Structure Theorem for Semisimple Rings: Wedderburn-Artin

Ebrahim

July 4, 2015

This document is a reorganization of some material from [1], with a view towards forging a direct route to the Wedderburn Artin theorem. Let R be a ring, which will always mean ring-with-1.

1 Background

1.1 Semisimple Modules

A left R-module M is simple if it is nontrivial and has no proper nontrivial submodules. A left R-module M is semisimple in case it is generated by its simple submodules.

Theorem 1: If $_{R}M$ is semisimple, then it is a direct sum of some of its simple submodules.

Proof: Let \mathscr{T} be the set of simple submodules of M. A set of submodules is said to be *independent* if each submodule trivially intersects the span of the others. Let $\mathscr{T}' \subseteq \mathscr{T}$ be a maximal independent subset of \mathscr{T} (use Zorn's lemma). We need only show that $M = \sum \mathscr{T}'$. Suppose otherwise; that is, suppose that $M \setminus \sum \mathscr{T}' = \sum \mathscr{T} \setminus \sum \mathscr{T}'$ is nonempty. There is some $T \in \mathscr{T}$ that is not contained in $\sum \mathscr{T}'$, and hence (by simplicity) intersects it trivially. Then $\mathscr{T}' \cup \{T\}$ is independent, contradicting the maximality of \mathscr{T}' .

Theorem 2: A submodule N of a semisimple module M is a direct summand. Further, if M is the direct sum of simple submodules $\bigoplus_{\alpha \in A} T_{\alpha}$ then N is *isomorphic* to $\bigoplus_{\alpha \in A'} T_{\alpha}$ for some $A' \subseteq A$.

Proof: Let $A'' \subseteq A$ be a maximal subset with respect to the property that $\{T_{\alpha} \mid \alpha \in A''\} \cup \{N\}$ is independent. We must have $N + \sum_{A''} T_{\alpha} = M$, for otherwise there is some T_{α} , with $\alpha \in A \setminus A''$, which is not contained in $N + \sum_{A''} T_{\alpha}$ and therefore intersects it trivially (this contradicts the maximality of A''). Therefore we have

$$M = N \oplus \bigoplus_{\alpha \in A''} T_{\alpha}$$
.

Let $A' = A \setminus A''$. It is easy to see that

$$N \cong \bigoplus_{\alpha \in A'} T_{\alpha}$$

since they are both direct-sum-complements to $\bigoplus_{A''} T_{\alpha}$.

1

Theorem 3: Let $(T_{\alpha})_{\alpha \in A}$, $(T_{\beta})_{\beta \in B}$ be families of simple submodules of $_{R}M$, and suppose that

$$\sum_{\alpha \in A} T_{\alpha} \cap \sum_{\beta \in B} T_{\beta} \neq 0$$

Then $T_{\alpha} \cong T_{\beta}$ for some $\alpha \in A, \ \beta \in B$.

Proof: Let *I* denote the nontrivial intersection above. Applying Zorn's lemma as in the proof of (1), there are nonempty $A' \subseteq A$ and $B' \subseteq B$ such that

$$\sum_{\alpha \in A} T_{\alpha} = \bigoplus_{\alpha \in A'} T_{\alpha} , \qquad \sum_{\beta \in B} T_{\beta} = \bigoplus_{\beta \in B'} T_{\beta} .$$

Applying (2) to I, there are nonempty $A'' \subseteq A'$ and $B'' \subseteq B'$ such that

$$I \cong \bigoplus_{\alpha \in A''} T_{\alpha} \cong \bigoplus_{\beta \in B''} T_{\beta}$$

Choose some $\alpha \in A''$ and consider the image \overline{T}_{α} of T_{α} in $\bigoplus_{B''} T_{\beta}$ under the above isomorphism. Apply (2) to \overline{T}_{α} to see that it is isomorphic to some T_{β} .

1.2 Traces and Socles

If \mathscr{U} is a class of *R*-modules, and if $_RM$ is a left *R*-module, then

$$\operatorname{Tr}_{M}(\mathcal{U}) := \sum \{ \operatorname{im} h \, | \, U \in \mathscr{U} \, \cdot \, h : {}_{R}U \to {}_{R}M \} \,.$$

It is the largest submodule of $_{R}M$ generated by \mathscr{U} .

The *socle* of $_RM$ is

 $\operatorname{Soc}(_{R}M) := \operatorname{Tr}_{M}($ the class of simple left *R*-modules).

It is the unique largest semisimple submodule of $_{R}M$.

A homogeneous component of $Soc(_RM)$ is $Tr_M(T)$ for a simple $_RT$.

Theorem 4: Let M be a left R-module. Then Soc(M) is the direct sum of its homogeneous components. **Proof:** Let \mathscr{T} be a set of unique representatives of isomorphism classes of simple left R-modules. First observe that Soc(M) is spanned by its homogeneous components:

$$Soc(M) = Tr_M(\mathscr{T})$$
$$= Tr_M(\bigoplus_{T \in \mathscr{T}} T)$$
$$= \sum_{T \in \mathscr{T}} Tr_M(T)$$

To see that the sum is direct, we assume that

$$\operatorname{Tr}_M(T) \cap \sum_{\alpha \in A} \operatorname{Tr}_M(T_\alpha) \neq 0$$

for some simple left *R*-modules *T* and $(T_{\alpha})_{\alpha \in A}$. The objective is then to show that $T \cong T_{\alpha}$ for some $\alpha \in A$. The trace in *M* of a simple module is the sum of its epimorphic images in *M*, each of which is necessarily isomorphic to the simple module (excluding trivial images). The intersection above can then be written as

$$\sum_{\beta \in B} T_{\beta} \cap \sum_{\gamma \in C} T_{\gamma} \neq 0$$

for families of simple submodules $(T_{\beta})_{\beta \in B}$ and $(T_{\gamma})_{\gamma \in C}$, where each T_{β} is isomorphic to T and each T_{γ} is isomorphic to T_{α} for some $\alpha \in A$. Applying (3) then completes the proof.

Theorem 5: Traces in $_RR$ are not only submodules but also *two-sided* ideals. **Proof:** Let \mathscr{U} be a class of left *R*-modules. For any $r \in R$, $U \in \mathscr{U}$, and $h : _RU \to _RR$, we have a map

$$_{R}U \xrightarrow{h} _{R}R \xrightarrow{\rho_{r}} _{R}R$$

since the right multiplication map ρ_r is a left *R*-homomorphism. It easily follows that $\operatorname{Tr}_{RR}(\mathscr{U})$ is a two-sided ideal.

1.3 Semisimple Rings

A ring R is said to be *semisimple* if $_{R}R$ is semisimple.

Theorem 6: Let R be semisimple. Every simple left R-module is isomorphic to a minimal left ideal in R. **Proof:** Let $_{R}T$ be simple. Choose a nonzero $x \in T$, and define $\phi : _{R}R \to _{R}T$ by $r \mapsto rx$. This is clearly an epimorphism of left R-modules, and its kernel \mathscr{M} is a maximal left ideal of R. By (2), \mathscr{M} is a direct summand of $_{R}R$. It's direct sum complement is submodule of $_{R}R$ isomorphic to $^{R}/\mathscr{M} \cong _{R}T$. This is the desired minimal left ideal.

Theorem 7: Suppose $_{R}R = _{R}R_{1} \oplus \cdots \oplus _{R}R_{m}$ internally, and suppose that each $R_{i} \subseteq R$ is a nonzero two-sided ideal. Then each R_{i} is a *ring* (i.e. has identity) and we obtain product decomposition of R as a ring:

$$R = R_1 \times \dots \times R_m$$

Proof: Let p_1, \dots, p_m be the projection maps of the given left *R*-module direct sum decomposition. Note that a priori we only know that $p_i : {}_{R}R \to {}_{R}R_i$ is a left *R*-homomorphism. For each $1 \leq i \leq m$ define $e_i = p_i(1)$. Observe that

$$e_1 + \dots + e_m = 1$$
 and
 $e_i r e_j = 0$ for $i \neq j$ and any $r \in R$

The first is a basic property of projections and the second follows from $e_i r e_j \in R_i \cap R_j = 0$ (where we've used the fact that each R_i is also a *right* ideal). From these properties we can show that the e_i are central; for any $r \in R$ we have

$$e_i r = e_i r(e_1 + \dots + e_m)$$

= $e_i r e_i$
= $(e_1 + \dots + e_m) r e_i = r e_i$

Each e_i is a right identity for R_i :

$$p_i(r)e_i = p_i(r)p_i(1) = p_i(p_i(r)1) = p_i^2(r) = p_i(r)$$
 for $r \in R$.

It then follows from centrality of the e_i that they are also *left* identities for the respective R_i . That is, the R_i are rings. It also follows from centrality that the projections are *ring* homomorphisms. To see this, note that $p_i(r) = p_i(r1) = rp_i(1) = re_i$ for any $r \in R$. Then:

$$p_i(rs) = p_i^2(rs) = rse_i^2 = re_i se_i = p_i(r)p_i(s) \quad \text{ for } r, s \in R$$

Finally, it is easy to check that the projection maps satisfy the necessary universal property for the alleged product decomposition of R as a ring.

Theorem 8: Suppose $_{R}R$ has a direct sum decomposition $\bigoplus_{\alpha \in A} M_{\alpha}$. Then all but finitely many summands are trivial.

Proof: For each $\alpha \in A$ let $p_{\alpha} : {}_{R}R \to {}_{R}M_{\alpha}$ be the corresponding projection map. If, for a particular α , we have $p_{\alpha}(1) = 0$, then $M_{\alpha} = \text{im } (p_{\alpha}) = 0$. Of course $p_{\alpha}(1)$ can only be nonzero for finitely many $\alpha \in A$.

Theorem 9: A ring with a simple left generator is simple.

Proof: Let S be a ring with simple left generator ${}_{S}T$. Then ${}_{S}S$ is a homomorphic image of a direct sum of copies of ${}_{S}T$. It follows from (2) that ${}_{S}S$ is *isomorphic* to a direct sum of copies of ${}_{S}T$, and according to (8) that direct sum is finite. Write the direct sum internally as

$${}_{S}S = \bigoplus_{i=1}^{n} T_{i}$$

for left ideals T_i of S each isomorphic to ${}_ST$. Let $I \subseteq S$ be a nonzero two-sided ideal of S. According to (2), there is a left ideal $T' \subseteq I$ of S such that $T' \cong T$. Furthermore it is a direct summand of ${}_SS$, so we have a projection map $p: {}_SS \to {}_ST'$. We will show that the two-sided ideal generated by T' is all of S by showing that it must contain each T_i . Consider any one of the T_i . Let $\phi: T' \xrightarrow{\cong} T_i$ be a choice of isomorphism, and define $e = \phi(p(1))$. Consider any $x \in T'$, say x = p(y) with $y \in S$. We have

$$xe = x\phi(p(1)) = \phi(p(x)) = \phi(p^2(y)) = \phi(p(y)) = \phi(x)$$

It follows that T'e contains T_i , and therefore that the two-sided ideal generated by T' contains T_i .

2 Main Theorem

Theorem 10: Let R be a semisimple ring. Then there is a finite set $\mathscr{S} = \{T_1, \dots, T_m\}$ of minimal left ideals of R such that:

- 1. \mathscr{S} contains a unique representative of each isomorphism class of simple left *R*-module.
- 2. For each $T \in \mathscr{S}$, the T-homogeneous component of R is given by

$$\operatorname{Tr}_R(T) = RTR$$

and it is a simple-artinian ring.

3. For each $T \in \mathscr{S}$, the T-homogeneous component of R is a matrix ring over a division ring:

$$RTR \cong \mathbb{M}_n(D)$$
,

where n is the composition length of RTR and $D = \text{End}(_RT)$.

4. R is the "ring direct sum" (actually product)

$$R = RT_1R \times \cdots \times RT_mR.$$

That is, semisimple rings are products of matrix rings over division rings.

Proof: Since $_RR$ is semisimple, it is the direct sum of its homogeneous components (4). The homogeneous components of $_RR$ are the traces in $_RR$ of simple left R-modules. Every simple left R-module $_RT$ is isomorphic to a minimal left ideal of R (6), and in addition each such $_RT$ has nontrivial trace in $_RR$. Let \mathscr{S} be a set consisting of a choice of minimal left ideal of R corresponding to each isomorphism class of simple left R-module. Since $_RR$ is the internal direct sum of the $\operatorname{Tr}_R(T)$ for $T \in \mathscr{S}$, we know that \mathscr{S} is finite (8):

$$\mathscr{S} = \{T_1, \cdots, T_m\}$$

Each $\operatorname{Tr}_R(T_i)$ is a nonzero two-sided ideal (5), and we have a left *R*-module direct sum $_RR = \operatorname{Tr}_R(T_1) \oplus \cdots \oplus \operatorname{Tr}_R(T_m)$. It follows (7) that each $\operatorname{Tr}_R(T_i)$ is in fact a *ring*, and that we have a *ring direct sum*

$$R = \operatorname{Tr}_R(T_1) \times \cdots \times \operatorname{Tr}_R(T_m)$$

Fix a $T \in \mathscr{S}$ and let S be the ring $\operatorname{Tr}_R(T)$. We have $T \subseteq S$, so T is a simple left ideal of S (simplicity is easy to see when one considers the ring direct sum decomposition). Since $_RT$ is a simple left generator of $_RS$, we have $_RS \cong _RT^{(A)}$ for some index set A. Viewing the direct sum as internal makes it clear that this decomposition is also one of S-modules: $_SS \cong _ST^{(A)}$. By (8), the direct sum is finite:

$$_{S}S \cong _{S}T^{(n)}$$

(Note that n is then the composition length of $_{S}S$). This also shows that $_{S}S$ has a simple left generator and is therefore a simple ring (9). It follows that S is a *minimal* two-sided ideal of R, and we may therefore write it as

$$S := \operatorname{Tr}_R(T) = RTR$$
.

It remains only to prove (3). Defining $D = \text{End}(_{S}T)$ (a division ring by Schur's lemma), we have an isomorphism of rings:

right multiplication in
$$S$$

 $S \underbrace{\cong}_{\text{evaluation at 1}} \operatorname{End}(_{S}S) \cong \operatorname{End}(_{S}T^{(n)}) \underbrace{\cong}_{S} \operatorname{M}_{n}(\operatorname{End}(_{S}T)) = \operatorname{M}_{n}(D)$

References

 Anderson, F. and Fuller, K. [74]: Rings and Categories of Modules. New York-Heidelberg-Berlin: Springer-Verlag 1974.