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Abstract: We describe two finite difference
schemes for simulating incompressible flows on
nonuniform meshes using quadtree/octree data
structures. The first one uses a cell-centered Pois-
son solver that yields first-order accurate solu-
tions, while producing symmetric linear systems.
The second uses a node-based Poisson solver
that produces second-order accurate solutions and
second-order accurate gradients, while producing
nonsymmetric linear systems as the basis for a
second-order accurate Navier-Stokes solver. The
grids considered can be non-graded, i.e. the dif-
ference of level between two adjacent cells can be
arbitrary. In both cases semi-Lagrangian methods
are used to update the intermediate fluid velocity
in a standard projection framework. Numerical
results are presented in two and three spatial di-
mensions.

1 Introduction

Incompressible flows are at the center of countless
applications in physical and biological sciences.
Uniform Cartesian grids used in numerical simu-
lations are limited in their ability to resolve small
scale details and as a consequence nonuniform
meshes are often desirable in practice. Since the
work of Berger and Oliger (1984) on compress-
ible flows, adaptive mesh refinement techniques
have been widely used, see e.g the approach of
Almgren et al (1998) (and the references therein)
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for the Navier-Stokes equations on block struc-
tured grids. In the case of incompressible flows,
adaptive mesh strategies are quite common (see
e.g. Ham (2002); Sussman (1999); Ceniceros
and Roma (2004); Cristini et al (2001); Yang
et al (2006); Zheng et al (2005); Anderson et
al (2005); Cristini and Renardy (2006) and the
references therein), but implementations based on
the optimal quadtree/octree data structure is less
common.

In the case of a standard projection method (see
e.g. Chorin (1967); Brown et al (2001)), the most
computationally expensive part comes from solv-
ing a Poisson equation for the pressure. This is
also the limiting part in terms of accuracy, since
high order accurate (and unconditionally stable)
semi-Lagrangian methods exist for the convec-
tive part. In Popinet (2003), Popinet proposed a
second-order nonsymmetric numerical method to
study the incompressible Navier-Stokes equations
using an octree data structure. In Losasso (2004),
Losasso et al. proposed a symmetric solution
of the Poisson equation for non-graded adaptive
grids, i.e. grids for which the size’s ratio between
adjacent cells is not constrained. This work relies
on the observation that, in the case of the Poisson
equation, first-order perturbations in the location
of the solution yield consistent schemes (see Gi-
bou et al (2002)). Losasso et al. then extended
the work of Lipnikov et al (2004) to the case of
arbitrary grids to propose a second-order accurate
symmetric discretization of the Poisson equation
Losasso (in press). In Min et al (2006b), Min et
al. proposed a second-order accurate scheme for
the Poisson equation that also yields second-order
accurate gradients. In this case the linear system
is nonsymmetric, but diagonally dominant, i.e. for
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each row the diagonal element is greater or equal
to the sum of the nondiagonal elements. This
Poisson solver was used for solving the Navier-
Stokes equations to second-order accuracy in Min
et al (2006a) using the projection methods de-
scribed in Brown et al (2001). In this paper,
we describe two finite difference schemes for
simulating incompressible flows on nonuniform
meshes using quadtree/octree data structures. The
first one uses a cell-centered Poisson solver that
yields first-order accurate solutions, while pro-
ducing symmetric linear systems (see Losasso
(2004)). The second uses a node-based Poisson
solver that produces second-order accurate solu-
tions and second-order accurate gradients, while
producing nonsymmetric linear systems (see Min
et al (2006b) for a supra-convergent Poisson
solver and Min et al (2006a) for a second-order
accurate Navier-Stokes solver). The grids consid-
ered can be non-graded, i.e. the difference of level
between two adjacent cells can be arbitrary. In
both cases semi-Lagrangian methods are used to
update the intermediate fluid velocity in a stan-
dard projection framework. We present numeri-
cal results in two and three spatial dimensions to
complement the analysis of Losasso (2004); Min
et al (2006b,a).

2 The Navier-Stokes Equations

The motion of fluids is described by the incom-
pressible Navier-Stokes equations for the conser-
vation of momentum and mass:

ut +u ·∇u = −∇p+ f+ μΔu, (1)

∇ ·u = 0, (2)

where u = (u,v,w) is the velocity field, f accounts
for the external forces such as gravity and where
the spatially constant density of the fluid has been
absorbed in the pressure p. We assume the vis-
cosity parameter μ to be constant.

3 First-Order Accurate Symmetric Navier-
Stokes Solver on Octrees

3.1 Cell-Centered Arrangement

In Losasso (2004), Losasso et al. proposed a
solver for the incompressible Euler equations on

non-graded adaptive grids. The domain is tiled
with cells as depicted in figure 1 and the mesh is
refined automatically in order to capture the local
details critical to realistic simulations and coars-
ened elsewhere. An octree data structure is used
(see Samet (1989)) for efficient processing and
the different variables are stored as depicted in
figure 1: The velocity components u, v and w are
stored at the cell faces while the pressure is stored
at the center of the cell. This is the standard MAC
grid arrangement used in previous works (see e.g.
Harlow and Welch (1965)). However, in the case
of nonuniform meshes it is more convenient to
store the other scalar quantities such as the den-
sity ρ at the nodes of each cell. This stems from
the fact that interpolations are more difficult with
cell-centered data as discussed in Strain (1999).
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Figure 1: Left: the domain is tiled with cells of
sizes varying according to the refinement crite-
rion. Right: Zoom of one computational cell. The
velocity components u, v and w are defined on the
cell faces while the pressure p is defined at the
center of the cell. The other scalar quantities are
stored at the nodes.

3.2 Projection Method

A standard first-order accurate projection method
Chorin (1967) (see also Brown et al (2001)) is
used to solve equations (1) and (2): First an inter-
mediate velocity u∗ is computed over a time step
�t, ignoring the pressure term

u∗ −u
�t

+u ·∇u = f. (3)

This step, accounting for the convection and the
external forces, is followed by a projection step to
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account for incompressibility and boils down to
solving the Poisson equation

∇2 p =
1
�t

∇ ·u∗. (4)

Finally, the new velocity field u is defined as:

u = u∗ −Δt∇p. (5)

The reader is referred to Losasso (2004) and
the references therein for the application of this
scheme to the simulations of free surface flows.

3.2.1 Computing the Intermediate Velocity

The intermediate velocity u∗ is found by solv-
ing equation (3) using a first-order accurate semi-
Lagrangian method. In the case of nonuniform
grids, the standard high order accurate upwind
methods (see e.g. Harten (1987); Shu and Osher
(1989); Liu et al (1996)) traditionally used in the
case of uniform grids are not well suited due to
their stringent time step restrictions and the com-
plexity of their implementations. On the other
hand, semi-Lagrangian methods (see e.g. Stani-
forth and Cote (1991)) are unconditionally stable
and are straightforward to implement.

3.2.2 The Intermediate Velocity Divergence

Equation (14) is solved by first evaluating the
right hand side at every grid point in the domain.
Then, a linear system for the pressure is con-
structed and inverted. Consider the discretization
of equation (14) for a large cell with dimensions
�x, �y and �z neighboring small cells as de-
picted in figure 1 (left). Since the discretization
is closely related to the second vector form of
Green’s theorem that relates a volume integral to
a surface integral, we first rescale equation (14)
by the volume of the large cell to obtain

Vcell�t∇2 p = Vcell∇ ·u∗. (6)

The right hand side of equation (6) now represents
the quantity of mass flowing in and out of the large
cell within a time step �t in m3s−1. This can be
further rewritten as

Vcell∇ · (u∗ −�t∇p) = 0. (7)
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Figure 2: Discretization of the pressure gradient.
The pressure values p1, p2, p6, and p10 are de-
fined at the center of the cells. pa represents a
weighted average pressure value. py defines the y
component of the pressure gradient between Cell
1 and Cell 10 defined by standard central differ-
encing. p̂x represents the discretization of the x
component of the pressure gradient between Cell
1 and Cell 2, whereas px is a O(�x) perturbation
of p̂x.

This equation implies that the term ∇p is most
naturally evaluated at the same location as u∗,
namely at the cell faces, and that there is a di-
rect correspondence between the components of
the vectors ∇p and u∗. That is, there is a direct
correspondence between px and u, py and v, pz

and w, which live on the right and left faces, top
and bottom faces, front and back faces, respec-
tively. Moreover, substituting equation (15) into
equation (7) implies Vcell∇ ·u = 0 or ∇ ·u = 0 as
desired.

Invoking the second vector form of Green’s theo-
rem, one can write

Vcell∇ ·u∗ = ∑
faces

(u∗
face ·n)Aface, (8)

where n is the outward unit normal of the large
cell and where Aface represents the area of a cell
face. In the case of figure 1 (left), the discretiza-
tion of the x-derivative of the x-component u∗ of
the velocity field u∗ reads

�x�y�z
∂u∗

∂x
=

u∗2A2 +u∗3A3 +u∗4A4 +u∗5A5 −u∗1A1, (9)
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where the minus sign in front of u∗1A1 accounts
for the fact that the unit normal points to the
left. In this example, the discretization of ∂u∗/∂x
amounts to

∂u∗

∂x
=

1
�x

(
u∗2 +u∗3 +u∗4 +u∗5

4
−u∗1

)
. (10)

The y- and z- directions are treated similarly.

3.2.3 Defining the Pressure Derivative to Ob-
tain a Symmetric Linear System

Once, the divergence is computed at the grid
nodes, equation (14) is used to construct a lin-
ear system of equations for the pressure. Invoking
again the second vector form of Green’s theorem,
one can write

Vcell∇ · (�t∇p) = ∑
faces

((�t∇p)face ·n)Aface. (11)

Therefore, once the pressure gradient is computed
at every face, we can carry out the computation
in a similar manner as for the divergence of the
velocity described above.

In Gibou et al (2002), we showed that O(�x)
perturbations in the location of the solution sam-
pling still yield consistent approximations. This
was then exploited in Losasso (2004) to define
∇p in order to construct a symmetric linear sys-
tem. We simply define

px =
p2 − p1

� ,

where � can be defined as � = �x, which is the
size of the large cell or � = 1

2�x, which is the
size of the small cell, or as the Euclidean distance
between the locations of p1 and p2 or as the dis-
tance along the x direction between the locations
of p1 and p2 etc. We have used the distance along
the x direction between the locations of p1 and p2.

4 Second-Order Accurate Navier-Stokes
Solver on Octrees

4.1 Projection Method

In this case, we choose to store all the variable
at the grid nodes in order to develop a simple

supra-convergent scheme for the Poisson equation
as well as a second-order accurate Navier-Stokes
solver. Backward differentiation formulas offer
a convenient choice to obtain second-order accu-
racy in time. In this case, the discretization of the
momentum equation is written as:

1
Δt

(
3
2

un+1−2un
d +

1
2

un−1
d

)
+∇pn+1 =

μΔun+1 + fn+1, (12)

where ud is the velocity at the "departure" point
found by tracing back the characteristic curves
and interpolated using quadratic interpolation
procedures. Equation (12) can be solved using
the pressure-free three-step projection method ap-
proach of Brown et al (2001): In this method, the
intermediate velocity u∗ is first computed by ig-
noring the pressure component:

1
Δt

(
3
2

u∗ −2un
d +

1
2

un−1
d

)
= μΔhu∗ + fn+1. (13)

Second, a potential function φ n+1 satisfying the
Poisson equation:

Δhφ n+1 =
1
Δt

(∇h ·u∗) . (14)

is computed to project u∗ onto the divergence free
field:

un+1 = u∗ −Δtα∇hφ n+1, (15)

where

α =
u∗ ·∇hφ n+1

∇hφ n+1 ·∇hφ n+1

guarantees that the projection step is an Hodge
decomposition at the discrete level Min et al
(2006a). The inner product of two functions f and
g is computed cell-wise by multiplying the aver-
age value for f ×g using the cell’s nodes with the
volume of the cell.

Taking the divergence of equation (15) and using
the relation given by equation (14) yields a veloc-
ity field un+1 that is indeed divergence free (up to
the accuracy of the scheme). The relation between
φ n+1 and the pn+1 is given by:

∇pn+1 =
3
2

∇φ n+1−ΔtμΔ∇φ n+1.
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Figure 3: Example of refinement in two spatial dimensions. The total number of cells increases quadratically
whereas the number of locally nonuniform cells (shaded) increases linearly. The contribution of nonuniform
cells decreases relatively to that of uniform cells.

The boundary conditions on u∗:

n ·u∗|∂Ω = n ·un+1|∂Ω,

t ·u∗|∂Ω = t ·un+1|∂Ω +Δt · t ·∇φ n,
∇φ ·n|∂Ω = 0,

where n and t denote the normal and tangent vec-
tors at the boundary, respectively are sufficient
to ensure second-order accuracy for the velocity
field (see Brown et al (2001); Kim and Moin
(1985)).

4.2 Supra-Convergent Poisson Solver

The Poisson solver presented in section 3.2.3
is globally first-order accurate (consistent), even
though the discretization at nonuniform mesh
points is inconsistent. In fact, the different ap-
proximations of the pressure gradients in Losasso
(2004) result in consistent schemes, regardless of
how the distance between the two adjacent cells
involved in the discretization of the pressure gra-
dients is accounted for. In this case, the scheme
is therefore locally inconsistent on nonuniform
meshes but still leads consistent solutions. This
was explained by the fact that first-order perturba-
tions in the location produce a consistent method
as demonstrated in Gibou and Fedkiw (2005); Gi-
bou et al (2002). This can be related to the work
of Johansen and Colella (1998) who provided a
heuristic argument based on potential theory as
to why schemes that are only first-order accurate
at locally nonuniform grid nodes can be globally
second-order accurate (see also the related work

by Manteuffel and White (1986) as well as Kreiss
et al (1986)). One of the basic reason is that the
set of locally non-uniform cells is one-dimension
lower than the set of locally uniform cells (see fig-
ure 3). Here, we say that a cell is locally nonuni-
form if its size is different from the size of at least
one of its neighbors whereas a cell is locally uni-
form if its size is equal to that of all of its neigh-
bors. In turn, the influence of nonuniform cells is
absorbed by that of the uniform one through the
inversion of the elliptic solver, yielding a second-
order accurate scheme. Based on this argument
and on numerical evidence, Min et al. hypothe-
sized in Min et al (2006b) that a strategy for de-
riving pth order accurate finite difference schemes
in the L∞ norm, is to focus on designing schemes
that are (p−1)th order accurate at locally nonuni-
form cells, which reduce to at least pth order ac-
curate schemes at locally uniform cells. In par-
ticular, in order to derive second-order accurate
schemes, it is enough to focus on finding a con-
sistent approximation at non-uniform cells.

Consider a Cartesian domain Ω ∈ R
n with bound-

ary ∂Ω and the variable Poisson equation ∇ ·
(ρ∇u) = f on Ω with Dirichlet boundary condi-
tion u|∂Ω = g. We assume that the variable coeffi-
cient ρ is bounded from below by a positive con-
stant. In one spatial dimension, standard central
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Figure 4: Local structure around a node v0 in
a quadtree mesh: At most one node in the two
Cartesian directions might not exist. In this case,
we define a ghost node (here v4) to be used in the
discretizations.

differencing formulaes read:(
ui−1 −ui

si− 1
2

· ρi−1 +ρi

2
+

ui+1 −ui

si+ 1
2

· ρi+1 +ρi

2

)

· 2
si− 1

2
+ si+ 1

2

= fi,

where si−1/2 is the distance between nodes i− 1
and i. This discretization is second-order accu-
rate and can be applied in a dimension by dimen-
sion framework. However, special care needs to
be taken when vertices are no longer aligned (see,
e.g. figure 4). In this case, Min et al (2006b)
proposed to use the truncation error in linear in-
terpolation in the transverse direction as part of
the stencil for the derivative in the other direc-
tion, leading to a more compact stencil, and an
M-matrix. For example, referring to figure 4 the
discretizations for (ρux)x and (ρuy)y along with
their Taylor analysis are given respectively by(

u1 −u0

s1
· ρ1 +ρ0

2
+

s6D5 + s5D6

s5 + s6

)
· 2

s1 + s4

= (ρux)x +
s5s6

(s1 + s4)s4
(ρuy)y +O(h), (16)

and(
u2 −u0

s2
· ρ2 +ρ0

2
+

u3−u0

s3
· ρ3 +ρ0

2

)
· 2

s2 + s3

= (ρuy)y + O(h), (17)

with

D5 =
u5−u0

s4
· ρ5 +ρ0

2
,

D6 =
u6−u0

s4
· ρ6 +ρ0

2
.

The spurious term s5s6
(s1+s4)s4

(ρuy)y is cancelled by
weighting appropriately equations (16) and (17)
as(

u1 −u0

s1
· ρ1 +ρ0

2
+

s6a5 + s5a6

s5 + s6

)
· 2

s1 + s4

+
(

u2 −u0

s2
· ρ2 +ρ0

2
+

u3 −u0

s3
· ρ3 +ρ0

2

)

· 2
s2 + s3

·
(

1− s5s6

(s1 + s4)s4

)
= f0 +O(h).

The discretization obtained is now first-order ac-
curate at locally nonuniform points and second-
order accurate at locally uniform points, hence
yields a globally second-order accurate scheme in
the maximum norm.

5 Numerical Results

We report numerical evidences that confirm the
schemes described in section 4 yield second-order
accuracy in the L1 and L∞ norms, on highly ir-
regular grids. In particular the difference of level
between cells can be greater that one, illustrating
that the method preserves its second-order accu-
racy on non-graded adaptive meshes. In the case
of the Poisson scheme derived in section 4.2, we
demonstrate that both the solution and its gradi-
ents are second-order accurate. The linear sys-
tems of equations are solved using a bi-conjugate
gradient method with an incomplete Cholesky
preconditioner.

5.1 Accuracy for the Supra-Convergent Pois-
son Solver

Consider a domain Ω = [0,2]× [0,1] and a grid
depicted in figure 5 and Δu = f with an exact solu-
tion of u(x,y) = sin(x)cos(y). Dirichlet boundary
conditions are imposed on the boundary. Tables
1 and 2 demonstrate second-order accuracy in the
L1 and L∞ norms for the solution and its gradient,
respectively.
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Table 1: Convergence rate of u for example 5.1.

Finest Resolution L∞ error on u rate L1error on u rate
642 2.73×10−3 3.75×10−2

1282 6.99×10−4 1.91 4.18×10−4 2.33
2562 1.76×10−4 1.97 2.75×10−5 1.89
5122 4.38×10−5 1.98 6.87×10−6 2.05

10242 1.09×10−5 2.00 1.71×10−6 2.00

Table 2: Convergence rate of ∇u for example 5.1.

Finest Resolution L∞ error on ∇u rate L1error on ∇u rate
642 2.28×10−1 5.04×10−2

1282 7.63×10−2 1.58 1.07×10−2 1.24
2562 2.05×10−2 1.89 2.71×10−3 1.99
5122 5.21×10−3 1.98 6.06×10−4 2.16
10242 1.31×10−3 1.99 1.46×10−4 2.04

Figure 5: Original mesh used in example 5.1 il-
lustrating high size ratios between adjacent cells.

5.2 Accuracy for the Navier-Stokes Equation

5.2.1 Unconditional Stability

Unconditional schemes are not bound to re-
spect the CFL condition Δt < Δxs, which can
lead to very severe time step restriction. Here,
we demonstrate that our solver allows uncon-
strained time steps. Consider a domain Ω =
[−π/2,π/2]× [−π/2,π/2] and a grid depicted in
figure 6. We consider the Navier-Stokes equations
with an exact solution of:

u(x,y, t) = −cos(t)∗ cos(x)∗ sin(y),
v(x,y, t) = cos(t)∗ sin(x)∗ cos(y),
p(x,y, t) = sin(x)∗ sin(y)∗ (sin(t)−2∗ cos(t)).

Figure 6: Original mesh used in example 5.2.

The viscosity is set to μ = 1 and Dirichlet bound-
ary conditions are imposed on the boundary. Ta-
bles 3 and 4 demonstrate second-order accuracy
in the L1 and L∞ norms for the solution when the
time step is given by Δt = Δxs and Δt = 3Δxs, re-
spectively, where Δxs refers to the size of the most
refined grid cell.
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Table 3: Convergence rate of the x-component u of the velocity field u for example 5.2.1 in the case of a
time step Δt = Δxs.

Finest Resolution L∞ error on u rate L1error on u rate
642 1.49×10−1 2.71×10−2

1282 1.91×10−2 2.96 3.57×10−3 2.92
2562 3.86×10−3 2.31 7.58×10−4 2.23
5122 2.81×10−4 3.78 7.92×10−5 3.25

Table 4: Convergence rate of the x-component u of the velocity field u for example 5.2.1 in the case of a
time step Δt = 3Δxs.

Finest Resolution L∞ error on u rate L1error on u rate
642 7.10×10−2 1.89×10−2

1282 1.30×10−2 2.44 2.33×10−3 3.02
2562 4.98×10−3 1.38 6.72×10−4 1.79
5122 1.29×10−3 1.98 1.94×10−4 2.26

Table 5: Accuracy of the velocity field in the L1 and L∞ norms for example 5.2.3.

Size of the Finest Grid ||U −Uh||∞ Order ||U −Uh||1 order
322 6.92E−2 2.60E−2
642 2.64E−2 1.38 9.73E−3 1.41
1282 6.28E−3 2.07 2.49E−3 1.96
2562 1.07E−3 2.54 4.98E−4 2.32
5122 2.23E−4 2.26 3.94E−5 2.90

Table 6: Accuracy of the divergence free condition in the L1 and L∞ norms for example 5.2.3.

Size of the Finest Grid ||∇ ·Uh||∞ Order ||∇ ·Uh||1 order
322 3.56E −1 4.82E−2
642 1.36E −1 1.38 1.59E−2 1.60

1282 3.74E −2 1.87 2.30E−3 2.78
2562 9.55E −3 1.96 2.94E−4 2.96
5122 2.56E −3 1.90 3.94E−5 2.90

5.2.2 Lid-Driven Cavity

We test our Navier-Stokes solver on the well-
known lid-driven cavity problem studied exten-
sively by Ghia (1982): Consider a domain Ω =
[0,1]2, with the top wall moving with unit ve-
locity. We impose no-slip boundary conditions
on the four walls. In this example, we take a
Reynolds number Re = 1000, i.e. a viscosity co-

efficient μ = 1/1000. For the refinement criteria,
there exist various choices including a posteriori
error control based on Richardson extrapolation
Berger and Colella (1989), or a simple criteria
based on the magnitude of local vorticity Popinet
(2003); Min et al (2006a). The criterion for mesh
refinement we use is that proposed in Blom et al



Non-Graded Adaptive Grid Approaches to the Incompressible Navier-Stokes Equations 45

(1996), i.e. a cell C is refined whenever

min(�x,�y)2 ×max
x∈C

(|uxx|, |uyy|, |vxx|, |vyy|) > τ ,

(18)

where τ is an empirically chosen threshold taken
to be .01. More precisely, consider a grid struc-
ture Gn at time tn on which the velocity field is
updated from un to un+1. The grid Gn+1 at tn+1 is
constructed in the following way: First, we com-
pute the second-order derivatives at every nodes
of Gn. Second, starting from the root of Gn+1 split
the cell if (18) is satisfied. Finally, un+1 is defined
on the new grid Gn+1 from the values of un+1 on
Gn using the quadratic interpolation.

Figure 7 depicts the evolution of the streamlines
and the evolution of the adaptive grid until steady
state, while figure 8 demonstrates the convergence
of the velocity at steady state to the benchmark so-
lution of Ghia (1982). We note that these simula-
tion results are comparable to the results of Min et
al (2006a) that utilized a different refinement cri-
teria, a different CFL number and a different level
difference between coarsest and finest cells.

Figure 7: Adaptive grids and streamlines for the
driven cavity example 5.2.2. From top to bottom
and left to right: t = 3.12, 7.50, 13.75 and 37.50.
The coarsest grid has level 6, and the finest has
level 8.
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Figure 8: x- and y- components of the velocity
field in the driven cavity example 5.2.2. The do-
main is [0,1], Re = 1000 and the time step is
�t = 5�xs, where �xs is the size of the small-
est grid cell. The symbols are the experimental
results of Ghia (1982), the dotted line depicts
the numerical results obtained with an adaptive
quadtree with levels ranging from 6 to 8, whereas
the solid line depicts the numerical results ob-
tained with an adaptive quadtree with levels rang-
ing from 7 to 9.

5.2.3 Three Spatial Dimensions

In three spatial dimensions, we consider a domain
Ω = [−π

2 , π
2 ]3 and a flow with viscosity μ = 1 and
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Figure 9: From top to bottom and from left
to right: Arbitrarily generated three dimensional
grid used in example 5.2.3, its front view, side
view and top view. In particular, note that the dif-
ference of level between adjacent grid cells can
exceed one.

with an exact solution defined by:

u(x,y, z, t)= −2cos(t)cos(x) sin(y) sin(z)
v(x,y, z, t) = cos(t) sin(x)cos(y) sin(z)
w(x,y, z, t) = cos(t) sin(x) sin(y)cos(z)

p(x,y, z, t) =
1
4

cos2(t)
(

2cos(2x)+cos(2y)

+cos(2z)
)

The time step is chosen as Δt = 5× Δxs, where
Δxs is the size of the finest grid cell and we run
the simulation up to a final time of t = π . Table
5 demonstrates the second-order accuracy of the
velocity field in the L1 and L∞ norms while table
6 demonstrates the second-order accuracy for the
divergence free condition in the L1 and L∞ norms.

6 Conclusion

We have described two finite difference schemes
for simulating incompressible flows on nonuni-
form meshes using quadtree/octree data struc-
tures. The first one uses a cell-centered Pois-

son solver that yields first-order accurate so-
lutions, while producing symmetric linear sys-
tems (see Losasso (2004)). The second uses a
node-based Poisson solver that produces second-
order accurate solutions and second-order accu-
rate gradients, while producing nonsymmetric lin-
ear systems (see Min et al (2006b) for a supra-
convergent Poisson solver and Min et al (2006a)
for a second-order accurate Navier-Stokes solver).
The grids considered can be non-graded, i.e. the
difference of level between two adjacent cells can
be arbitrary, which facilitates grid generations. In
both cases semi-Lagrangian methods were used
to update the intermediate fluid velocity in a stan-
dard projection framework. Numerical results
were reported in two and three spatial dimensions
to demonstrate the accuracy of the methods.
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