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This document is a reorganization of some material from [1], with a view towards forging a direct route to
the Wedderburn Artin theorem. Let R be a ring, which will always mean ring-with-1.

1 Background

1.1 Semisimple Modules

A left R-module M is simple if it is nontrivial and has no proper nontrivial submodules. A left R-module
M is semisimple in case it is generated by its simple submodules.

Theorem 1: If g M is semisimple, then it is a direct sum of some of its simple submodules.

Proof: Let .7 be the set of simple submodules of M. A set of submodules is said to be independent if
each submodule trivially intersects the span of the others. Let .7/ C 7 be a maximal independent subset
of J (use Zorn’s lemma). We need only show that M = > 7’. Suppose otherwise; that is, suppose that
M\Y 7' =57\ 7 is nonempty. There is some T € 7 that is not contained in .7, and hence (by
simplicity) intersects it trivially. Then 7/ U {T'} is independent, contradicting the maximality of .7”.

Theorem 2: A submodule N of a semisimple module M is a direct summand. Further, if M is the direct
sum of simple submodules P, 4 To then N is isomorphic to @, 4 Tw for some A" C A.

Proof: Let A” C A be a maximal subset with respect to the property that {T,,]a € A"} U {N} is
independent. We must have N + %" ,, T, = M, for otherwise there is some Ty, with o € A\ A”, which is
not contained in N + " ,,, T, and therefore intersects it trivially (this contradicts the maximality of A”).
Therefore we have
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Let A’ = A\ A”. Tt is easy to see that

since they are both direct-sum-complements to & 4, Ta.



Theorem 3: Let (Ty,)aca, (Is)secp be families of simple submodules of pM, and suppose that
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Then T, = T3 for some o € A, 5 € B.
Proof: Let I denote the nontrivial intersection above. Applying Zorn’s lemma as in the proof of (1), there
are nonempty A’ C A and B’ C B such that
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Applying (2) to I, there are nonempty A” C A" and B” C B’ such that
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Choose some o € A” and consider the image T, of T, in @y, T under the above isomorphism. Apply (2)
to T, to see that it is isomorphic to some T3.

1.2 Traces and Socles

If % is a class of R-modules, and if g M is a left R-module, then
Trp (U) o= {im h|U €% « h:gU — gM} .

It is the largest submodule of pkM generated by 7% .

The socle of M is
Soc(rM) := Trp( the class of simple left R-modules ) .

It is the unique largest semisimple submodule of pM.

A homogeneous component of Soc(gM) is Trps(T) for a simple gT.

Theorem 4: Let M be a left R-module. Then Soc(M) is the direct sum of its homogeneous components.
Proof: Let 7 be a set of unique representatives of isomorphism classes of simple left R-modules. First
observe that Soc(M) is spanned by its homogeneous components:

Soc(M) = Try ()
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To see that the sum is direct, we assume that
Ty (T) N Tra(Ta) # 0
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for some simple left R-modules T" and (T}, )aca. The objective is then to show that T' = T, for some « € A.
The trace in M of a simple module is the sum of its epimorphic images in M, each of which is necessarily
isomorphic to the simple module (excluding trivial images). The intersection above can then be written as
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for families of simple submodules (T3)sep and (Ty)yec, where each T3 is isomorphic to T' and each T, is
isomorphic to T, for some o € A. Applying (3) then completes the proof.

Theorem 5: Traces in pR are not only submodules but also two-sided ideals.
Proof: Let % be a class of left R-modules. For any r € R, U € %, and h : gU — R, we have a map

h r
RU—>RRP—>RR,

since the right multiplication map p, is a left R-homomorphism. It easily follows that Tr, z(%) is a two-sided
ideal.

1.3 Semisimple Rings

A ring R is said to be semisimple if g R is semisimple.

Theorem 6: Let R be semisimple. Every simple left R-module is isomorphic to a minimal left ideal in R.
Proof: Let gT be simple. Choose a nonzero z € T, and define ¢ : gR — gT by r — rx. This is clearly
an epimorphism of left R-modules, and its kernel .# is a maximal left ideal of R. By (2), .# is a direct
summand of grR. It’s direct sum complement is submodule of gR isomorphic to B/.# = rT. This is the
desired minimal left ideal.

Theorem 7: Suppose RR = rR1 @ -+ ® grR,, internally, and suppose that each R; C R is a nonzero
two-sided ideal. Then each R; is a ring (i.e. has identity) and we obtain product decomposition of R as a
ring:

R=Ry X - X Ry,
Proof: Let py,---,pm be the projection maps of the given left R-module direct sum decomposition. Note
that a priori we only know that p; : gRR — grR; is a left R-homomorphism. For each 1 < ¢ < m define
e; = pi(1). Observe that
e1+--+e,=1 and
eire; =0  for ¢ # j and any r € R.
The first is a basic property of projections and the second follows from e;re; € R; N R; = 0 (where we've
used the fact that each R; is also a right ideal). From these properties we can show that the e; are central;
for any r € R we have
er =er(er+--+en)
= €;T€;
=(e1 4+ +em)re; = re; .

Each e; is a right identity for R;:

pi(r)e; = pi(r)pi(1) = pi(pi(r)1) = p2(r) = pi(r) forr € R.

It then follows from centrality of the e; that they are also left identities for the respective R;. That is, the
R; are rings. It also follows from centrality that the projections are ring homomorphisms. To see this, note
that p;(r) = p;(rl) = rp;(1) = re; for any r € R. Then:

pi(rs) = p?(rs) = rse? = re;se; = pi(r)p;(s) forr s € R.



Finally, it is easy to check that the projection maps satisfy the necessary universal property for the alleged
product decomposition of R as a ring.

Theorem 8: Suppose rR has a direct sum decomposition @, 4 Ma. Then all but finitely many summands
are trivial.

Proof: For each a € A let p, : gRR — rM_, be the corresponding projection map. If, for a particular «,
we have p, (1) = 0, then M, =im (p,) = 0. Of course p,(1) can only be nonzero for finitely many « € A.

Theorem 9: A ring with a simple left generator is simple.

Proof: Let S be a ring with simple left generator 7. Then ¢S is a homomorphic image of a direct sum
of copies of ¢T. Tt follows from (2) that ¢S is isomorphic to a direct sum of copies of ¢T', and according to
(8) that direct sum is finite. Write the direct sum internally as
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for left ideals T; of S each isomorphic to ¢T. Let I C S be a nonzero two-sided ideal of S. According to (2),
there is a left ideal T C I of S such that 7" = T. Furthermore it is a direct summand of 5.5, so we have a
projection map p : 5 — ¢T”. We will show that the two-sided ideal generated by T” is all of S by showing

that it must contain each T;. Consider any one of the T;. Let ¢ : T” =, T; be a choice of isomorphism, and
define e = ¢(p(1)). Consider any x € T', say x = p(y) with y € S. We have

e = 2¢(p(1)) = d(p(z)) = ¢(0*(v)) = D(p()) = é(z)
It follows that T'e contains T}, and therefore that the two-sided ideal generated by T” contains T;.

2 Main Theorem

Theorem 10: Let R be a semisimple ring. Then there is a finite set . = {11, -+, T}, } of minimal left
ideals of R such that:

1. & contains a unique representative of each isomorphism class of simple left R-module.
2. For each T € ., the T-homogeneous component of R is given by
Trgr(T) = RTR ,
and it is a simple-artinian ring.
3. For each T € ., the T-homogeneous component of R is a matrix ring over a division ring:
RTR = M, (D),
where n is the composition length of RTR and D = End(gT).
4. R is the “ring direct sum” (actually product)
R = RT'R x --- x RT,R.

That is, semisimple rings are products of matrix rings over division rings.



Proof: Since gR is semisimple, it is the direct sum of its homogeneous components (4). The homogeneous
components of g R are the traces in g R of simple left R-modules. Every simple left R-module g7 is isomorphic
to a minimal left ideal of R (6), and in addition each such rT has nontrivial trace in gR. Let . be a set
consisting of a choice of minimal left ideal of R corresponding to each isomorphism class of simple left
R-module. Since rR is the internal direct sum of the Trg(T) for T € ., we know that .7 is finite (8):

cyz{jjla"' 7Tm}

Each Trg(T;) is a nonzero two-sided ideal (5), and we have a left R-module direct sum pR = Trg(Ty) ®
- @ Trg(Ty,). It follows (7) that each Trr(T;) is in fact a ring, and that we have a ring direct sum

R = TI'R(Tl) X oo X TI'R(Tm) .

Fix a T € . and let S be the ring Trg(T). We have T C S, so T is a simple left ideal of S (simplicity is
easy to see when one considers the ring direct sum decomposition). Since gT is a simple left generator of
rS, we have gS & RT(A) for some index set A. Viewing the direct sum as internal makes it clear that this
decomposition is also one of S-modules: 58 = g7, By (8), the direct sum is finite:

gS = ST(n) .

(Note that n is then the composition length of ¢S). This also shows that ¢S has a simple left generator
and is therefore a simple ring (9). It follows that S is a minimal two-sided ideal of R, and we may therefore

write it as
S:=Trr(T)=RTR .

It remains only to prove (3). Defining D = End(s7T) (a division ring by Schur’s lemma), we have an
isomorphism of rings:

. T right matrix action
right multiplication in S on row vectors

S = End(sS) 2 End(¢7™) = M,(End(sT)) =M, (D)

evaluation at 1
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