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This document is a reorganization of some material from [1], with a view towards forging a direct route to
the Wedderburn Artin theorem. Let R be a ring, which will always mean ring-with-1.

1 Background

1.1 Semisimple Modules

A left R-module M is simple if it is nontrivial and has no proper nontrivial submodules. A left R-module
M is semisimple in case it is generated by its simple submodules.

Theorem 1: If RM is semisimple, then it is a direct sum of some of its simple submodules.
Proof: Let T be the set of simple submodules of M . A set of submodules is said to be independent if
each submodule trivially intersects the span of the others. Let T ′ ⊆ T be a maximal independent subset
of T (use Zorn’s lemma). We need only show that M =

∑
T ′. Suppose otherwise; that is, suppose that

M \
∑

T ′ =
∑

T \
∑

T ′ is nonempty. There is some T ∈ T that is not contained in
∑

T ′, and hence (by
simplicity) intersects it trivially. Then T ′ ∪ {T} is independent, contradicting the maximality of T ′.

�

Theorem 2: A submodule N of a semisimple module M is a direct summand. Further, if M is the direct
sum of simple submodules

⊕
α∈A Tα then N is isomorphic to

⊕
α∈A′ Tα for some A′ ⊆ A.

Proof: Let A′′ ⊆ A be a maximal subset with respect to the property that {Tα α ∈ A′′} ∪ {N} is
independent. We must have N +

∑
A′′ Tα = M , for otherwise there is some Tα, with α ∈ A \ A′′, which is

not contained in N +
∑
A′′ Tα and therefore intersects it trivially (this contradicts the maximality of A′′).

Therefore we have
M = N ⊕

⊕
α∈A′′

Tα .

Let A′ = A \A′′. It is easy to see that

N ∼=
⊕
α∈A′

Tα

since they are both direct-sum-complements to
⊕

A′′ Tα.

�
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Theorem 3: Let (Tα)α∈A, (Tβ)β∈B be families of simple submodules of RM , and suppose that∑
α∈A

Tα ∩
∑
β∈B

Tβ 6= 0

Then Tα ∼= Tβ for some α ∈ A, β ∈ B.
Proof: Let I denote the nontrivial intersection above. Applying Zorn’s lemma as in the proof of (1), there
are nonempty A′ ⊆ A and B′ ⊆ B such that∑

α∈A
Tα =

⊕
α∈A′

Tα ,
∑
β∈B

Tβ =
⊕
β∈B′

Tβ .

Applying (2) to I, there are nonempty A′′ ⊆ A′ and B′′ ⊆ B′ such that

I ∼=
⊕
α∈A′′

Tα ∼=
⊕
β∈B′′

Tβ .

Choose some α ∈ A′′ and consider the image Tα of Tα in
⊕

B′′ Tβ under the above isomorphism. Apply (2)
to Tα to see that it is isomorphic to some Tβ .

�

1.2 Traces and Socles

If U is a class of R-modules, and if RM is a left R-module, then

TrM (U) :=
∑
{im h U ∈ U � h : RU → RM} .

It is the largest submodule of RM generated by U .

The socle of RM is
Soc(RM) := TrM ( the class of simple left R-modules ) .

It is the unique largest semisimple submodule of RM .

A homogeneous component of Soc(RM) is TrM (T ) for a simple RT .

Theorem 4: Let M be a left R-module. Then Soc(M) is the direct sum of its homogeneous components.
Proof: Let T be a set of unique representatives of isomorphism classes of simple left R-modules. First
observe that Soc(M) is spanned by its homogeneous components:

Soc(M) = TrM (T )

= TrM (
⊕
T∈T

T )

=
∑
T∈T

TrM (T )

To see that the sum is direct, we assume that

TrM (T ) ∩
∑
α∈A

TrM (Tα) 6= 0

for some simple left R-modules T and (Tα)α∈A. The objective is then to show that T ∼= Tα for some α ∈ A.
The trace in M of a simple module is the sum of its epimorphic images in M , each of which is necessarily
isomorphic to the simple module (excluding trivial images). The intersection above can then be written as∑

β∈B

Tβ ∩
∑
γ∈C

Tγ 6= 0
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for families of simple submodules (Tβ)β∈B and (Tγ)γ∈C , where each Tβ is isomorphic to T and each Tγ is
isomorphic to Tα for some α ∈ A. Applying (3) then completes the proof.

�

Theorem 5: Traces in RR are not only submodules but also two-sided ideals.
Proof: Let U be a class of left R-modules. For any r ∈ R, U ∈ U , and h : RU → RR, we have a map

RU
h−−−→ RR

ρr−−−→ RR ,

since the right multiplication map ρr is a left R-homomorphism. It easily follows that Tr
RR(U ) is a two-sided

ideal.

�

1.3 Semisimple Rings

A ring R is said to be semisimple if RR is semisimple.

Theorem 6: Let R be semisimple. Every simple left R-module is isomorphic to a minimal left ideal in R.
Proof: Let RT be simple. Choose a nonzero x ∈ T , and define φ : RR → RT by r 7→ rx. This is clearly
an epimorphism of left R-modules, and its kernel M is a maximal left ideal of R. By (2), M is a direct
summand of RR. It’s direct sum complement is submodule of RR isomorphic to R/M ∼= RT . This is the
desired minimal left ideal.

�

Theorem 7: Suppose RR = RR1 ⊕ · · · ⊕ RRm internally, and suppose that each Ri ⊆ R is a nonzero
two-sided ideal. Then each Ri is a ring (i.e. has identity) and we obtain product decomposition of R as a
ring:

R = R1 × · · · ×Rm
Proof: Let p1, · · · , pm be the projection maps of the given left R-module direct sum decomposition. Note
that a priori we only know that pi : RR → RRi is a left R-homomorphism. For each 1 ≤ i ≤ m define
ei = pi(1). Observe that

e1 + · · ·+ em = 1 and

eirej = 0 for i 6= j and any r ∈ R.

The first is a basic property of projections and the second follows from eirej ∈ Ri ∩ Rj = 0 (where we’ve
used the fact that each Ri is also a right ideal). From these properties we can show that the ei are central;
for any r ∈ R we have

eir = eir(e1 + · · ·+ em)

= eirei

= (e1 + · · ·+ em)rei = rei .

Each ei is a right identity for Ri:

pi(r)ei = pi(r)pi(1) = pi(pi(r)1) = p2i (r) = pi(r) for r ∈ R.

It then follows from centrality of the ei that they are also left identities for the respective Ri. That is, the
Ri are rings. It also follows from centrality that the projections are ring homomorphisms. To see this, note
that pi(r) = pi(r1) = rpi(1) = rei for any r ∈ R. Then:

pi(rs) = p2i (rs) = rse2i = reisei = pi(r)pi(s) for r, s ∈ R.
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Finally, it is easy to check that the projection maps satisfy the necessary universal property for the alleged
product decomposition of R as a ring.

�

Theorem 8: Suppose RR has a direct sum decomposition
⊕

α∈AMα. Then all but finitely many summands
are trivial.
Proof: For each α ∈ A let pα : RR → RMα be the corresponding projection map. If, for a particular α,
we have pα(1) = 0, then Mα = im (pα) = 0. Of course pα(1) can only be nonzero for finitely many α ∈ A.

�

Theorem 9: A ring with a simple left generator is simple.
Proof: Let S be a ring with simple left generator ST . Then SS is a homomorphic image of a direct sum
of copies of ST . It follows from (2) that SS is isomorphic to a direct sum of copies of ST , and according to
(8) that direct sum is finite. Write the direct sum internally as

SS =

n⊕
i=1

Ti

for left ideals Ti of S each isomorphic to ST . Let I ⊆ S be a nonzero two-sided ideal of S. According to (2),
there is a left ideal T ′ ⊆ I of S such that T ′ ∼= T . Furthermore it is a direct summand of SS, so we have a
projection map p : SS → ST

′. We will show that the two-sided ideal generated by T ′ is all of S by showing

that it must contain each Ti. Consider any one of the Ti. Let φ : T ′
∼=−−→ Ti be a choice of isomorphism, and

define e = φ(p(1)). Consider any x ∈ T ′, say x = p(y) with y ∈ S. We have

xe = xφ(p(1)) = φ(p(x)) = φ(p2(y)) = φ(p(y)) = φ(x)

It follows that T ′e contains Ti, and therefore that the two-sided ideal generated by T ′ contains Ti.

�

2 Main Theorem

Theorem 10: Let R be a semisimple ring. Then there is a finite set S = {T1, · · · , Tm} of minimal left
ideals of R such that:

1. S contains a unique representative of each isomorphism class of simple left R-module.

2. For each T ∈ S , the T -homogeneous component of R is given by

TrR(T ) = RTR ,

and it is a simple-artinian ring.

3. For each T ∈ S , the T -homogeneous component of R is a matrix ring over a division ring:

RTR ∼= Mn(D) ,

where n is the composition length of RTR and D = End(RT ).

4. R is the “ring direct sum” (actually product)

R = RT1R × · · · × RTmR .

That is, semisimple rings are products of matrix rings over division rings.
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Proof: Since RR is semisimple, it is the direct sum of its homogeneous components (4). The homogeneous
components of RR are the traces in RR of simple leftR-modules. Every simple leftR-module RT is isomorphic
to a minimal left ideal of R (6), and in addition each such RT has nontrivial trace in RR. Let S be a set
consisting of a choice of minimal left ideal of R corresponding to each isomorphism class of simple left
R-module. Since RR is the internal direct sum of the TrR(T ) for T ∈ S , we know that S is finite (8):

S = {T1, · · · , Tm}

Each TrR(Ti) is a nonzero two-sided ideal (5), and we have a left R-module direct sum RR = TrR(T1) ⊕
· · · ⊕ TrR(Tm). It follows (7) that each TrR(Ti) is in fact a ring, and that we have a ring direct sum

R = TrR(T1)× · · · × TrR(Tm) .

Fix a T ∈ S and let S be the ring TrR(T ). We have T ⊆ S, so T is a simple left ideal of S (simplicity is
easy to see when one considers the ring direct sum decomposition). Since RT is a simple left generator of

RS, we have RS ∼= RT
(A) for some index set A. Viewing the direct sum as internal makes it clear that this

decomposition is also one of S-modules: SS ∼= ST
(A). By (8), the direct sum is finite:

SS ∼= ST
(n) .

(Note that n is then the composition length of SS). This also shows that SS has a simple left generator
and is therefore a simple ring (9). It follows that S is a minimal two-sided ideal of R, and we may therefore
write it as

S := TrR(T ) = RTR .

It remains only to prove (3). Defining D = End(ST ) (a division ring by Schur’s lemma), we have an
isomorphism of rings:

�

References

[1] Anderson, F. and Fuller, K. [74]: Rings and Categories of Modules. New York-Heidelberg-Berlin:
Springer-Verlag 1974.

5


