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Abstract

We present a numerical investigation of the three-dimensional coarsening dy-
namics of a nematic liquid crystal-isotropic fluid mixture using a conserved
phase field model. The model is a coupled system for a generalized Cahn-
Hilliard equation for the order parameter φ, related to the volume fraction
of the nematic component, and a simplified de Gennes-Prost evolution equa-
tion for the director field n, which describes the mean orientation of the rigid
rod-like, liquid crystal molecules. We find that, as in the two-dimensional
system, the orientational distortion induced by interfacial anchoring has pro-
found effects both on the morphology and the coarsening rate. However, we
identify significant differences in the three-dimensional and two-dimensional
coarsening processes. In particular, we find a remarkable, new 3-stage late
coarsening process with markedly different coarsening rates in the three-
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dimensional bicontinuous phase separation with homeotropic anchoring, un-
seen in the two-dimensional system.

Keywords: Canh-Hilliard equation, Model B, nematic liquid crystal,
nucleation, planar and homeotropic anchoring, semi-implicit methods,
Adaptive Mesh Refinements.

1. Introduction

Phase separation of binary mixtures is a fundamental process in materials
processing. The important phenomenon is characterized by a fast transition
into an ordered phase consisting of domains rich in either component and
followed by a very slow coarsening process until a steady state is reached [7, 6].

Mixtures in which one of the components is a liquid crystal or a liquid
crystalline polymer offer a significant potential for applications and have
received increased attention [28, 34, 20, 27, 9, 8, 26].

We focus here on the three-dimensional phase separation and coarsening
dynamics of a binary mixture of a nematic liquid crystal and an isotropic
fluid, like a polymer. We use a conserved phase field model (Model B in the
nomenclature of of Hohenberg and Halperin [18]) which couples a generalized
Cahn-Hilliard equation for the order parameter φ, related to the volume frac-
tion of the species, with a simplified de Gennes-Prost evolution equation [16]
for the director field n, which describes the mean orientation of the rigid
rod-like, liquid crystal molecules. The same model, which stems from that
considered in [35], has been used in the two-dimensional study of Mata et
al. [26] and the current work is a follow-up report on our findings for the cor-
responding three-dimensional system. Similar phase field models have been
used extensively in phase separation [14, 25, 19, 4, 1, 2, 21, 22, 5, 35, 37, 36,
3, 38, 13, 39, 12, 30, 17, 33].

We find that the global distortion of the orientational field in the nematic-
rich phase, induced by strong interfacial anchoring, has a profound effect on
the morphology and coarsening rate, just as it happens in 2D. Specifically, the
steady-state morphology of the system can be largely controlled by the type
of interfacial anchoring and the coarsening rate is significantly affected by
anchoring-induced long-range orientational distortion. However, we observe
substantial differences between the three-dimensional and two-dimensional
coarsening dynamics. In particular, we identify a remarkable, new 3-stage
late coarsening process with markedly different coarsening rates in the three-
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dimensional bicontinuous phase separation with homeotropic anchoring (n
perpendicular to the surface), unseen in the two-dimensional system. We
also obtain a notable minimal surface (a Schwarz P Surface) for one instance
of 3D phase separation with homeotropic anchoring conditions.

The rest of the paper is organized as follows. In Section 2 we provide a
description of the phase field model and the numerical methodology employed
is described in Section 3. A summary of our numerical results is given in
Section 4 and some concluding remarks are given in Section 5. Finally, data
of an accuracy and convergence test of the numerical method are provided
in the Appendix.

2. Mathematical Model

We focus on a system consisting of a conserved mixture of a nematic
liquid crystal and an isotropic fluid, which undergoes phase separation in
three dimensional space. The model is the same as that used in [26] except
that here our domain is three-dimensional. The system can be described
with an order parameter φ related to the species concentration ((1 + φ)/2
represents the nematic liquid crystal concentration and (1−φ)/2 the isotropic
fluid concentration) and with the director field n, which is a measure of the
mean molecular orientation in the nematic liquid crystal phase. The pure,
bulk phases are identified with φ = 1 and φ = −1 for the nematic liquid
crystal and the isotropic fluid, respectively. A narrow neighborhood of the
level set φ = 0 provides a diffuse interface between the two species.

The free energy density of the system has three parts: a mixing energy
fmix, a bulk, orientational distortion energy of the nematic, fbulk, and the
anchoring energy related to the preferential orientation of the liquid crystal
molecules at interfaces, fanch [35]:

f(φ,n,∇φ,∇n) = fmix +
1 + φ

2
fbulk + fanch, (1)
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where

fmix =
λ

2

[
|∇φ|2 +

(φ2 − 1)2

2ε2

]
, (2)

fbulk =
K

2

[
∇n : (∇n)T +

(|n|2 − 1)2

2δ2

]
, (3)

fanch =


A

2
(n · ∇φ)2 (planar anchoring),

A

2
[|n|2|∇φ|2 − (n · ∇φ)2] (homeotropic anchoring).

(4)

The parameter λ in (2) is the strength of the mixing energy density and ε is
the capillary width. Equation (3) is the regularized Frank energy in which
the elastic constants for splay, twist, and bend are all equal to K and (|n| −
1)2/(2δ2) is a penalty term to approximately enforce the constraint |n| = 1.
Finally, in (4), A is the volumetric anchoring strength, which is related to the
surface anchoring strength W by εW = (2

√
2/3)A [35]. The specific choice

of fanch for planar (homeotropic) anchoring in (4) favors alignment of the
director field n tangential (normal) to nematic-isotropic fluid interfaces.

We consider a domain Ω = [0, L]× [0, L]× [0, L]. The total free energy is

F =

∫
Ω

f (φ,n,∇φ,∇n.) dx. (5)

The evolution of the order parameter is governed by the Cahn-Hilliard equa-
tion [10, 11]

∂φ

∂t
= ∇ · [γ∇µ] , (6)

where γ is the mobility, which in this work is taken to be constant, and

µ =
δF

δφ
. (7)

Using (2)-(4) we obtain

µ = λ

[
−∇2φ+

φ(φ2 − 1)

ε2

]
+
K

4

[
∇n : (∇n)T +

(|n|2 − 1)2

2δ2

]
+ µanch, (8)
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where

µanch =

{
−A∇ · [(n · ∇φ)n] (planar anchoring),

−A∇ · [|n|2∇φ − (n · ∇φ)n] (homeotropic anchoring).
(9)

We evolve the director field using the simplified Leslie-Ericksen theory
of de Gennes and Prost [16], first used by Yue et al. [35], and in the two-
dimensional work of Mata et al. [26],

∂n

∂t
= −τ δF

δn
,

where τ is Leslie twist viscosity, which can be physically measured [16]. Then
the coupled system of equations governing the phase separation of the mix-
ture is

1

γ

∂φ

∂t
= ∇2

[
λ

(
−∇2φ+

φ3 − φ
ε2

)
+
K

4

(
∇n : (∇n)T +

(|n|2 − 1)2

2δ2

)
+ µanch

]
,

(10)

1

τ

∂n

∂t
= K

[
∇ ·
(

1 + φ

2
∇n
)
− 1 + φ

2

(|n|2 − 1)n

δ2

]
− ganch, (11)

where µanch is given by (9) and

ganch =

{
A(n · ∇φ)∇φ (planar anchoring),

A [ |∇φ|2n− (n · ∇φ)∇φ ] (homeotropic anchoring).
(12)

We non-dimensionalize the system (9)-(12) by selecting characteristic time,
length, and energy scales tc, Lc, and Ec, respectively. Then, the free ener-
gy parameters K, A, and λ are made dimensionless with Ec/Lc, γ with
L5
c/(Ectc), and τ with L3

c/(Ectc). We choose the characteristic length scale
Lc = L/2, i.e. one half the domain size. Denoting by Kc and τc charac-
teristic values of the Frank elastic constant and the Leslie twist viscosity,
respectively, we define characteristic energy and time scales by Ec = aKcLc,
tc = bL3

c/(Ecτc), respectively, where a and b are dimensionless constants.
Following [26, 35], we take a = 1/(6.708× 10−3) and b = 1. We use the same
letters to denote the dimensionless variables and parameters, so (9)-(12) can
be considered to be in dimensionless form. We consider here only periodic
boundary conditions.
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3. Numerical Methodology

We employ the same discretization as in [26], except that here we write
the Cahn-Hilliard equation as a second order system to avoid a direct dis-
cretization of the fourth order, biharmonic operator and to use an efficient
linear multigrid method [13, 12]. The spatial discretization is second order
with standard finite differences and periodic boundary conditions. The time
integration is a linearly implicit scheme, as the one considered in [1, 12],
in which the implicit part is discretized using a second-order backward dif-
ference formula (BDF) and the explicit part corresponds to a second order
Adams-Bashforth method. The scheme can be written as

3
2
φn+1

1 − 2φn1 + 1
2
φn−1

1

∆t
= γλ∇2φn+1

2 + 2Fn −Fn−1, (13)

φn+1
2 =

α

ε2
φn+1

1 −∇2φn+1
1 , (14)

3
2
nn+1 − 2nn + 1

2
nn−1

∆t
= τKβ∇2nn+1 + 2Gn − Gn−1, (15)

where α and β are numerical parameters to improve numerical stability (in
this work we take α = 2 and β = 1), and Fk and Gk, for k = n − 1, n, are
defined by the functions

F = γ∇2

[
λ

ε2

(
φ3

1 − φ1

)
+
K

4

(
∇n : (∇n)T +

(|n|2 − 1)2

2δ2

)
+ µanch

]
− γλ α

ε2

( α
ε2
φ1 − φ2

)
,

(16)

G = τK

[
∇ ·
(

1 + φ1

2
∇n
)
− 1 + φ1

2

(|n|2 − 1)n

δ2

]
− τKβ∇2n− τganch,

(17)

evaluated at tk for k = n− 1, n.

3.1. Accuracy and convergence test
We performed an accuracy and convergence test of our numerical ap-

proach by using the techniques of manufactured solutions. That is, starting
with smooth periodic functions, φe and ne (with |ne| = 1), we added a forcing
term to equations (10) and (11) so that (φe, ne) becomes an exact solution of
the so modified system. Using this exact solution, the error of the numerical
approximation and the convergence rate was evaluated. The test confirmed
convergence at a second order rate for both the phase field and the director.
The details are provided in the Appendix.

6



4. Numerical Results

We consider two cases of spinodal decomposition, one giving rise to bicon-
tinuous structures and one in which the isotropic fluid component is nucleated
in a nematic continuous phase.

4.1. Parameters

The dimensionless model parameters are chosen following [26, 35]. Spe-
cifically, we take λ = 1.342 × 10−2, γ = 4 × 10−5, δ = 6.25 × 10−2, τ = 1,
K = A = 6.708 × 10−3, and ε = 4/256. Using that characteristic values of
the elastic constant are O(10−11)N [16] and that surface anchoring strength
is in the range 10−3 – 10−6J/m2 we obtain a characteristic length in the range
of 10−5 – 10−8 m and the ratio of elastic to surface anchoring falls within
bounds of known nematics, as discussed in [26].

The system of equations (9)-(12) is solved on the cube [0, 2]×[0, 2]×[0, 2],
with periodic boundary conditions, and using a uniform grid of mesh size
h = 2/256. The time step is ∆t = 0.1 and remains constant throughout
all the simulations. To limit the terms (1 + φ)/2 from exceeding 1 due to
numerical overshoot, we approximate this term by (1+sφ)/2 , where s = 0.90.

The free energy decreased monotonically per time step and the mean of
φ was preserved accurately (with less than a 0.038 variation, at the end of
2.4× 105 time steps) for all the simulations reported here.

4.2. Bicontinuous Coarsening

We consider an initial state defined by a small perturbation of the uni-
form, symmetric mixture

φ0(xi, yj, zk) = 0 + ξijk, (18)

where ξijk is a uniformly distributed random number in (−ε, ε) for each grid
index (i, j, k). The parameter ε is the same as that in the mixing energy (2),
i.e., the dimensionless capillary length. The initial director field is given by

n0(xi, yj, zk) =
(1, 1, ωijk)√

2 + ω2
ijk

, (19)

where ωijk is a uniformly distributed random number in (−0.05, 0.05) for
each grid index (i, j, k). We computed the solution up to t = 24000, when it
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is approaching steady state. For such a long time computation this required
taking an enormous number of time steps equal to 2.4× 105.

We consider first planar anchoring conditions. After a fast, t = O(ε),
transient domains rich in each of the mixture components begin to form
and coarsen. This coarsening process is illustrated in Fig. 1, which shows
snapshots of the phase field and the corresponding interfacial surface (φ = 0)
between nematic and isotropic fluid domains, at three well-separated times.
Also shown in Fig. 1 (right) is a subsample of the director field. When the
domain size is much larger than K/W ≈ ε, there is strong anchoring and
the director field becomes tangential to the interfacial surface. This strong
anchoring induces a long range orientational distortion in the director field
and creates a marked anisotropy in the system. This has a profound effect in
the domain morphology selection, as pointed out by Mata et al. [26] for the
two-dimensional system. In 3D, the mixture undergoes a more spectacular
phase separation, as Fig. 1 shows; instead of the evolution toward lamellae
observed in 2D [26] for either type of anchoring, the three-dimensional system
passes from domains with a gyroid-like surface [(c)(d)] to a structure whose
isosurface has one pair of holes along each axis [(e)(f)]. At steady state,
t ≈ 24000, this domain interface seems to correspond to a notable minimal
surface, the Schwarz P Surface, as Fig. 2 confirms.

We now look at the case of homeotropic anchoring, that is, when the
favored orientation of the director field at a nematic-isotropic fluid interface
(for domains much larger that K/W ) is normal to that surface. The initial
conditions are the same as before. Figure 3 depicts the coarsening dynam-
ics in the presence of homeotropic anchoring. The plots correspond to the
same snapshots (t = 600, 4850, 24000) as those of the planar anchoring case
(Fig. 1). There is a striking difference in the morphology of the coarsening
domains for the two types of anchoring. The preferential normal orienta-
tion of the director field at the coarsening domain interfaces gives rise to the
selection of vertical lamellae, just as in the two-dimensional case [26].

The marked differences in morphology selection of the coarsening dyna-
mics is highlighted in Fig. 4, which shows a comparison the phase separation
for the two cases of anchoring with a spinodal decomposition of an isotropic
mixture (modeled with the standard Cahn-Hilliard equation, i.e. K = A = 0)
at a late stage of the coarsening. The same initial conditions were used for
the three cases. The emergence of vertical lamellae is evident in the isotropic,
plain Cahn-Hilliard case but the orientation of the φ = 0 isosurfaces is quite
different from the case with homeotropic anchoring.
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4.3. Nucleation of an Isotropic Fluid in a Liquid Crystal Continuous Phase

We now consider the case of asymmetric phase separation where the do-
minant component is the nematic liquid crystal phase. The initial condition
for the phase field is

φ0(xi, yj, zk) = 0.5 + ξijk, (20)

where ξijk is a uniformly distributed random number in (−ε, ε) for each grid
index (i, j, k). We take the initial director field as in (19). For this type
of spinodal decomposition, small droplets of the isotropic fluid phase will
nucleate in a liquid crystalline continuous phase and an (inverted nematic)
emulsion will form [29]. Colloidal dispersions and emulsions of this type have
attracted considerable attention because the orientational elasticity of the
host fluid and the potential formation of topological defects can enable a fine
degree of control of colloidal ordering and its stability [29, 24, 32, 31]. Here,
we consider only homeotropic anchoring, as this is the prevalent, preferential
orientation of the director field at the experimentally observed surfaces of
the nucleated droplets [24].

We present three phase field snapshots, the corresponding isosurfaces,
and a sampling of the director field in Fig. 5. Once the nucleated droplets
achieve a diameter significantly larger than the extrapolation length K/W ,
which for our choice of parameters is approximately equal to the capillary
length ε, the director field preserves a normal orientation at the surface of
the droplets. It should be noted that this simple, phenomenological model do
not support the (±1/2) topological defects that are believed to significantly
limit coalescence and yield stable configurations of linear (chain) droplet
aggregates [24]. Instead, the nucleated droplets eventually merge to form a
single drop at steady state, as Fig. 5(e)(f) shows.

4.4. Coarsening Rate

The coarsening rate of phase domains in spinodal decomposition is usually
estimated by looking at the time growth of the first moment of the struc-
ture function. This statistical approach requires many realizations of each
type of spinodal decomposition to get accurate estimates of a characteristic
length scale L(t) of the phase domains. Unfortunately, this is computation-
ally prohibitive for our current three dimensional system. We opt here to
estimate the asymptotic coarsening rate by using the rate of decay of the
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mixing energy [23, 15]. The argument is that, in the zero capillary length
limit ε→ 0,

Emix =
1

V

∫
Ω

λ

2

[
|∇φ|2 +

(φ2 − 1)2

2ε2

]
dx, (21)

where V is the volume of Ω, scales like 1/L(t) [23].
The assumption is that L(t) grows like tα, and we write L(t) ∼ tα. Scaling

arguments show that α = 1/3 for the constant diffusion Cahn-Hilliard equa-
tion with a Ginzburg-Landau free energy [6]. The two-dimensional study of
Mata et al. [26] indicates that the growth rate α is affected by the anchor-
ing conditions at the domain boundaries of a nematic liquid crystal-isotropic
fluid mixture.

Figure 6 shows the striking effect of anchoring in the decay rate of log(Emix),
and consequently on the coarsening rate α, for bicontinuous (symmetric)
phase separation. With planar anchoring, there is a good single fit for a coars-
ening rate α which is clearly smaller than that of an isotropic binary mixture
(phase separation governed by the Cahn-Hilliard equation). The orienta-
tional distortion in the nematic-rich phase, induced by the planar anchoring,
slows down the coarsening of the separating mixture. This is consistent with
what has been reported in the two-dimensional case [26]. However, the esti-
mated exponent rate with planar anchoring in 3D (α = 0.2839) is appreciably
larger than the corresponding in 2D (α = 0.2317). But the more dramatic
effects of the orientational distortion in the nematic phase on the coarsening
dynamics occur with homeotropic anchoring, as Fig. 6 (b)indicates. There
are three late coarsening stages with markedly different rates. In the first
one, the domain coarsen at a rate (α = 0.3204) commensurate with that of
an isotropic, binary mixture. Then, after larger domains with highly curved
boundaries have formed, there is a pronounced slow down in the coarsening
(α = 0.1886), which persists for a significant t span, approximately from
t = 2980 to t = 8100. This is then followed by an astonishing accelera-
tion of the coarsening dynamics (α = 0.6007) toward a steady state. While
in 2D a larger than 1/3 coarsening rate (α = 0.4006) was also estimated for
homeotropic anchoring in a symmetric mixture [26], the coarsening dynamics
of the three-dimensional system is clearly different from its 2D counterpart.

To learn more about the three distinctive coarsening stages produced with
homeotropic anchoring we present in Fig. 7 isosurface plots and a sample of
the director field for representative times in each of the three stages. The
coarsening regime with α = 0.3204, Fig. 7 (a), corresponds to the early stages
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of domain formation. The domain size has not reached the critical (extrap-
olation) length to fix the anchoring. As a result, the orientational field is
largely isotropic and hence the coarsening rate is close to that of a binary
mixture of isotropic fluids. Once the nematic-rich domains reach a critical
size, there is strong anchoring which produces long range distortions of the
orientational field, as Fig. 7(a) illustrates. The large elastic energy associated
with these distortions leads to a significant slow-down of the domain coars-
ening. As the isosurfaces straighten up, Fig. 7(c), and the orientational field
becomes largely uniform, a fast dynamics takes places leading to a lamellar
steady state [Fig. 3(e)-(f)].

Finally, Fig. 8 shows the log(Emix) for nucleation coarsening of an isotropic
fluid in a nematic liquid crystal continuous phase, with homeotropic anchor-
ing. The initial conditions and parameters are as described in Subsection 4.3.
In contrast with the late coarsening behavior of bicontinuous phase separa-
tion with the same anchoring [Fig. 6 (b)], the log(Emix) is well approximated
by a linear fit, despite the presence of two small amplitude bumps near end.
The corresponding coarsening rate (α = 0.3423) is higher but very close to
the isotropic (Cahn-Hilliard) coarsening rate. This contrasting coarsening
behavior underlines the relevance of anchoring and free surface geometry.

5. Concluding Remarks

We considered a conserved phase field model to investigate numerically
the three-dimensional coarsening dynamics of a nematic liquid crystal-isotropic
fluid mixture. The model is a coupled system for a generalized Cahn-Hilliard
equation for the phase order parameter φ, related to the volume fraction of
the nematic component, and a simplified de Gennes-Prost evolution equa-
tion for the director field n, which describes the mean orientation of the
rigid rod-like, liquid crystal molecules. Despite the evident limitations of
this model (it is phenomenological, it describes the mean molecular orienta-
tion in terms of a vector field rather than using a second order, orientational
tensor, the condition ‖n‖ = 1 is mollified, it does not capture disclinations,
etc.), our study highlights the strong effects that anchoring of the nematic
component on free surfaces can have on the coarsening rate and the steady-
state morphology of phase separating mixture. It also shows that there are
significant differences between the three-dimensional and two-dimensional
coarsening processes. In particular, the study identifies a remarkable, new
3-stage coarsening process with markedly different coarsening rates in the
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three-dimensional bicontinuous phase separation with homeotropic anchor-
ing, unseen in the two-dimensional system.

Wall anchoring could have profound effects on the phase separation but
was not considered here in order to focus the computational resources on free-
surface anchoring; the computational cost to solve for steady or quasi-steady
state is enormous. Each case took several months of CPU time of a state-
of-the-art computer. We investigated the use of adaptive mesh refinements
(AMR) [13, 12] as a means to reduce the overall computational cost per
simulation. Unfortunately, the interfaces of the nematic liquid crystal and
isotropic fluid domains occupy great part of the interior of the computational
domain during most of the huge simulation time span, as Fig. 9 shows. This
produces a high overhead due to large number of interpolations needed for the
multi-level multi-grid linear solver and yields the AMR approach ineffective
for this particular setting.
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Appendix: Accuracy and Convergence Test

For this test we let

φe (t,x) = sin3 (2π (x+ y + z + t)) , (22)

nxe (t,x) = 0, (23)

nye (t,x) = cos (2π (x+ y + z + t)) , (24)

nze (t,x) = sin (2π (x+ y + z + t)) , (25)

and the domain Ω be the unit cube. We modify (10) and (11) so that (22)-
(25) becomes an exact solution in Ω with periodic boundary conditions. We
solve the modified system for 0 < t ≤ 10, taking α = 2, β = 1, ε = 0.125,
γ = 0.00001, τ = 0.5, λ = 0.1, δ = 0.5, and K = A = 0.006708.

The numerical error (in the Euclidean norm) and the convergence ratio
are presented in Table 1 for resolutions ∆t = h = 1/n, with n = 32, 64, 128,
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and 256. The observed convergence ratios confirm the expected second order
accuracy (for smooth solutions) of the method for both the phase field φ and
the director n.

Table 1: Numerical error and convergence ratio at t = 10 for resolution ∆t = h = 1/n.

n Variable Error Convergence ratio

32 φ ‖φ− φe‖2 = 2.269320008828050× 10−2

nx ‖nx − nxe‖2 = 1.649338034918546× 10−3

ny ‖ny − nye‖2 = 1.038634062541942× 10−2

nz ‖nz − nze‖2 = 1.078656325408673× 10−2

64 φ ‖φ− φe‖2 = 6.059074243078967× 10−3 3.75
nx ‖nx − nxe‖2 = 5.154721285378072× 10−4 3.20
ny ‖ny − nye‖2 = 2.784391310165071× 10−3 3.73
nz ‖nz − nze‖2 = 2.659065270324107× 10−3 4.06

128 φ ‖φ− φe‖2 = 1.545196350195382× 10−3 3.92
nx ‖nx − nxe‖2 = 1.400611891955155× 10−4 3.68
ny ‖ny − nye‖2 = 7.133143091353612× 10−4 3.90
nz ‖nz − nze‖2 = 6.613351900551691× 10−4 4.02

256 φ ‖φ− φe‖2 = 3.885536109260787× 10−4 3.98
nx ‖nx − nxe‖2 = 3.607710884265911× 10−5 3.88
ny ‖ny − nye‖2 = 1.802250166619108× 10−4 3.96
nz ‖nz − nze‖2 = 1.652681029440823× 10−4 4.00
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Bicontinuous coarsening with planar anchoring: phase field flooded contour plot
(left) and isosurfaces φ = 0 with a sampling of the director field (right). (a)-(b) t = 600,
(c)-(d) t = 4850, and (e)-(f) t = 24000 (near steady state). Nematic phase in red (light)
and isotropic fluid phase in blue (dark).
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(a) (b)

Figure 2: Schwarz P Surface. Rotated isosurface φ = 0, (a) and (b), for bicontinuous
coarsening with planar anchoring at t = 24000 (near steady state).
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Bicontinuous coarsening with homeotropic anchoring: phase field flooded con-
tour plot (left) and φ = 0 isosurfaces with a sampling of the director field (right). (a)-(b)
t = 600, (c)-(d) t = 4850, and (e)-(f) t = 24000. Nematic phase in red (light) and isotropic
fluid phase in blue (dark).
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Figure 4: Comparison at t = 15000 of the phase field (left) and the φ = 0 isosurface (right).
(a) and (b) isotropic fluid mixture (Cahn-Hilliard), (c) and (d) nematic-isotropic fluid mix-
ture with planar anchoring, and (e) and (f) nematic-isotropic fluid mixture homeotropic
anchoring. Same initial condition for all cases. Nematic phase in red (light) and isotropic
fluid phase in blue (dark).
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(c) (d)

(e) (f)

Figure 5: Nucleation coarsening with homeotropic anchoring: phase field flooded contour
plot (left) and φ = 0 isosurfaces with a sampling of the director field (right). (a)-(b)
t = 900, (c)-(d) t = 7100, and (e)-(f) t = 18000. Nematic phase in red (light) and
isotropic phase in blue (dark).
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Figure 6: Logarithm of the mixing energy Emix versus log(t) for bicontinuous coarsening
(a) planar anchoring and (b) homeotropic anchoring. The constant α is the growth rate
obtained by linear fitting of (log(t), log(Emix)) in the regions marked with a straight line
segment.

(a) (b) (c)

Figure 7: Isosurfaces and a sample of the director field for bicontinuous coarsening with
homeotropic anchoring at the three identified coarsening regimes (a) t = 600 (α = 0.3204
stage), (b) t = 4700 (α = 0.1886 stage), and (c) t = 13800 (α = 0.6007 stage).
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Figure 8: Logarithm of the mixing energy Emix versus log(t) for nucleation coarsening
with homeotropic anchoring. The constant α is the growth rate obtained by linear fitting
of (log(t), log(Emix)).

(a) (b) (c)

Figure 9: Isosurfaces (φ = 0) and composite grid (a) planar anchoring at t = 4500, (b)
homeotropic anchoring at t = 5500, and (c) nucleation with homeotropic anchoring at
t = 3500.
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