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1 Overview

The question of stability for any physical phenomenon described by a differential equation is
essentially this: If we perturb our initial conditions by a small amount, will the new solution
remain close to the original one? This question is important because if a mathematically predicted
motion is not stable we will not see it physically. My research pertains to stability for fluid motion,
but a calculus textbook rotating in space (with zero gravity) serves as a good finite dimensional
analog. The equations of motion predict that the book should sustain a steady rotation with
constant angular velocity about any of its three axes of symmetry. However, rotation about the
axis perpendicular to the book’s spine is unstable, so the slightest perturbation will dramatically
change this motion and we could never actually observe this rotation1. Moreover, this instability
is inherent in the equations of motion and we can understand it mathematically in the framework
of the group structure of rotation matrices as a consequence of conservation of energy and
momentum, see [A, AK]. In my research I examine Euler’s equation for incompressible fluids
with no viscosity and try to determine whether or not certain solutions are mathematically stable.

One method for analyzing the stability of a flow is to examine its so-called linear stability.
This involves linearizing Euler’s equation, equation (1) below, at a particular solution to get a
linear system of equations for approximating the evolution of a perturbation. To keep the analysis
manageable, we typically analyze the linear stability of steady-state solutions, i.e. solutions where
the velocity of the flow does not depend on time. For example, a river where the paths of flow do
not change, but the water is moving, corresponds to a steady-state of the fluid motion. Linear
stability or instability does not imply nonlinear stability or instability, but it can provide valuable
information. Section 2.2 details work I began as a graduate student on linear instability criteria
for steady-state solutions to Euler’s equation.

Examining the stability of a fluid flow amounts to determining whether or not infinitely
small perturbations have a finite affect on the flow in question. All stability questions take
the same basic form, but there are three (perhaps subtle-seeming) factors that really define a
given stability problem: What is the initial flow that we are perturbing? What is the fluid
domain? What norm are we using to measure the growth of perturbations? Section 2.3 describes
a collaborative project in which we are trying to strengthen existing results for a certain type
of flows (so-called vortex patch solutions) by generalizing the fluid domain and reducing certain
restrictions on the initial perturbations.

In addition to detailing my research projects in Sections 2.2 and 2.3 document, I also include
some basic information on Euler’s equation in Section 2.1. My future research plans include
supervising undergraduate research, so I discuss some ideas for projects in the last section of this
document.

1to see this phenomenon watch International Space Station officer Don Petit’s youtube video: Rotating Solid
Bodies in Microgravity
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2 Current Research Projects

2.1 Background: Euler’s Equation

The flow of a fluid is described by a vector field v, where the vector v(x, t) is the velocity of a
fluid particle traveling through point x at time t. I study incompressible fluids; this assumption
imposes the mathematical requirement that the divergence of the velocity field is 0, ∂kv

k = 0,
at all times. The divergence-free requirement leads to the introduction of a scalar pressure
p = p(x, t) into the description of our fluid flow. Whereas, the Navier-Stokes equation describes
viscous flows, the flows I consider have no viscosity. Thus, the evolution of the velocity v and
pressure p is governed by Euler’s equation:

∂tv
j = −vk · ∂kvj − ∂jp

∂kv
k = 0

v(x, 0) = v0(x)
(1)

Here v0 is the initial (divergence-free) velocity field. The vorticity of a fluid flow is the curl of
the velocity field, so by Stoke’s theorem we have that the circulation of the flow along any closed
path is the integral of the vorticity inside that path. Vorticity plays an important role in the
study of fluids for two reasons: 1) circulation is conserved by Eulerian fluid motion and 2) the
velocity field can be recovered from the vorticity ω using the Biot-Savart Law:

v(x, t) =
1

2π

∫
Rn

(x− y)⊥

|x− y|2
ω(t, y) dy.

2.2 Linear Instability for Steady State Flows

The goal of this project is to narrow down which perturbations are causing a given steady-state
solution to be linearly unstable. The focus is on fast-oscillating perturbations, of which, two types
are considered: those that preserve the circulation of the steady-state velocity field, and those
that do not. The conservation of circulation motivates the interest in comparing perturbations
that preserve the topological character of the vorticity with those that dramatically change it.
In [Th] I find lower bounds for the growth of fast-oscillating perturbations of both types.

Our fluid domain is Tn := Rn/Zn for n = 2, 3; this corresponds to periodic boundary
conditions. To define reasonable criteria for linear instability of a given steady-state solution
u ∈ C∞(Tn), we linearize Euler’s equation (1) at u and get an equation for the linear evolution
of a divergence-free perturbation w0 ∈ L2(T2). This leads to a semigroup of bounded linear
evolution operators indexed by time, which we denote G(t), where each operator maps the initial
perturbation to the first order perturbation at the corresponding time t. In other words if our
perturbed initial condition is v0(x) = u(x) + w0(x), then the velocity field for our flow at time t
can be approximated by v(x, t) ≈ u(x) +G(t)w0(x). The concept of linear stability requires that
the perturbation G(t)w0 does not grow too much as time increases.

The general approach here is based on WKB methods for analyzing fast-oscillating pertur-
bations first applied to Euler’s equation by Friedlander and Vishik [FV1, FV2, FV3] and also,
independently, by Lifshitz and Hameiri [LH1, LH2]. The key observation is that the growth of
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fast-oscillating perturbations is governed by the growth of solutions to a system of ODEs called
the bicharacteristic amplitude system:

(BAS)



ẋ = u(x),

ξ̇ = −
(
∂u
∂x

)T
ξ,

ḃ = −
(
∂u
∂x

)
b+ 2

(
∂u
∂x
b, ξ
)

ξ
|ξ|2 ,(

x(0), ξ(0), b(0)
)

= (x0, ξ0, b0) ∈ A,

(2)

where the set of initial conditions to (BAS) is restricted to A, defined by

A := {(x0, ξ0, b0) ∈ Tn × Rn × Rn| ξ0 ⊥ b0, |ξ0| = |b0| = 1}.

The main result of [Th] is a series of lower bounds for the growth of each type of fast-
oscillating perturbation for both 2- and 3-dimensional flows. The lower bounds are defined in
terms of solutions to the bicharacteristic amplitude system (BAS). Growth of perturbations that
preserve circulation corresponds to growth of solutions to (BAS) with initial conditions in the
support of the vorticity of our steady-state solution, curl(u). To find a lower bound for the
growth of perturbations in the factor space we consider initial conditions for (BAS) outside the
support of curl(u).

The problem of tracking how the initial perturbation stretches with time can be reduced to
determining the spectrum of G(t). A scalar λ ∈ C is in the spectrum of some linear operator T if
the operator λI−T does not have a bounded inverse. For example if the operator T is a matrix,
then its spectrum is its set of eigenvalues. Just as in the finite dimensional case, the spectrum of
an infinite dimensional operator gives us some indication of how the operator stretches vectors in
its domain. The fast-oscillating perturbations under consideration here, correspond to a subset
of the spectrum, called the essential spectrum. In [V] Vishik proved that, for a given time
t > 0, the essential spectral radius of the linear evolution operator G(t) is expressed in terms of
the maximal Lyapunov exponent associated with (BAS). More recently, analysis involving the
theory of cocycles has led to a greater understanding of the essential spectrums of the evolution
operators G(t). In a series of results by Shvydkoy, Latushkin and Vishik, the authors use cocycle
methods to determine that the essential spectrum for G(t) in 2-dimensions is a solid annulus
and in 3-dimensions is a solid torus, see [SL1, SL2, SV, S2]. Shvydkoy also applied methods
from the theory of cocycles to a more general class of advective equations from hydrodynamics
in [S1], which resulted in a new, shorter proof of Vishik’s result for the essential spectral radius.
The lower bounds in my result are lower bounds for the radius of the essential spectrum of the
operator G(t) restricted to each type of perturbation.

I plan to apply the theory of cocycles to the problem of singling out the effects of pertur-
bations that preserve circulation. In particular, it may be possible to completely determine the
essential spectrum of G(t) restricted to circulation-preserving perturbations. Flows with a hy-
perbolic stagnation point provide an important class of examples with instability in the essential
spectrum. Preliminary calculations indicate that flows with hyperbolic stagnation point always
have instability coming from the factor space (this is the class of perturbations that dramatically
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change the topological character of the vorticity of the steady flow). I would like to determine if
every flow with instability in the essential spectrum necessarily has instability coming from the
factor space.

2.3 Nonlinear Stability of Vortex Patch Solutions

Vortex patch solutions to 2-dimensional Euler’s equation (1) are flows where the initial vorticity,
curl(v0) = ∂1v2(0)− ∂2v1(0), is a characteristic function of some bounded region Ω0. These solu-
tions are of interest, in part, because they are the most stripped-down mathematical descriptions
of hurricanes. The goal of this project is to utilize geometric consequences of certain conserved
quantities for Eulerian fluids to strengthen existing nonlinear stability results in the L1-norm for
some families of rigidly rotating vortex patch solutions.

In 2-dimensions vorticity is preserved along flow lines, so the study of such a solution reduces
to examining the evolution of the vortex patch under the flow. If we let gt be the flow map
defined by d

dt
gt(x) = v(gt(x), t), then the vorticity at time t is the characteristic function of the

set Ωt := gt(Ω0). As a result, several conserved quantities of fluids have geometric consequences
for the shape of a vortex patch. For example, conservation of circulation implies that the area
of a vortex patch will not change as it flows. And for moment of fluid impulse, defined by

J(Ω) :=

∫
Ω

|x|2 dx,

the circular patch is the unique minimizer of J among all patches of a given area centered at the
origin. Thus, conservation of moment of fluid impulse implies the well-known fact that circular
patches are steady-state solutions.

Wan and Pulvirenti showed L1 stability for circular patches where the fluid domain is a disk,
[WP]. In [T] the nonlinear stability of circular patches in the plane was established using a
similar method. The nonlinear orbital stability of certain Kirchhoff ellipse solutions in the plane
was also shown in [T]. In [W] Wan establishes a more general result for the so-called Kelvin
m-waves. For the nonlinear stability of the rotating solutions, both [T] and [W] require the initial
perturbation to be small and its time evolution to remain in a fixed disk, a property which has
not been established.

Dreitschel examined the stability of circular vortex patches in a new norm defined in terms of
area and moment of fluid impulse [D]. Recently Sideris and Vega proved L1 stability of circular
patches in the plane without the smallness assumption on the initial perturbation, [SV]. Their
method involved demonstrating that Dreitschel’s norm on perturbations was equivalent to the
L1-norm.

Currently I am collaborating with Thomas Sideris on further investigations into the L1 non-
linear stability of rotating vortex patch solutions with the goal of reducing the requirements
on the initial perturbations and removing the assumption that perturbations remain in a fixed
disk. In our examination of elliptic vortex patches we have defined a function analogous to
Dreitschel’s norm which maximizes the L1-norm. In the spirit of Sederis and Vega’s result for
circular patches in [SV], we hope to show that for some alignment of the ellipse, this maximizing
function is bounded by the L1-norm of the initial perturbation.
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3 Student Research

To my mind, there are two motivations for undergraduate research: (1) to expose students to
valuable or interesting subject matter not covered in traditional mathematics courses in a way
that facilitates greater appreciation for and comfort with mathematical concepts, and (2) to give
especially talented students the opportunity to work to the limits of their abilities and perhaps
create original research. The ultimate goal in both cases is to foster a love for mathematics and
build critical thinking skills at a level beyond that of the classroom. I look forward to supervising
research projects of both types.

If the goal of the research project is more in keeping with exposure to new and interesting
mathematics, the choice of project would likely depend on the particular student’s taste. If a
student is more inclined towards algebraic concepts, I might suggest looking at quaternions and
their connection to 3D rotations or an extension of topics covered in linear algebra. If the student
has interests in physics or appreciates more ‘visualizable’ questions I would suggest some topics
connecting calculus with physics–perhaps an in-depth look at the variations of Stokes’ Theorem.
If the student feels more comfortable with experimentation or programming I would suggest a
project utilizing computer programs (or developing new programs) to explore ideas beyond the
reach of analytic tools available to the student.

I also have project ideas more closely related to my own research to challenge the especially
talented student. I would love to introduce the functional calculus of bounded self-adjoint op-
erators to an undergraduate student. The subject is so algebraic in nature that many of the
key ideas do not require heavy background in analysis. Analyzing the stability of a particular
fluid flow can lead to interesting questions that do not require graduate level background. For
example, some aspects of stability for plane parallel shear flow (i.e. flow straight down a pipe)
only require vector calculus and basic ODEs. Certain steady-state solutions to Euler’s equa-
tion correspond to very manageable (BAS) equations. For example, any flow with a hyperbolic
stagnation point corresponds to a system of ODEs with constant coefficients.

As an undergraduate student I was steered towards mathematics when my Vector Calculus
professor, Dr. Kunin, proposed supervising my work on an independent research project. I did
not know that the subject was so beautiful and interesting, and I certainly did not think I was
capable of earning a PhD in mathematics. We continued that work for several semesters and
he encouraged me to participate in an REU, the MASS program and Budapest Semesters. Dr.
Kunin’s mentoring had a profound positive effect on my career and I would be honored to do
the same for one of my own students someday.
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