> The Navier-Stokes Equations

Ebrahim Ebrahim

Physical Principles

Conservation of Mass

Momentum Equation

The Navier-Stokes Equations

Ebrahim Ebrahim

University of New Hampshire

February 22, 2012

イロト イヨト イヨト イヨト

з

Mass and Momentum

The Navier-Stokes equations describe the non-relativistic time evolution of **mass** and **momentum** in fluid substances.

• mass density field:
$$\rho = \rho(t, x, y, z)$$

• velocity field: $v^i = v^i(t, x, y, z), i = 1, 2, 3$

We will derive them by using **conservation of mass** and **force laws** on a control volume V. The control volume propagates in time, V = V(t).

(We will assume an isothermal continuum, so we don't need to consider energy conservation.)

The Navier-Stokes Equations

Ebrahim Ebrahim

Physical Principles

Conservation of Mass

Momentum Equation

Conservation of Mass

Conservation of mass gives a continuity equation.

(Demand that the mass flux through any closed surface be the change in total mass, and use divergence theorem)

$$\dot{\rho} + \partial_i(\rho v^i) = 0$$

This provides us with nice simplifications if we later assume incompressibility

incompressibility
$$\implies \dot{\rho} = \mathbf{0} \implies \partial_i v^i = \mathbf{0}$$

The Navier-Stokes Equations

Ebrahim Ebrahim

Physical Principles

Conservation of Mass

Momentum Equation

・ロト ・ 同ト ・ ヨト ・ ヨト

The Forces

We start by considering the forces on a control volume V.

- There are forces on the **body**, like gravity. Call this force field fⁱ.
- And there are forces on the surface of the control volume, pressures along normals and viscous forces tangentially. These are described by a stress tensor σ_{ij}.
 - σ_{ij} can be physically defined by the way it operates on a normal n^j to a surface element of area dA. It gives the force on that surface element: σ_{ij}n^jdA
 - σ_{ij} is the stress (the force per area) in the *j* direction acting on the cube face with normal in the *i* direction. Thus the diagonal components are pressures and the off-diagonal components are shear stresses.

글 제 제 글 제

The Navier-Stokes Equations

Ebrahim Ebrahim

Physical Principles

Conservation of Mass

Momentum Equation

The Force Law

Now we write the force law on a control volume V:

$$\frac{d}{dt}\int_{V(t)}\left(\rho v^{i}\right)d^{3}x=\int_{V(t)}\left(f^{i}\right)d^{3}x+\int_{\partial V(t)}\left(\sigma^{ij}n_{j}\right)dA$$

$$rac{d}{dt}ec{
ho} = ec{
ho}_{
m body} + ec{
ho}_{
m surface}$$

Divergence theorem on the surface force term gives:

$$\frac{d}{dt}\int_{V(t)}\left(\rho v^{i}\right)d^{3}x = \int_{V(t)}\left(f^{i}\right)d^{3}x + \int_{V(t)}\left(\partial_{j}\sigma^{ij}\right)d^{3}x$$

It now remains to turn the first term into a volume integral. The time derivative cannot simply be pushed in because the volume of integration is time-dependent. The Navier-Stokes

Equations Ebrahim Ebrahim

Physical Principles Conservation of Mass Momentum Equation

Reynold's Transport Theorem

We need to deal with the time derivative on $\frac{d}{dt}\int_{V(t)} \alpha(t) d^3x$ for a function $\alpha = \alpha(t, x, y, z)$ and a time-dependent volume of integration V(t).

$$\begin{split} \frac{d}{dt} \int_{V(t)} \alpha(t) &= \\ \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\int_{V(t+\Delta t)} \alpha(t+\Delta t) - \int_{V(t)} \alpha(t) \right) &= \\ \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\int_{V(t+\Delta t)} \alpha(t+\Delta t) - \int_{V(t)} \alpha(t+\Delta t) + \int_{V(t)} \alpha(t+\Delta t) - \int_{V(t)} \alpha(t) \right) &= \\ \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\int_{V(t+\Delta t)} \alpha(t+\Delta t) - \int_{V(t)} \alpha(t+\Delta t) \right) + \int_{V(t)} \frac{\partial \alpha}{\partial t} &= \\ \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\int_{\Delta V} \alpha(t+\Delta t) \right) + \int_{V(t)} \frac{\partial \alpha}{\partial t} \end{split}$$

The Navier-Stokes Equations

Ebrahim Ebrahim

Physical Principles

Conservation of Mass

Momentum Equation

イロト イボト イヨト イヨト

Reynold's Transport Theorem

The integral over the difference in volume, $\int_{\Delta V} \alpha(t + \Delta t)$, can be expressed in terms of an integral of the changes in volume over the surface.

The differential volume change at dA is $v^j n_j \Delta t \ dA$.

The Navier-Stokes Equations

Ebrahim Ebrahim

Physical Principles

Conservation of Mass

Momentum Equation

- 4 回 と 4 き と 4 き と

Reynold's Transport Theorem

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\int_{\Delta V} \alpha(t) \right) =$$

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\sum_{\text{cube at each dA}} \alpha(\text{center of cube}) (\Delta V_{\text{at patch dA}}) \right) =$$

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\sum_{\text{cube at each dA}} \alpha(\text{center of cube}) v^j n_j \Delta t \ dA \right) =$$

$$\sum_{\text{cube at each dA}} \alpha(\text{center of cube}) v^j n_j \ dA =$$

The Navier-Stokes Equations

Ebrahim Ebrahim

Physical Principles

Conservation of Mass

Momentum Equation

$$\int_{\partial V(t)} \alpha(t) v^j n_j \ dA$$

イロン イヨン イヨン イヨン

æ

Momentum Equation

And so we have Reynold's transport theorem:

$$\frac{d}{dt}\int_{V(t)}\alpha(t)=\int_{\partial V(t)}\alpha(t)v^{j}n_{j}\ dA+\int_{V(t)}\frac{\partial\alpha}{\partial t}$$

We can use it on the force equation:

$$\int_{\partial V(t)} \left(\rho v^{i} v^{j} n_{j} \right) dA + \int_{V(t)} \frac{\partial \left(\rho v^{i} \right)}{\partial t} = \int_{V(t)} f^{i} + \int_{V(t)} \partial_{j} \sigma^{ij}$$

Then use divergence theorem again, and combine the volume integrals:

$$\int_{V(t)} \left(\partial_j \left(\rho v^i v^j \right) + \frac{\partial \left(\rho v^i \right)}{\partial t} - f^i - \partial_j \sigma^{ij} \right) = 0$$

・ロト ・ 同ト ・ ヨト ・ ヨト

The Navier-Stokes Equations

Ebrahim Ebrahim

Physical Principles

Conservation of Mass

Momentum Equation

Momentum Equation

Since this holds for any control volume, we get the differential form of the equation. We can also use mass conservation $\dot{\rho} = -\partial_j(\rho v^j) = -\partial_j\rho v^j - \rho \partial_j v^j$

$$\partial_{j} \left(\rho v^{i} v^{j} \right) + \frac{\partial \left(\rho v^{i} \right)}{\partial t} - f^{i} - \partial_{j} \sigma^{ij} = 0$$

$$\partial_{j} \rho v^{i} v^{j} + \rho \partial_{j} v^{i} v^{j} + \rho v^{i} \partial_{j} v^{j} + \dot{\rho} v^{i} + \rho \dot{v}^{i} - f^{i} - \partial_{j} \sigma^{ij} = 0$$

$$\partial_{j} \rho v^{i} v^{j} + \rho \partial_{j} v^{i} v^{j} + \rho v^{i} \partial_{j} v^{j} - \partial_{j} \rho v^{i} v^{j} - \rho v^{i} \partial_{j} v^{j} + \rho \dot{v}^{i} - f^{i} - \partial_{j} \sigma^{ij} = 0$$

And we are finally left with the **Cauchy momentum** equation:

$$\rho \partial_j \mathbf{v}^i \mathbf{v}^j + \rho \dot{\mathbf{v}}^i - f^i - \partial_j \sigma^{ij} = \mathbf{0}$$

The Navier-Stokes Equations

Ebrahim Ebrahim

Physical Principles

Conservation of Mass

Momentum Equation

イロト イポト イヨト イヨト

Momentum Equation

To get an actual equation we must choose a form for the stress tensor $\sigma^{ij}.$

$$\rho \partial_j \mathbf{v}^i \mathbf{v}^j + \rho \dot{\mathbf{v}}^i - f^i - \partial_j \sigma^{ij} = \mathbf{0}$$

The Navier-Stokes Equations

Ebrahim Ebrahim

Physical Principles

Conservation of Mass

Momentum Equation

イロト イヨト イヨト イヨト

э