1. The table gives the windchill \(w(s, T) \) as a function of the wind speed \(s \) and the temperature \(T \).

\[
\begin{array}{c|cccc}
 s/T & 30 & 20 & 10 & 0 \\
 \hline
 5 & 27 & 16 & 6 & -5 \\
 10 & 16 & 4 & -9 & -24 \\
 15 & 9 & -5 & -18 & -32 \\
\end{array}
\]

a) Estimate \(w_T(10, 10) \), and \(w_s(10, 10) \).

b) Use linear approximation to estimate \(w(12, 13) \).

2. Find.

a) \(\int \left(2x^{-3} + 3e^{2x} - \ln(2) \right) dx \)

b) \(\frac{d^2}{dx^2} \left(x^3 \ln(x) + e^{3x+7} \right) \)

c) \(\frac{\partial}{\partial s} \left((s+t)^2 - 3ts^2 + 6t^2 \right) \)

3. Suppose a bacterial culture initially has 400 cells. The growth rate of the culture is proportional to the population. After 1 hour the population has increased to 900 cells.

a) Write down the equation for the population at time \(t \).

b) What is the population after 10 hours?

4. Find any local minima and maxima of the function \(f(x) = \frac{x}{x^2 + 1} \).

5. The acceleration of a car is \(2t + 3 \ m/s^2 \) \(t \) second into the motion, and the initial velocity is \(-4 \ m/s\).

a) Find the velocity at time \(t \).

b) Find the distance traveled by the car in the first 3 seconds.