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at optimal cost. Only five linear solvers are needed per time-step. Moreover, all the
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1 Introduction

Fluid-fluid interfaces such as those bounding drops and bubbles are present
in a large number of complex fluids such as emulsions, foams, and polymeric
solutions which are found in a wide variety of industrial applications. The
understanding of the dynamics of these systems is thus of significant scientific
and technological interest. Numerical simulation can play an instrumental role
toward aiding in achieving this goal. However, it is an outstanding computa-
tional challenge to accurately capture all the disparate time and length scales
involved in these complex, nonlinear phenomena. Of course, this challenge is
magnified for physically realistic three-dimensional computations.

In recent years conservative phase-field models have gained increased atten-
tion [1–11] as viable tools for the numerical investigation of multi-component
flows. These are a particular type of diffuse interface methods (see e.g. the
review [12] and the references therein) in which fluid-fluid free boundaries are
given a finite thickness. The idea of a diffuse interface [13–17] is compatible
with the observation that physically there is a rapid but smooth transition of
material properties across a fluid interface. In contrast, in a sharp interface
model a free boundary is represented with zero thickness and the material
properties are discontinuous across it.

The basic idea of the phase-field approach is to introduce an order parameter or
phase field φ that varies continuously over a thin transition layer and is mostly
uniform in the bulk phases. The models have an appealing variational-based
formalism which facilitates the inclusion of different physical effects. In the
conservative models, the evolution of φ is governed by a fourth order equation
of the Cahn-Hilliard type and due to a critical balance between nonlinear
and diffusive terms, the solution’s thin transition layer do not deteriorate
dynamically. However, the numerical solution of these models is a daunting
task. To their complex mathematical structure, characterized with high order
derivatives and intricate nonlinearities, we must add the need to accurately
resolve simultaneously the macroscopic flow and the extremely thin interfacial
layer, as well as several time scales.

There have been recent advances in the numerical simulation of these mod-
els that include a Fourier spectral method [18], the design of implicit non-
linear multigrid methods [5,6], linear semi-implicit methods [3,21] and two-
dimensional adaptive methods [11,19–21,26]. Here, we build on two of these
recent works to develop, step by step, 3D, fully adaptive simulations for a
phase-field model of an incompressible fluid with matched densities and vari-
able viscosity, known as Model H according to the nomenclature of Hohen-
berg and Halperin [27]. The numerical methodology is based on the applica-
tion of a linear semi-implicit time discretization combined with the projection
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method and using an accurate spatial discretization on adaptive mesh refine-
ments [3,21]. The semi-implicit linear systems are solved at optimal cost with
a multigrid approach. We also propose a scaling of surface tension that de-
pends on the interfacial thickness and that appears to provide an appropriate
calibration for similar phase field models. To our knowledge, the simulations
presented here are one of the first fully adaptive 3D computations of Model
H without the use of any public or commercial pre-built adaptive mesh mod-
ules. While revising this article, a finite element based, adaptive numerical
method for 3D phase field simulations was introduced by Zhou et al. [30].
Their adaptive method uses Delaunay mesh refinements and a fully implicit
time discretization which is solved via Newton iterations.

The rest of the paper is organized as follows. We describe the model in Sec-
tion 2 and devote Section 3 to discuss in detail the numerical approach. This
is followed by a series of physically relevant numerical examples in Section 4
with which we validate and test the capabilities of the proposed methodology.
Some final remarks are presented in Section 5.

2 The governing equations: Model H

We focus in this work on the conservative phase-field model that describes
the coupling of a density matched, incompressible, binary mixture with a
hydrodynamic flow. The system is described by an order parameter or phase
field φ which is a measure of the relative composition or volume fraction of
the two components and has an associated free energy given by

H [φ] =
∫

Ω

{

1

2
α|∇φ(x)|2 + βf(φ(x))

}

dx, (1)

where Ω is the region of space occupied by the system and α and β are
constants. The gradient term accounts for the surface energy and βf(φ(x))
is the bulk energy density. To model two-phase flow, we choose f to be the
double-well potential:

f(φ) =
1

4
(1 − φ2)2. (2)

The evolution of the order parameter is governed by the convective Cahn-
Hilliard equation [28,29] which guarantees the conservation of the mean of
φ:

∂φ

∂t
+ u · ∇φ = ∇ · [M(φ)∇µ(φ)] , µ(φ) =

δH [φ]

δφ(x)
, (3)

where u is the flow velocity, M(φ) is the mobility or Onsager coefficient and
µ(φ) is the chemical potential. In the absence of flow (u ≡ 0), equilibrium
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states are characterized by µ(φ) = constant. In addition to the two stable
uniform states that correspond to φ(x) ≡ ±1, there is a one-dimensional
equilibrium solution that characterizes the interfacial, transition layer and is
given by (see e.g. [33])

φ0(z) = tanh

(

z√
2ξ

)

, (4)

where

ξ =

√

α

β
. (5)

Following [2], we define the interface thickness ǫ as the distance between φ =
−0.9 and φ = 0.9. For the equilibrium interface, we have

ǫ = 2
√

2 tanh−1(0.9) ξ ≈ 4.164 ξ. (6)

The conservation of momentum can be expressed in terms of the incompress-
ible Navier-Stokes equations with the addition of a phase field-dependent sur-
face force µ(φ)∇φ [34]:

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ ·
[

η(φ)(∇u + ∇uT )
]

+ µ(φ)∇φ, (7)

∇ · u = 0, (8)

where ρ is the (constant) density, p is the pressure that enforces the incom-
pressibility constraint (8), and η(φ) is the (concentration-dependent) viscosity.
The coupled Cahn-Hilliard/Navier-Stokes system (3) − (8) is referred to as
Model H [27]. We note that different phase-field models have been proposed
for the case of variable density [35,36]. Many of the salient computational
challenges of these models are also present in Model H. Thus, we believe that
development of the computational methodology for this simpler model is an
important step toward that required for the more elaborate phase-field models
of multi-phase and complex fluids.

We nondimensionalize the Model H equations with the variables

u′ =
u

Uc

, t′ =
t

Tc

, x′ =
x

Lc

, p′ =
pLc

ηcUc

, (9)

where Lc, Uc, Tc, and ηc are characteristic length, velocity, time, and viscosity,
respectively. We select Lc to be the horizontal extent of the fluid domain
and Uc will be taken in this work to be that of an imposed shear. Defining
Tc = Lc/Uc, and dropping the primes we obtain
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∂φ

∂t
+ u · ∇φ =

1

Pe
∇ · [M(φ)∇µ(φ)] , (10)

Re

(

∂u

∂t
+ u · ∇u

)

=−∇p + ∇ ·
[

η(φ)(∇u + ∇uT )
]

+
1

Ca
µ(φ)∇φ, (11)

∇ · u=0, (12)

where now η(φ) and M(φ) have been normalized by characteristic viscosity
and mobility ηc and Mc, respectively, and µ has been scaled by β. The dimen-
sionless groups used above are the Reynolds number, the capillary number,
the Péclet number given by

Re =
ρUcLc

ηc
, Ca =

ηcUc

βLc
, P e =

UcLc

Mcβ
, (13)

respectively. The Reynolds number Re is the ratio between inertial and vis-
cous forces and the capillary number Ca provides a measure of the relative
magnitude of viscous and capillary (or interfacial tension) forces at the inter-
face.

The Péclet number Pe is the ratio between the non-viscous diffusive time scale
and the convective time scale. Naturally, we would like the phase field flow to
converge to the corresponding the sharp interface flow as ǫ → 0. Formally this
could be accomplished if 1/Pe goes to zero as ǫ → 0. Following Jacqmin [2] and
Lee et al. [31], we take here Pe = O(1/ǫ). Other scalings have been proposed
for different flow situations [32].

The surface tension σ for the phase field model can be estimated from the flat,
equilibrium interface to give [33]

σ =
2
√

2

3

√

αβ. (14)

Note from (5)-(6) and (14) that the interface thickness is O(ξ =
√

α
β
) and

the surface tension is O(
√

αβ). Thus, surface tension will be O(1) if we select
α = O(ǫ) and β = O(1/ǫ). Using (14) we can write Ca in terms of the surface
tension as:

Ca =
2
√

2

3

ξ

Lc

ηcUc

σ
. (15)

Thus, for this phase field model, the capillary number depends on the interface
thickness. More precisely, defining the Cahn number K by

K =
ξ

Lc
, (16)
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which is a relative measure of the interface thickness, we can write Ca as

Ca =
2
√

2K

3
Ca∗, (17)

where Ca∗ = ηcUc/σ is the capillary number as is usually defined for a sharp
interface. This relation suggests that in order to compare with sharp interface
and experimental results one should scale the phase field capillary number by
the factor

γK =
2
√

2K

3
. (18)

We verify this scaling in the numerical experiments.

The dimensionless chemical potential is given by

µ(φ) = φ3 − φ − K2∇2φ. (19)

We consider the viscosity η as a linear function of the order parameter φ. That
is, if η− ≤ η ≤ η+ and ηc = η− we get

η(φ) =
λ − 1

2
φ +

λ + 1

2
, (20)

where λ = η+/η− is the viscosity ratio. In this way η gets automatically
diffused across the interface with a profile similar to the tanh function.

We focus in this work on the case of constant mobility, M(φ) = 1.

To summarize, the form of Model H that we consider is given by (10)-(12),
(19), (20) and M(φ) = 1. It is important to note that the Cahn number K
(or ξ) is the main parameter for this model. In fact, taking Pe = O(1/K),
as argued above, K becomes the only adjustable parameter of the phase field
model as the remaining parameters are of physical nature (Re and Ca).

3 The numerical methodology

We adopt the semi-implicit time scheme used in [3] and extend the 2D adap-
tive spatial discretization of the Cahn-Hilliard equation in [21] to the current
3D setting of Model H.
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3.1 Time discretization

The time scheme for the coupled system is based on an extraction of linear,
leading order terms and on an implicit treatment of these to remove high order
stability constraints without paying the price of iterative nonlinear solvers.

We begin by rewriting the Model H equations (10)-(12). Letting ϕ1 = φ, we
have

∂ϕ1

∂t
=

1

Pe
∇2ϕ2 + g1(ϕ1, ϕ2,u), (21)

ϕ2 = τϕ1 − K2∇2ϕ1, (22)

∂u

∂t
= − 1

Re
∇p +

η̄

Re
∇2u +

1

Re Ca
µ(ϕ1, ϕ2)∇ϕ1 + g2(ϕ1,u), (23)

∇ · u = 0, (24)

where τ and η̄ are constants to be specified later and

g1(ϕ1, ϕ2,u) =
1

Pe
∇2µ(ϕ1, ϕ2) −

1

Pe
∇2ϕ2 − u · ∇ϕ1, (25)

g2(ϕ1,u) =
1

Re
∇ ·

[

η(ϕ1)(∇u + ∇uT )
]

− η̄

Re
∇2u− u · ∇u. (26)

Thus, according to (22), the chemical potential can be expressed by

µ(ϕ1, ϕ2) = ϕ3
1 − (1 + τ)ϕ1 + ϕ2. (27)

The strategy now is to employ a semi-implicit discretization treating the terms
g1 and g2 explicitly and all the other terms on the right hand side of (21)-
(23) implicitly. As in [3], we adopt here the extrapolated Gear Method, a
second order semi-backward difference formula (SBDF), extended to allow for
variable time stepping [21]. Leaving the discretization in space for later, the
semi-implicit scheme for Model H is given by

α2ϕ
n+1
1 + α1ϕ

n
1 + α0ϕ

n−1
1

∆t
=

1

Pe
∇2ϕn+1

2 + β1g1(ϕ
n
1 , ϕ

n
2 ,u

n)

+ β0g1(ϕ
n−1
1 , ϕn−1

2 ,un−1),
(28)

ϕn+1
2 = τϕn+1

1 − K2∇2ϕn+1
1 , (29)

α2u
n+1 + α1u

n + α0u
n−1

∆t
= − 1

Re
∇pn+1 +

η̄

Re
∇2un+1

+
1

Re Ca
µ(ϕn+1

1 , ϕn+1
2 )∇ϕn+1

1

+ β1g2(ϕ
n
1 ,u

n) + β0g2(ϕ
n−1
1 ,un−1),

(30)

∇ · un+1 = 0, (31)

where α0 = ∆t2/(∆t0∆t1), α1 = −∆t1/∆t0, and α2 = (∆t0 + 2∆t)/∆t1,
β0 = −∆t/∆t0 and β1 = ∆t1/∆t0, with ∆t = tn+1 − tn, ∆t0 = tn − tn−1, and
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∆t1 = ∆t0 +∆t. For fixed time step, the coefficients above assume their usual,
constant values α0 = 1/2, α1 = −2, and α2 = 3/2, β0 = −1 and β1 = 2. The
stability of this type of semi-implicit discretization has been analyzed recently
by Xu and Tang [37] for the case of some continuum epitaxial growth models.
The value of the “stability parameters” τ and η̄ agrees with that predicted
in [37].

In (28)-(31), the phase field is updated first by solving (28)-(29) and then
the velocity field is updated using a projection method to solve (30)-(31) as
we detail below. To initialize the SBDF, we employ the semi-implicit Euler
Method,

ϕn+1
1 − ϕn

1

∆t
=

1

Pe
∇2ϕn+1

2 + g1(ϕ
n
1 , ϕ

n
2 ,u

n), (32)

ϕn+1
2 = τϕn+1

1 − K2∇2ϕn+1
1 , (33)

un+1 − un

∆t
= − 1

Re
∇pn+1 +

η̄

Re
∇2un+1 + g2(ϕ

n
1 ,u

n)

+
1

Re Ca
µ(ϕn+1

1 , ϕn+1
2 )∇ϕn+1

1

(34)

∇ · un+1 = 0. (35)

3.2 The projection method

To solve (30)-(31), we employ an incremental pressure-correction scheme based
on the variable time step, extrapolated Gear Method [25]. The procedure can
be summarized as follows. First, we find an intermediate field u∗

α2u
∗ + α1u

n + α0u
n−1

∆t
=

η̄

Re
∇2u∗ +

1

Re Ca
µ(ϕn+1

1 , ϕn+1
2 )∇ϕn+1

1

+ β1g2(ϕ
n
1 ,u

n) + β0g2(ϕ
n−1
1 ,un−1) − ∇pn

Re
,

(36)

with u∗ = un+1 at the boundary ∂Ω. The intermediate velocity is connected
to un+1 through a pressure increment qn+1 = pn+1 − pn:

u∗ = un+1 +
∆t∇qn+1

α2Re
. (37)

Applying the incompressibility condition ∇ · un+1 = 0 to (37), we obtain a
Poisson equation which satisfies a homogeneous Neumann boundary condition
for the pressure increment given by

∇2qn+1 = Re
α2

∆t
∇ · u∗ ,

∂qn+1

∂n
= 0 on ∂Ω. (38)

After solving (38), the updated velocity is obtained from (37).
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For sufficiently smooth problems, it can be shown that the pressure-correction
scheme based on the second order backward difference formula presents second
order accuracy for the velocity and first order accuracy for the pressure [23].
The loss of accuracy is due to the homogeneous Neumann boundary condi-
tion adopted for the pressure-correction Poisson equation which implies that
∇pn+1 · n = ∇pn · n = . . . = ∇p0 · n, thus enforcing a non-physical Neumann
boundary condition for the pressure. As a matter of fact, that accuracy be-
havior is expected to hold if the algorithm is implemented with any A-stable
second order time stepping. Since those schemes have an irreducible splitting
error of O(∆t2), even using a higher than second order time stepping for ap-
proximating the operator ∂t−ν∇2 does not improve the overall accuracy [22].
Moreover, it can also be shown that the pressure approximation in standard
pressure-correction schemes can be at most first-order accurate [24]. In that
context, we expect that the solution of (36)-(38) to be second order accurate
for the velocity and first order for the pressure.

3.3 Adaptive spatial discretization

Our computational domain is the parallelepiped Ω = [A1, B1] × [A2, B2] ×
[A3, B3]. We employ local mesh refinements to efficiently resolve the thin
transition layer of the solution. The composite grid is block-structured and
is defined as a hierarchical sequence of nested, progressively finer grid lev-
els [39]. Each level is formed by a set of non-overlapping parallelepidedal grid
blocks aligned with the coordinate axes and the refinement ratio between two
successive levels is two. Figure 1 shows an example of such a composite grid
with three refinement levels. The mesh is replaced dynamically to ensure that
the transition layer is covered with the finest level at all times. Additionally, a
remeshing is triggered at every certain fixed number of time steps to “refresh”
the composite grid [21].

Ghost cells are appended to each grid block for all levels as well as under-
neath fine grid blocks to prevent the redefinition of finite difference operators
at grid borders and at interior regions which are covered by finer levels. The
corresponding values at these ghost cells are obtained from interpolation. Fol-
lowing [21] we use second order polynomial interpolation at grid interfaces and
third order interpolation only near a T-junction of two grid blocks of the same
level. As the numerical experiments will demonstrate, these interpolations are
sufficient to obtain global second order accuracy.

To cover the interfacial layer, we flag for refinement all the cells whose value of
the order parameter φ is close to zero [21]. By adopting that simpler strategy,
the region around the interface will be refined uniformly. Note that for certain
problems it would be more efficient to flag cells for refinement accordingly to
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(a) (b)

(c) (d)

Fig. 1. Example of an adaptive composite grid. (a) A two-phase domain with a thin
transition layer represented by the light color, (b) a three-level composite grid, (c)
an isosurface of the interface and (d) grid blocks of the finest grid level covering the
transition layer (diffuse interface).

some error estimator (or distance to the interface) strategy thus having special
regions of the flow covered by a greater number of refinement levels than others
(e.g. in narrow transition regions where the interface undergoes topological
changes). We have postponed the implementation of such optimized strategies
to future work and focused our efforts to other components of the methodology.
More specifically, in the current implementation, we flag those cell indexes rst
such that

|φrst|/‖φ‖∞ ≤ δmesh. (39)

Typical runs employed δmesh = 0.95. With the set of flagged cells, the grids at
each level are generated by the algorithm for point clustering of Berger and
Rigoutsos [40]. To facilitate the implementation of the projection method, the
variables are placed as in a MAC grid. That is, scalar variables such as the
pressure, the order parameter, the mobility, and the viscosity are defined at
the cell centers while the velocity components are placed at the center of the
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cell faces as illustrated in Fig. 2.

CA B D

x

y
z

Fig. 2. Placement of variables in a cell for a MAC-style grid. Scalars such as p, ϕ1,
ϕ2, η, and M are located at the cell centers (A). The x, y, and z components of the
velocity are placed at the center of the yz face (B), the center of the xz face (C),
and the center of the xy face (D), respectively.

3.4 Discrete spatial operators

We use standard second order finite differences to approximate the spatial
derivatives. Thus, the discrete gradient G of a scalar quantity such as φ is
computed by

Gφi,j,k = (Dxφi−1/2,j,k, Dyφi,j−1/2,k, Dzφi,j,k−1/2), (40)

where

Dxφi−1/2,j,k =
φi,j,k − φi−1,j,k

∆x
, (41)

Dyφi,j−1/2,k =
φi,j,k − φi,j−1,k

∆y
, (42)

Dzφi,j,k−1/2 =
φi,j,k − φi,j,k−1

∆z
. (43)

At coarse cell faces, underneath fine grid patches belonging to the next finer
level, the first derivative is defined by the average of the corresponding finer
ones.

The discrete divergence operator D for a vector

ui,j,k = (ui−1/2,j,k, vi,j−1/2,k, wi,j,k−1/2),
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whose components are located at the center of the cell faces, is given at the
cell center by

D ·ui,j,k =
ui+1/2,j,k − ui−1/2,j,k

∆x
+

vi,j+1/2,k − vi,j−1/2,k

∆y
+

wi,j,k+1/2 − vi,j,k−1/2

∆z
.

A discrete Laplacian operator L for cell-centered variables is obtained by com-
posing G and D i.e., Lφi,j,k = D · Gφi,j,k.

3.5 Solving the resulting linear systems

Due to our semi-implicit time discretization, we can decouple the discrete
Model H system. We update first the phase field by solving the linear system
corresponding to the fully discrete convective Cahn-Hilliard equations (28)-
(29). We then proceed to update the velocity field with the projection method
and employing the available φn+1 in the surface force term µ(φ)∇φ. In total,
we only solve five linear systems on the composite grid: one for the Cahn-
Hilliard equation, three for the components of the intermediate velocity, and
one for the pressure. To our knowledge, this is the most efficient time-marching
ever proposed for a discretization of Model H on an adaptive mesh.

To solve these linear systems we employ a multilevel multigrid method. Here
multilevel refers to the fact that a multigrid method is applied on each level of
refinement. Thus, we distinguish between physical levels which are the levels of
refinement in the composite mesh and virtual levels which are the usual levels
associated with a multigrid. Given the hierarchical structure of the composite
mesh, the virtual levels are just those below the coarsest physical level.

Based on preliminary results reported in [41] we adopt a modified W cycle for
our multigrid. This adapted W cycle is a V cycle on the physical levels but
becomes a W cycle in the virtual levels. Figure 3 illustrate this strategy. This
multigrid appears to give better performance than the standard V cycle when
there are four or more virtual levels as is the case for our 3D computations [41].

The application of the multilevel multigrid to solve for the intermediate ve-
locity components and the pressure equation in the projection method is doc-
umented in detail in [42]. For Cahn-Hilliard discrete system we have

α2

∆t
ϕn+1

1i,j,k
− 1

Pe
D · Gϕn+1

2i,j,k
= bi,j,k, (44)

(τ − K2
D · G)ϕn+1

1i,j,k
− ϕn+1

2i,,j,k
= 0, (45)

where bi,j,k = −α1ϕ
n
1i,j,k

/∆t−α0ϕ
n−1
1i,j,k

/∆t +β1g
n
1i,j,k

+β0g
n−1
1i,j,k

. We solve this sys-
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NPL

NVL

LBOT

LTOP

Fig. 3. Comparison of the standard V multigrid cycle (left) and the modified W cycle
(right) adopted in this work. NPL=number of physical levels, NVL=number of vir-
tual levels, LTOP=finest physical (refinement) level, and LBOT=coarsest physical
level.

tem with the linear multilevel multigrid method using red-black Gauss-Seidel
relaxations in the modified W cycle. Each relaxation sweep merely requires
solving a trivial 2 × 2 linear system. The details of the implementation and
multigrid parameters can be found in [21,43].

3.6 Numerical Stability

We follow [3] to select ∆t. Due to the explicit treatment of the convection term
we have a CFL (Courant, Friedrichs and Lewy) stability constraint given by

∆tCFL ≤
(

|u|∞
∆x

+
|v|∞
∆y

+
|w|∞
∆z

)−1

. (46)

Due to the coupling between Cahn-Hilliard and Navier-Stokes equations, there
is a stability constraint induced by the surface tension term given by [3,50]

∆ts ≤ C1

√
ReCa[min{∆x, ∆y, ∆z}]3/2, (47)

where C1 is a constant. We are using the Gibbs-Thomson boundary condi-
tion [33], µ(φ)[φ] = −σκ, where [φ] stands for the jump of the order parameter
across the interface and κ is the mean curvature and that ∇φ ∼ δ. With these
observations, the stability condition (47) follows from the same arguments as
in [50]. With the proposed semi-implicit discretization we find that C1 could
be taken 10 times much larger than that in [3].

Finally, as also noted in [3] there could be a time-stepping constraint due to
the viscous term when the interface is very thin (small K) and there is a large
viscosity jump:

∆tv ≤ C2

Re

λ − 1
min{∆x, ∆y, ∆z}, (48)
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where C2 is a constant and can also be chosen 10 times larger than the value
for the method in [3]. Our adaptive time-stepping strategy was then selected
as

∆t = min{∆tCFL, ∆ts, ∆tv}. (49)

After extensive numerical experimentation, we found that the stability pa-
rameters C1 and C2 could be chosen to be 100 in our numerical experiments,
thus the effective time step was comparable to ∆t ≤ 0.5∆tCFL in most of our
computations.

4 Numerical examples

We now perform a numerical validation of the methodology and demonstrate
its efficiency and potential with a set of selected numerical experiments of
physical relevance.

4.1 Accuracy check

We first test the accuracy of the adaptive method using a fixed local mesh
refinement. This consists of two grid blocks forming an “L” shape that occupy
the regions [0, 0.125]×[0, 0.25]×[0, 0.5] and [0.125, 0.375]×[0, 0.25]×[0.375, 0.5]
as shown in Fig. 4. The computational domain is the unit cube. The purpose of

Fig. 4. A two-level composite grid for the accuracy test problem.

this static-grid test is to verify that the errors introduced by interpolation and
the discretization schemes at coarse-fine level interfaces are correctly controled
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to prevent global accuracy degradation. Also, because we have selected the
refinements to partially reach the computational domain boundary, the test
allows us to verify that the boundary conditions are used properly when filling
in ghost cells.

For this test, we construct an exact solution (φe, ue, pe) to the following forced
Model H equations:

∂φ

∂t
+ u · ∇φ = ∇2µ(φ) + FCH(φe,ue), (50)

µ(φ) = φ3 − φ − K2∇2φ, (51)

∂u

∂t
+ u · ∇u = −∇p + ∇2u + µ(φ)∇φ + FNS(φe,ue, pe), (52)

∇ · u = 0, (53)

in the unit cube Ω = [0, 1]×[0, 1]×[0, 1] and with periodic boundary conditions.
Naturally, in (50) and (52)

FCH(φe,ue) =
∂φe

∂t
+ ue · ∇φe −∇2µ(φe), (54)

FNS(φe,ue, pe) =
∂ue

∂t
+ ue · ∇ue + ∇pe −∇2ue − µ(φe)∇φe, (55)

and φ(0,x) = φe(0,x), u(0,x) = ue(0,x), and p(0,x) = pe(0,x).

We select (φe, ue, pe) as follows:

φe (t,x) = sin3 (2πx + 2πy + 2πz + t) , (56)

ue (t,x) = sin2 (2πx + 2πy + 2πz + t) , (57)

ve (t,x) = cos2 (2πx + 2πy + 2πz + t) , (58)

we (t,x) = 1, (59)

pe (t,x) = cos (2πx + 2πy + 2πz + t) . (60)

We take K2 = 0.01, and the numerical parameters are τ = 2 and η̄ = 1.
Table 1 shows the errors and convergence ratios for this case. The notation
“n + 1” in the first column, stands for a two-level composite grid formed by
a n× n× n uniform grid (Level 1) plus one additional refinement level (Level
2). The number of multigrid W cycles (MW) to reach truncation error is also
displayed. The convergence ratios indicate that the error in the adaptive grid
numerical approximation appears to be consistent with that of a second order
discretization.
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n + 1 Variable Norm MW R

32 + 1 φ ‖φ − φe‖2 = 8.113969 × 10−2 9

p ‖p − pe‖2 = 5.391881 × 10−2 7

u ‖u − ue‖2 = 4.873936 × 10−3 9

v ‖v − ve‖2 = 9.129110 × 10−3 7

w ‖w − we‖2 = 4.165557 × 10−3 8

64 + 1 φ ‖φ − φe‖2 = 2.425453 × 10−2 10 3.35

p ‖p − pe‖2 = 1.587228 × 10−2 9 3.40

u ‖u − ue‖2 = 1.165863 × 10−3 12 4.18

v ‖v − ve‖2 = 1.827253 × 10−3 11 5.00

w ‖w − we‖2 = 4.286092 × 10−4 10 9.72

128 + 1 φ ‖φ − φe‖2 = 6.683664 × 10−3 10 3.63

p ‖p − pe‖2 = 4.900852 × 10−3 8 3.31

u ‖u − ue‖2 = 3.738785 × 10−4 16 3.12

v ‖v − ve‖2 = 4.286984 × 10−4 15 4.26

w ‖w − we‖2 = 6.591865 × 10−5 13 6.50

Table 1
Convergence ratios (R) in a two-level composite grid for the forced Model H system.
MW stands for the number of multigrid W cycles and n + 1 means a n × n × n
uniform grid plus one level of refinement.

4.2 Deformation of a neutrally buoyant drop

We now consider the deformation of an initially spherical drop under simple
shear flow for small Reynolds and capillary numbers. This numerical exper-
iment is intended to serve three purposes: 1) to provide data that we can
compare to experimental and theoretical predictions and thus to give further
validation and calibration to the model and to our numerical approach, 2)
to examine the performance of the semi-implicit discretization in the case of
variable viscosity, and 3) to test the adaptive mesh refinements in a difficult
geometrical configuration, namely a spherical interface. Although simple in
appearance, a spherical interface poses significant challenges to the generation
of efficient AMR. The meshing algorithm is based on cuts along the coordinate
axes and splits regions with flagged points (for refinement) into rectangular
patches. A circular or spherical interface cuts the grid at such an angle that
it is necessary to employ a great number of small rectangular patches in order
to satisfy the efficiency criterium, namely that the number of cells within a
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refinement patch should nearly all be flagged cells.

We consider an initially spherical drop of radius R = 1/4 with center at
xc = (1/2, 1/2, 1/2) in the domain Ω = [0, 1] × [0, 1] × [0, 1]. Initially, we
specify the phase field as

φ(0,x) = tanh

[

R − ‖x − xc‖√
2ξ

]

, (61)

where ‖x−xc‖ is the Euclidian distance of a point x to xc. We take ξ = 1.5h,
where h is the finest grid size. This choice corresponds to approximately six
grid cells covering the equilibrium interface thickness. Figure 5 displays the
initial drop and adaptive grid configuration for four levels of refinement.

(a)
(b)

(c) (d)

Fig. 5. Initial spherical drop configuration: (a) isosurface φ = 0, (b) grid patches of
the finest level surrounding the interface, (c) contour plot of φ for a cut at y = 0.5,
and (d) the same cut showing the four levels of adaptive refinement.
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For the initial velocity, we choose a linear shear

u(0, x, y, z) = (2z − 1, 0, 0). (62)

We maintain the shear by imposing u = −1 at z = 0 and u = 1 at z = 1
and assume periodic boundary conditions in the x and y directions. At z = 0
and z = 1, we take v = w = 0 and apply homogeneous Neumann boundary
conditions for φ and the pressure increment q there.

We fix the Reynolds number to Re = 1 and take Pe = 1/K, where K is
the Cahn number (16). We employ four levels of refinement which give a fine
grid equivalent to a 2563 uniform mesh. Given our choice ξ = 1.5h, the Cahn
number for the four-level composite grid is K = 1.5/256.

We perform two series of numerical experiments. In the first one, we consider
the same viscosity for the inner and outer fluid (λ = 1) and take the capil-
lary numbers Ca = 0.15γK, 0.20γK, 0.25γK, and 0.30γK, where γK is the Cahn
number (interfacial thickness) factor (18). Based on the scaling argument lead-
ing to (17), these values of Ca would correspond to sharp interface values Ca∗

equal to 0.15, 0.20, 0.25, and 0.30, respectively. One of the purposes of this
experiment is to verify that the drop experiences a behavior consistent with
these values of Ca∗ and that the proposed scaling provides an appropriate
calibration of the diffuse interface model. For the second test, we take λ = 4
which corresponds to a case where the viscosity of the drop is four times that
of the surrounding fluid and Ca = 0.30γK . The numerical parameters in all
the numerical experiments are selected as τ = 2 and η̄ = λ.

Figure 6 shows an xz cut of the shear-deformed drop after reaching equilib-
rium. Under the influence of the flow, the drop assumes the shape of a tilted
ellipsoid with a deformation that is a function of the relative effects of surface
tension and viscous dissipation, i.e. of the capillary number Ca. The defor-
mation parameter D is obtained in terms of the major and minor axes and
the inclination θ is that of the major axis with respect to the horizontal (see
for example [44,45]) as indicated in Fig. 7. Equilibrium is determined to have
been achieved when the deformation and inclination of the drop are invariant
to within numerical accuracy. Table 2 summarizes the values of D and θ for
the capillary numbers considered. Note that as Ca is reduced θ → 45o, i.e. the
drop tends to be aligned with the direction of principal extension. Moreover,
except for the largest Ca, the deformation has a nearly linear dependence with
the capillary number, as Fig. 8 demonstrates. This linear behavior is in agree-
ment with the slender body theory [46] which applies in the limit Re → 0 and
Ca → 0. Deviations from this asymptotic theory are expected for the large
Ca∗ = 0.30 [45]. The deformation obtained for Ca = 0.2γk and Ca = 0.3γK

is within 2% of that reported in [49] (Note, that given our choices of charac-
teristic length, that of the computational domain, and that our relative shear
velocity is twice the characteristic velocity, our Ca* corresponds to half the
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Fig. 6. Drop deformation under shear flow. An xz cut of φ and the corresponding
adaptive, composite mesh patches. Left to right, top to bottom: Ca = 0.15γK ,
Ca = 0.20γK , Ca = 0.25γK , and Ca = 0.30γK .

an

l

s

Fig. 7. The axes ℓ and s and the angle of inclination θ in a y = 0.5 cut of a drop
under shear flow.

value in [49]).

We now consider the case of variable viscosity. The initial conditions and
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Ca D =
ℓ − s

ℓ + s
θ

0.15γK 0.0959 44o

0.20γK 0.123 43o

0.25γK 0.147 39o

0.30γK 0.184 36o

Table 2
Deformation D and angle of inclination θ for different Ca. Here ℓ and s are the
lengths of the major an minor axis, respectively and γK =

√
2/256 ≈ 5.524 × 10−3.

Ca

0,16

1,6

D

0,18

0,14

10−3

0,12

0,1

1,41,21,0

Fig. 8. Drop deformation D under shear flow against Ca.

setup are the same as for the previous, constant viscosity case but now the
viscosity ratio is λ = 4. The viscosity of the fluid surrounding the drop is four
times that of the fluid inside the drop. This particular viscosity ratio is a limit
case in the study of flow-induced drop deformation. For λ > 4 and with an
initially spherical drop, it is not possible to deform the drop beyond a modest
distortion [45,46]. For sufficiently large λ, if the flow has enough vorticity, the
drop will spin almost like a rigid body.

Figure 9 and Table 3 compare the deformation of the drop with λ = 4 with the
corresponding values for the constant viscosity case (λ = 1) for a fixed capillary
number, Ca = 0.30γK. As expected, the deformation and the inclination of
the drop for λ = 4 are smaller than those for λ = 1, despite the relatively
large Ca. The method performs stably with the time step criterium (49)
for both λ = 1 and λ = 4. The time-step size for Re = 1 and the values
of Ca considered in these drop deformation experiments is dictated by ∆ts
and its size is practically that of a CFL condition for most of the simulation
time. Thus, the stability constraint induced by the surface tension term is not
entirely removed by the proposed discretization but it is relaxed to a CFL-
like restriction in practice (C1 = 100). We have compared the performance of
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Fig. 9. Comparison of drop deformation under shear flow for viscosity ratios λ = 1
(left) and λ = 4 (right) with Ca = 0.30γK .

Ca Viscosity D θ

0.30γK η(φ) = 1 0.184 36o

0.30γK η(φ) = 1.5φ + 2.5 0.173 31o

Table 3
Comparison of the deformation D and inclination angle θ for two viscosity ratios,
λ = 1 and λ = 4, and Ca = 0.30γK .

the proposed implicit surface tension discretization with one using an explicit,
second order (Gear) extrapolation of that term. The latter requires invariably
a smaller ∆t and this becomes prohibitively small as Re and Ca decrease while
∆t for the proposed semi-implict approach remains of a practical size.

4.3 Kelvin-Helmholtz instability

The Kelvin-Helmholtz (K-H) instability is one of the most fundamental in-
stabilities in incompressible fluids and takes place when two immiscible fluids
shear past one another. The motion of the free surface separating the two
shearing fluids is dynamically driven by the K-H instability and competing
effects of surface tension and viscosity. The investigation of such dynamics is
of both fundamental and practical interest. Mixing in the ocean and the atmo-
sphere as well as in engineering fluids such fuels and emulsions, are believed to
be induced by instabilities of the K-H type and often these instabilities lead
to turbulence [47].

To simulate the K-H instability within Model H, we consider the evolution of
a sheared, initially sinusoidal interface. We assume constant viscosity (λ = 1)
and the Reynolds and capillary numbers are selected as Re = 5000, Ca = 200,
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respectively. As before K = 1.5h, where h is the finest mesh grid size. We em-
ploy a composite grid of four levels of refinement, consequently K = 1.5/256.
We take Pe = 200, which remains O(1/K), and the numerical parameter τ is
set to 2.

We consider a flow that is independent of the y coordinate to test the ability
of the adaptive code to retain the 2D symmetry. We define the initial φ in
terms of the distance to the curve

zc = 0.01 sin(2πx) (63)

as follows:

φ(0, x, y, z) = tanh

[

3(z − zc)

K

]

, (64)

for each (x, y, z) in Ω = [0, 1] × [0, 1] × [−1, 1]. The initial phase field (64)
varies from tanh(−3) ≈ −0.995 to tanh(3) ≈ 0.995 in a strip of only three
computational cells of the finest level covering the transition region.

We specify an initial shear flow in the x direction by

u(0, x, y, z) = (tanh[25(z − zc)], 0, 0) (65)

and impose u = ±1 and v = w = 0 at z = ±1 and periodic boundary
conditions in the x and y directions.

Figure 10 shows a two dimensional cut of the order parameter φ at differ-
ent times to illustrate the evolution of the shearing interface. Early in the
dynamics, the flow sweeps the initial interfacial vorticity into the center and
as vorticity accumulates at this point, the surface begins to steepen. Roll-up
follows and the surface evolves into a spiral with a “cat eye” shape typically
observed in the experiments [47]. A look at the stream-wise and normal-wall
velocity components at late time of the evolution (Fig. 11) indicates two strong
centers of vorticity driving up the dynamics. Throughout the entire motion,
the finest level of the adaptive mesh covers the diffuse interface and the 2D ge-
ometry of the motion is retained as Fig. 12 demonstrates. The dynamics of the
rolling sheet are consistent with those obtained in 2D numerical simulations
using immersed boundary type methods [42,48].

4.4 Coalescence of deformable drops

For our final test, we consider an initial configuration of two identical spher-
ical drops of radius R = 1/5, separated a small distance apart. The drops
are going to be brought into a glancing collision by a shear flow. The prob-
lem of flow-induced coalescence has received considerable recent attention due
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. K-H instability: 2D cut of the order parameter φ at different times; (a)
t = 0, (b) t = 0.65, (c) t = 0.87, (d) t = 1.43, (e) t = 1.63, and (f) t = 1.83.

to the the role that this process plays in the formation of polymer blends,
which is currently the major route to new polymeric materials with desired
macroscopic properties. The understanding of the conditions for coalescence
and their dependence on fluid and flow properties is critical for controlling
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(a) (b)

Fig. 11. K-H instability: (a) stream-wise (u) velocity component and (b) normal-wall
(w) velocity component at t = 1.69.

(a) (b)

Fig. 12. K-H instability: (a) Isosurface at t = 1.69 and (b) a y = 0.5 cut of the four
level, composite adaptive mesh at t = 1.69.

this process.

In the context of phase field models, Barosan, Anderson, and Meijer [20] con-
sidered 2D flow-induced drop coalescence to test the capabilities of their mod-
ern, adaptive mortar elements method. As indicated earlier, there are few
works on adaptive, phase field, conservative methods and the challenging coa-
lescence simulations in [20] are one of the very few existing examples. For our
simulation we have chosen to use the same setup as in [20] but in 3D. One
more important difference is that we retain inertial effects (full Navier-Stokes
equations) whereas in [20] a Stokes approximation (Re = 0) is used. This
numerical experiment offers the opportunity to test the proposed phase-field
based method through an interfacial topological change and to examine the
conservation of volume during that singular transition.

24



Initially, the center of the drops is at

x1 = (0.299, 0.5, 0.45), (66)

x2 = (0.701, 0.5, 0.55), (67)

respectively and the computational domain is Ω = [0, 1] × [0, 1] × [0, 1]. The
initial order parameter is given by

φ(0,x) =







tanh
(

R−‖x−x1‖√
2K

)

for ‖x − x1‖ < R + 2
√

2K

tanh
(

R−‖x−x2‖√
2K

)

for ‖x − x2‖ < R + 2
√

2K
. (68)

The initial velocity is the simple linear shear flow (62). We take λ = 1 (viscosity
ratio equal one) and Ca = 0.001 as in [20] and Re = 0.1. We employ four levels
of refinement and K = 1.4/256. Figure 13 shows the initial configuration of
the drops and the adaptive mesh refinement, represented as grid patches (with
black perimeters) corresponding to the different adaptive levels.

(a) (b)

Fig. 13. Flow induced drop coalescence: (a) Isosurface φ = 0 at t = 0 and (b) a
y = 0.5 cut of the four level, composite adaptive mesh at t = 0.

A sequence of the flow dynamics is depicted in Fig. 14 where a 2D, xz plane
cut is chosen to better visualize the drop interaction. Once all the fluid from
the initially thin gap between the two drops is drained the drops coalesce and a
single drop is formed. Eventually, this drop evolves into an ellipsoid reaching
a steady state that balances the shear stress, surface tension, and viscous
dissipation. Figure 15 shows in a 2D cut the adaptive mesh patches of the four
level composite grid as well as isosurfaces (φ = 0) of the order parameter at
two flow instants. The finest refinement level accompanies the fluid interfaces
and the interaction region until the order parameter reaches a nearly uniform
value inside the coalesced drop. Throughout the entire computation the mean
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t = 0.0293 t = 0.0488

t = 0.1562 t = 0.2441

t = 0.5273 t = 0.6836

Fig. 14. Flow-induced drop coalescence dynamics. 2D, xz cuts of the order param-
eter.
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of the order parameter and the volume of the drops have a variation of only
0.09%. Figure 16 compares the number of computational cells of the four-
level adaptive grid, as it evolves in time, against a corresponding uniform
grid. Even with only four levels of refinement, the composite grid uses only
nearly a quarter of the computational cells required by a uniform grid with the
same resolution. Of course, the savings increase as the number of refinement
levels is increased, leading in the limit to an asymptotic linear scaling of the
computational work.

AMR patches at t = 0.1562 Isosurface φ = 0 at t = 0.1562

AMR patches at t = 0.6836 Isosurface φ = 0 at t = 0.6836

Fig. 15. Flow-induced drop coalescence. 2D cut of the four-level adaptive mesh
patches and isosurfaces φ = 0 at two different times.

5 Conclusions

We presented a fully adaptive 3D computational strategy for the simulation of
multi-phase flows described by conservative phase field models such as Model
H. The proposed numerical methodology combines efficiently local adaptive
mesh refinements, a variable time-stepping semi-implicit time discretization,
and the use of linear multi-level multigrid solvers; only five linear solvers are
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Fig. 16. Variation in time of the number of computational cells of the adaptive grid
(red) and a comparison with a corresponding uniform grid (black).

required per time-step. The discretization relaxes high order stability con-
straints and does not carry the cost of nonlinear iterative solvers used in fully
implicit discretizations. The adaptive methodology is constructed from scratch
to allow a systematic investigation of the key aspects of AMR in a conserva-
tive phase field model setting: flagging, interpolation, and multi-level compos-
ite grid solvers. The efficiency, capabilities and potential of the methodology
were demonstrated with illustrative examples of drop deformation, Kelvin-
Helmholtz instability, and flow-induced drop coalescence.
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