look like

L)y" + A )Y + folt)y = q(1),

can be viewed as first order linear ODE systems! Name a new variable v and let it stand for y'.
Then v = 3’ is one ODE in the new system. Determine the other ODE in the system and write out
the system using a matrix.



Exercise 3: Apply the method of exercise 2 to solve the simple harmonic oscillator system
y" + wgy = 0.

Sketch and describe the phase portrait.

Exercise 4: Apply the method of exercise 2 to solve the damped harmonic oscillator system
y" + 2ry’ + wgy = 0.

Describe the phase portrait. There should be different pictures based on the values of the constants
r and wy.

Exercise 5: Recall that we found the equation of motion for a pendulum to be

0" + %sin(@) =0
before we passed to a linear approximation. Even though this is a nonlinear second order ODE;,
try to use a method like in exercise 2 to write it as a first order ODE system. Can you write it out

using a matrix?

Exercise 6: Consider a setup consisting of two point masses and three frictionless springs arranged
as follows:

k1 ml k2 m2 k3

frrorerrrrmreee]

Each m; denotes a mass and each k; denotes a spring stiffness constant. For simplicity, assume
that the distance between the fixed side walls equals the sum of the natural lengths of the springs.
Model this setup with an ODE system.

Exercise 7: Consider the ODE system

d_ﬁ A b
at o A

with b nonzero. This should give a degenerate node, but you won’t need any fancy tools to solve
it.

a. Show that the matrix A = ())\ i } has a repeated eigenvalue A\ with the corresponding

eigenspace being only one-dimensional.

b. Solve the system. (Hint: It is almost uncoupled.)

Exercise 8: The following exercises are due to Steven Strogatz and appear in his book, Nonlinear
Dynamics and Chaos.
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a. Romeo is in love with Juliet, but Juliet is a fickle lover. The more Romeo loves her, the more
Juliet wants to run away and hide. But when Romeo gets discouraged and backs off, Juliet
begins to find him strangely attractive. Romeo, on the other hand, tends to echo her: he
warms up when she loves him, and grows cold when she hates him. Let

R(t) = Romeo’s love/hate for Juliet at time t.
J(t) = Juliet’s love/hate for Romeo at time t.

Positive values of R, J signify love, and negative values signify hate. Then a model for their
romance is

where the parameters a and b are positive. What happens?

b. Consider two identically cautious lovers. The system is

R = —aR+bJ
J =bR—aJ

where a and b are positive. Here a is a measure of cautiousness (they each try to avoid throwing
themselves at each other), and b is a measure of responsiveness (they both get excited by the
other’s advances). What happens?

5 Matrix Exponentiation

Consider the 1 x 1 case of (2):

dy

— = Ay.

at ~ Y
Here, A is just a number. We know the solution well:

y = et

You may be used to thinking about the exponential function e’ as “the (At)'™ power of the
magical real number e = é + % + --+.” Another viewpoint, one that better captures the spirit
of exponentiation, is that e4’ means “the solution of 3’ = Ay with y(0) = 1.” You can actually
discover the exponential this way! First, guess a solution to y' = Ay that has a taylor series at the
origin:

y(t) = co+ et + ot + -

Then substitute it into the ODE to get a left hand side of
Y(t)=c1+2ct+---

and a right hand side of
Ay(t) = Aco + Acyt + -+ .
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The initial condition y(0) = 1 forces ¢y = 1. Equate coefficients on the left and right hand sides
to get a bunch of equations involving the ¢,’s. You can deduce from these equations that ¢, = %.

Try it!

You can guess where this is going. Apply the same principle to the ODE system.:
dy
— = Ay.

at ~ Y

5.1 Definition

To make the solution unique, fix an initial condition ¢(0) = . Now guess a solution that has a
taylor series at the origin. This means that each component function has a taylor series at zero, so
we could write it as:

§(t) =G+t +12C + - .

The initial condition gives ¢y = 1. Substitute into the ODE system to get a left hand side of
§'(t) = & + 2tc, + 3t + - - -

and a right hand side of
Aj(t) = Ay + tAG +t*PAG + - .

Equating coefficients of the powers of ¢ and adding in ¢y = 1, we obtain the equations

¢ = Yo
1 = Acy
I S
Cy = §A01
R
C3 = gACQ
From these you can deduce
— 1 —
Cn = _'Any();
n!

so the solution of ¢/ = Ay with initial condition 4(0) = ¥ is

S . L 1 L1 .

y(t) = to + tAYy + 5t2A2y0 + §t3A3?/0 +-
Ripping out the yy from the series, we can view this as a series of matrices being applied to the
initial condition g,
1
3!
where [ is the identity matrix. The matrix series in parentheses turns out to converge no matter
what A is. Evaluate that stuff in parentheses at t = 1; we call the result e”:

1
§(t) = <I+tA+§t2A2+ t3A3+--->g70,

1 1
eA:]+A+§A2+§A3+---. (3)
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This is the definition of the matrix exponential. In this notation, solution to the ODE system
y' = Ay with initial condition y(0) = gy is

Zj(t) = GtA?jo.

We can say this is the general solution of i’ = Ay if we interpret 7, as being an arbitrary vector.

5.2 Properties

Let’s be clear about the types of objects being tossed around here. The symbol A stands for a
matrix. And tA is a scalar multiple of that matrix. The powers of A appearing in (3) are matriz
powers; i.e. you would have to use matrix multiplication to compute them. Exponentials of matrices
like e® and e are then themselves matrices.

The matrix exponential e® shares some but not all properties of the ordinary exponential. The
primary troublemaker in terms of getting all the familiar properties of exponentiation is the fact
that matrix multiplication is noncommutative: the product AB need not equal the product BA.
Let me list some properties without proof.

o
® etAesA _ €(t+s)A
o e A is the inverse of eA. (So e #e? =1.)

If AB = BA, then e®eB = ¢Be? = ¢ATB,

e If P is invertible, then ¢PAP ™' = PeAP !

The convention here is that boldface capital letters stand for matrices, and lowercase letters stand
for scalars.

And of course we have the property

d _tA _ A LA
o e = Ae

which was the whole point of all this.

5.3 Exercises

Exercise 9: Use (3) to directly show that ePAP™" = PeAP L.

Exercise 10: Use (3) to directly show that Le'A = Ae'A.
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5.4 Computing e

Computing e® using (3) directly is an unpleasant task. Powers of matrices get pretty complicated.
Try just computing
a b’
il

However there is one situation where matrix powers are simple: diagonal matrices. One has

MO0 A0
0 X | | 0 M|

Using this property and the definition (3), we have

o i]:[eh 0 } (4)

in case you’ve forgotten!

Great, we can compute exponentials of diagonal matrices. If we can diagonalize a matrix, this gives
us a way to compute its exponential. Recall that to diagonalize a matrix A is to find an invertible
matrix P such that P"'AP is diagonal. If you are able to do this for A, then you can compute its
exponential using the fact that ¢? AP = P71¢AP. Solving P AP = P~1¢AP for e,

A = PP APPL (5)

For example suppose that
1 2
a1 2]
Recall that diagonalization is a matter of solving the eigenvalue problem. We find eigenvalues
A = 2 and \y = —3, with eigenvectors

o=[1].5- (3]

Therefore the matrix

serves to convert A into a diagonal matrix whose diagonal entries are Ay, Ag:

o2 0 140
acp[2 0o

We compute P! to be

14



Hence

eA = eP[ 0 ]PA
:136[g *03]1371
12 —1 ez 0 2 1
511 2 0 e3 -1 2

e
4,2 1,3 2.2, 2, -3
[5€+5 56+5€]
1,2 | 4,-3

et ze

Okay it is quite tedious. But doable. More importantly, you could instruct a computer to do it.

5.5 Exercises

4 —1
Exercise 11: Compute e[ -t ]

0 t
Exercise 12: Compute e[ -t 0 ], where t is a real number. Eigenvalues are complex, but just go

with it. The answer should come out real!

Exercise 13: Use matrix exponentiation to find the general solution of
¥ =4r —vy
y =4y — .

Hint: with some modifications, you can almost use your answer to exercise 11.

Exercise 14: Find the particular solution of the ODE system in exercise 13 that satisfies the initial
condition z(0) = 1, y(0) = 2.

Exercise 15: Use matrix exponentiation to find the general solution of

Hint: You can use your answer to exercise 12.

Exercise 16: Find the particular solution of the ODE system in exercise 15 that satisfies the initial
condition x(0) = —2, y(0) = 1.

Exercise 17: What if a matrix isn’t diagonalizable? Try to use the usual technique to compute
the exponential of
5 —1
K

Do you see the issue? Linear algebra theory still gives us a way to compute the exponential, and
we will be able to use it to deal with the situation that was deferred back in section 3.3 of these
notes. We will see it in lecture soon.
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6 Analyzing Nonlinear Systems

It is possible to analyze certain nonlinear systems by puzzling together a picture from their lin-
earizations at fixed points.

Here is a compact notation for a first order ODE system:

dy =
— = F(y.,1).

We won'’t tackle quite this level of generality, but close:

y _ = .

L F@, (
We will try to analyze nonlinear systems in which there is no explicit time dependence. “Analyze”
does not mean “solve” here. Nonlinear systems are usually hard to solve and often impossible to
solve in any reasonable way. Worse, even when a solution is available it is often too complicated-
looking to offer any insight. No, we are not interested in solutions, we are interested in getting at
qualitative feautres of nonlinear systems. Chief among these telling features are fixed points and
their stability type.

A fized point is a constant ¢* such that (t) = ¢* works as a constant solution to (6). In other
words, fixed points are those points in phase space on which there is a fixed trajectory. Substituting
a constant ¢ * into (6), we see that §* is a fixed point if and only if

F(j*) = 0.

The technique we will use is this: Locate all the fixed points by solving F (¥*) = 0, linearize F at
each fixed point to obtain homogeneous linear ODEs, use each linearization to determine the local
picture near the fixed points, and finally try to glue together the local pictures to understand what
is happening. We will need to understand how to work with functions like F/(f).

6.1 Vector Fields

The function F (¢) is a function of n variables yi, ..., y,, with n components. When we write F (¥),
it is a shorthand for

F1<y17 T 7yn)

Fn(yl, e 7971)

Such a function is called a vector field. 1t’s domain is the phase space of the ODE. Input a phase

point ¢, and what comes out is a vector “at that point”. Technically what comes out is a vector

in R™, but it helps to imagine that the vector emanates from g itself in the phase space. Given a

state ¥/, the vector F'() should be thought of as the direction in which the state evolves from .
dyg

Solutions of the ODE % = ﬁ(g) are nothing but trajectories y(t) whose velocity %7 is always the

one prescribed by the vector field F.
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For example, we could picture the vector field

ﬁ(yl,y2) = { _y;l ]

as a bunch of little velocity vectors peppered on the y;-y5 plane:
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And solutions of

Z/i =1
?Jé = —Y

are just curves that follow the “flow” of those arrows:

Solving ODEs is nothing but figuring out the flows of vector fields.

(Actually, this idea suggests another way to analyze ODEs without solving them: plot the vector
field F( y)! That’s always doable in two dimensions at least. If you draw enough arrows, you can
kind of guess what the flow will look like.)

6.2 Derivative of F

To linearly approximate a real-valued function of one variable, we take its derivative. To linearly
approximate a vector-valued function of multiple variables, we also take its derivative— but what

could this mean?
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One way to interpret what a derivative s is to think of it as the linear part of a taylor series.
Consider a nice real-valued function f(z) of a single real variable x, and think about its derivative
f'(xg) at a specific point zg in its domain. One feature of this number f'(xy), is that it appears in
the following approximation of f near z:

f(x) = f(xo) + f'(x0)(x — zo) + [higher degree terms].

Think of this as definining the number f’(x)- it is that number which, when multiplied by (x — ),
yields f(z) — f(zo) up to terms of degree two or more in (z — xo).

Now try to apply the same thought to ﬁ(gj’) Focus on a point 3. Whatever ﬁ'(gj’o) is, it should be
something that, when multiplied by the vector (i — §o), yields F(§) — F(4,) up to terms of higher
degree. What type of thing could be multiplied by a vector (¥ — %) to yield a vector F (¥) — F (¥0)?
The answer: an n x n matrix. The derivative of a vector-valued function F' of n variables with n

components is the n x n matrix F’(f) for which
F(5) = F(jo) + F'(§0) (7 ~ ) + [higher degree terms]. (7)

This matrix is also called the total derivative or the Jacobian derivative of F. Another great name
for it is the linearization of F', since it is giving us the closest linear map to the behavior of F'.

You may learn much more about this derivative later, but for now we just need to know how to
compute it. The formula for a two-component function of two variables is

oF  0F
i Oy1 Oy2
F'y) = [ oF, OF, ]

Oy1  Oy2

where the round d symbol “9” denotes a partial derivative. Partial derivatives are derivatives in
which all variables are treated like constants except the one with respect to which the derivative is
being taken. So gill means “Take the derivative of F} with respect to y;, treating y» as though it
were a constant.”

Try to convince yourself that the derivative of

Fz,y) = { ség ;ni;) ]
Flen = [ 20 B0

&

6.3 Linearization of §' = F(

Suppose you have the ODE system ¢’ = ﬁ(gj’) and you compute that * is a fixed point; i.e. you
find that F(y*) = 0.
Shift coordinates of the state space so that the fixed point is at the origin:

u=vy—vy".
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Now the fixed point corresponds to @ = 0, the origin of the @ coordinate system. Taking derivatices,
we have
,L—L»/ — y—»/
so they ODE system 3’ = ﬁ(y_’) becomes
@' = Fa+7") ®)

in terms of the new coordinates. Let’s approximate F near the fixed point ¥ = ¢*. Writing out a
taylor approximation as in (7), we have

—

Flu+y*) = ﬁ(g*) + ﬁ’(gj*)ﬁ—i— [higher degree terms]
F'(§*)i + [higher degree terms] 9)

so (8) becomes

i~ F'(y")d.
Note that F'(7*) is just a constant matrix, so @’ = F'(§*)@ is linear homogeneous ODE with
constant coefficients!

Conclusion:  The phase portrait of ' = ﬁ(yj) near a fived point y* looks similar to the phase
portrait of i’ = F'(y*)4 at the origin.

For example, if ak (y*) is a matrix with one positive eigenvalue and one negative eigenvalue, then
the phase portrait of §’ = F(¢) near y* looks like a saddle point centered at y*.

6.3.1 Neglecting Nonlinear Terms

How safe is it to neglect the higher degree terms in (9)?7 Typically, the qualitative behavior of
y' = F () near fixed point is correctly predicted by the linearization. But there is a small exception
with “borderline” cases. For example, a center is a borderline case between unstable and stable
spirals, and one of the nonlinear terms we neglected could turn a center into a spiral. Another
subtlety we’'ve been ignoring is the case of non-isolated fixed points, fixed points that have other
fixed points arbitrarily close to them (we saw this happen once while examining (1) in the case

a = 0). The rules are:

e If the linearized system u’ = okl (y*)u predicts a saddle, node, or spiral, then the fixed point
really is a saddle, node, or spiral respectively.

e Not necessarily so for centers, degenerate nodes, stars, and non-isolated fixed points.

6.4 The Technique

Let’s do it. We will take a nonlinear ODE of the form ‘;—f =F (), locate its fixed points, classify
them, and build a picture of what is going on.

do pendulum system... still have not typed this
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