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Mass and Momentum

The Navier-Stokes equations describe the non-relativistic
time evolution of mass and momentum in fluid substances.

I mass density field: ρ = ρ(t, x , y , z)

I velocity field: v i = v i (t, x , y , z), i = 1, 2, 3

We will derive them by using conservation of mass and
force laws on a control volume V . The control volume
propagates in time, V = V (t).

(We will assume an isothermal continuum, so we don’t need to consider energy conservation.)

Ebrahim Ebrahim The Navier-Stokes Equations



The Navier-Stokes
Equations

Ebrahim Ebrahim

Physical Principles

Conservation of
Mass

Momentum
Equation

Physical Principles
Conservation of Mass
Momentum Equation

Conservation of Mass

Conservation of mass gives a continuity equation.
(Demand that the mass flux through any closed surface be the change in total

mass, and use divergence theorem)

ρ̇+ ∂i (ρv
i ) = 0

This provides us with nice simplifications if we later assume
incompressibility

incompressibility =⇒ ρ̇ = 0 =⇒ ∂iv
i = 0
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The Forces
We start by considering the forces on a control volume V .

I There are forces on the body, like gravity. Call this
force field f i .

I And there are forces on the surface of the control
volume, pressures along normals and viscous forces
tangentially. These are described by a stress tensor σij .

I σij can be physically defined by the way it operates on a
normal nj to a surface element of area dA. It gives the
force on that surface element: σijn

jdA
I σij is the stress (the force per area) in the j direction

acting on the cube face with normal in the i direction.
Thus the diagonal components are pressures and the
off-diagonal components are shear stresses.
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The Force Law
Now we write the force law on a control volume V :

d

dt

∫
V (t)

(
ρv i
)
d3x =

∫
V (t)

(
f i
)
d3x +

∫
∂V (t)

(
σijnj

)
dA

d

dt
~p = ~Fbody + ~Fsurface

Divergence theorem on the surface force term gives:

d

dt

∫
V (t)

(
ρv i
)
d3x =

∫
V (t)

(
f i
)
d3x +

∫
V (t)

(
∂jσ

ij
)
d3x

It now remains to turn the first term into a volume integral.
The time derivative cannot simply be pushed in because the
volume of integration is time-dependent.
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Reynold’s Transport Theorem

We need to deal with the time derivative on
d
dt

∫
V (t) α(t) d3x for a function α = α(t, x , y , z) and a

time-dependent volume of integration V (t).

d

dt

∫
V (t)

α(t) =

lim
∆t→0

1

∆t

(∫
V (t+∆t)

α(t + ∆t) −
∫
V (t)

α(t)

)
=

lim
∆t→0

1

∆t

(∫
V (t+∆t)

α(t + ∆t) −
∫
V (t)

α(t + ∆t) +

∫
V (t)

α(t + ∆t) −
∫
V (t)

α(t)

)
=

lim
∆t→0

1

∆t

(∫
V (t+∆t)

α(t + ∆t) −
∫
V (t)

α(t + ∆t)

)
+

∫
V (t)

∂α

∂t
=

lim
∆t→0

1

∆t

(∫
∆V

α(t + ∆t)

)
+

∫
V (t)

∂α

∂t
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Reynold’s Transport Theorem

The integral over the difference in volume,
∫

∆V α(t + ∆t),
can be expressed in terms of an integral of the changes in
volume over the surface.

The differential volume change at dA is v jnj∆t dA.
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Reynold’s Transport Theorem

lim
∆t→0

1

∆t

(∫
∆V

α(t)

)
=

lim
∆t→0

1

∆t

( ∑
cube at each dA

α(center of cube) (∆V at patch dA)

)
=

lim
∆t→0

1

∆t

( ∑
cube at each dA

α(center of cube)v jnj∆t dA

)
=∑

cube at each dA

α(center of cube)v jnj dA =∫
∂V (t)

α(t)v jnj dA
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Momentum Equation
And so we have Reynold’s transport theorem:

d

dt

∫
V (t)

α(t) =

∫
∂V (t)

α(t)v jnj dA +

∫
V (t)

∂α

∂t

We can use it on the force equation:∫
∂V (t)

(
ρv iv jnj

)
dA +

∫
V (t)

∂
(
ρv i
)

∂t
=

∫
V (t)

f i +

∫
V (t)

∂jσ
ij

Then use divergence theorem again, and combine the
volume integrals:∫

V (t)

(
∂j
(
ρv iv j

)
+
∂
(
ρv i
)

∂t
− f i − ∂jσij

)
= 0
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Momentum Equation

Since this holds for any control volume, we get the
differential form of the equation. We can also use mass
conservation ρ̇ = −∂j(ρv j) = −∂jρv j − ρ∂jv j

∂j

(
ρv iv j

)
+
∂
(
ρv i

)
∂t

− f i − ∂jσij = 0

∂jρv
iv j + ρ∂jv

iv j + ρv i∂jv
j + ρ̇v i + ρv̇ i − f i − ∂jσij = 0

∂jρv
iv j + ρ∂jv

iv j + ρv i∂jv
j − ∂jρv iv j − ρv i∂jv

j + ρv̇ i − f i − ∂jσij = 0

And we are finally left with the Cauchy momentum
equation:

ρ∂jv
iv j + ρv̇ i − f i − ∂jσij = 0

Ebrahim Ebrahim The Navier-Stokes Equations



The Navier-Stokes
Equations

Ebrahim Ebrahim

Physical Principles

Conservation of
Mass

Momentum
Equation

Physical Principles
Conservation of Mass
Momentum Equation

Momentum Equation

To get an actual equation we must choose a form for the
stress tensor σij .

ρ∂jv
iv j + ρv̇ i − f i − ∂jσij = 0
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