A PRACTICAL SPLITTING METHOD FOR STIFF SDES WITH
APPLICATIONS TO PROBLEMS WITH SMALL NOISE*
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Abstract. We present an easy to implement drift splitting numerical method for the approxi-
mation of stiff, nonlinear stochastic differential equations (SDEs). The method is an adaptation of
the SBDF multi-step method for deterministic differential equations and allows for a semi-implicit
discretization of the drift term to remove high order stability constraints associated with explicit
methods. For problems with small noise, of amplitude ¢, we prove that the method converges
strongly with order O(At? + eAt + eQAtl/Q) and thus exhibits second order accuracy when the time
step is chosen to be on the order of € or larger. We document the performance of the scheme with
numerical examples and also present as an application a discretization of the stochastic Cahn-Hilliard
equation which removes the high order stability constraints for explicit methods.
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1. Introduction. Stochastic Partial Differential Equations (SPDEs) are an im-
portant and essential modeling tool in a wide range of fields from nonlinear filtering
to continuum physics [1]. Often the SPDEs employed in modeling a physical process
involve nonlinear and high order derivative terms and have an additional random force
term, arising for example from Brownian motion. The Cahn-Hilliard equation with
additive noise [2], [3], [4], [5] used as a model for phase separation in a binary alloy

in the presence of thermal fluctuations (the noise term) illustrates well this type of
SPDE:

(1.1) % = —DV*¢ + V2V (¢) + 1,
where
(1.2) V' (¢) = ¢* — ag,

and 7 is gaussian with zero mean and correlation
(1.3) (n(z,t)n(z’, 1)) = —265(t —t")V*5(x — z').

The mobility constant D is related to the noise amplitude € to comply with the
fluctuation-dissipation theorem, i.e. D ~ €. For the interested reader, a further
treatment of equation (1.1) is provided in Section 4.

The numerical integration of these SPDEs presents two main challenges: i) The
stochastic nature of the equation makes the design of high order methods quite intri-
cate and ii) the presence of high order derivatives leads to stiffness, in the sense that
explicit methods require prohibitively small time steps. Methods which are easy to
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implement such as the Euler (also called Euler-Maruyama) method or a slight modifi-
cation of it where the highest order linear term is handled implicitly will never attain
a strong order of accuracy greater than 1/2 and will never attain a weak order of
accuracy greater than 1. As far as stability is concerned, Euler’s method applied to
the deterministic Cahn-Hilliard equation, for example, has a fourth order time step
restriction.

In this paper we devote our attention to solving a particular type of nonlinear
SPDE where the drift term can be separated into a linear term containing high order
derivatives and a remaining, smoother nonlinear term. The presence of high order
derivatives imposes severe restrictions of the time steps allowed by explicit numerical
schemes. We refer here to this problem as stiffness and call the corresponding SPDE
stiff.

We take the approach of solving such equations using the the method of lines and
therefore consider vector It stochastic differential equations of the form

t t
(1.4) X(0) = X(to) + [ FOX().5)ds+ [ GOX(s), )W (o),
to to
where the drift coefficient can be decomposed into the sum
(15) f(x,t):L(x,t)JrN(x,t),

where L(x,t), corresponding to high order derivatives, is linear and N(z,t) is non-
linear. Here W is an m-dimensional Wiener process corresponding to the probability
space (2, F,P) and the drift and diffusion functions are given as f : R x R — R"
and G = (g1,...,gm) : R* x R — R™*™,

Motivated by the deterministic case, we propose a scheme for SDEs of the form
(1.4)-(1.5) which is easy to implement, has low computational cost, and which exhibits
improved stability (in the sense of absolute stability) over current methods. Further-
more, for problems with small noise the scheme exhibits second order accuracy (in
time) when the time step is adequately selected.

The numerical scheme is a stochastic extension of the Extrapolated Gear multi-
step method [6] (also called Semi-implicit Backward Differentiation Formula or SBDF)
and is given by:

3Xe—4Xp 1+ Xy 2=
(1.6) 2At[L(Xg7 tg) + 2N(Xg,1, tg,l) — N(Xg,g, te,g)]
+3G(Xp—1,t—1) AW (te—1) — G(Xp—2,te—2) AW (te—2)

where t; is a uniform discretization of 7 = [to, tnx] and AW (ty—1) = W(te) — W (te—1).
We refer here to this scheme as Stochastic SBDF or SSBDF.

The outline of the paper is as follows. In Section 2, we provide background
information on stochastic multistep methods, SDEs with small noise, and absolute
stability in the context of numerical methods for SDEs. In Section 3, we document
the performance of the SSBDF scheme with numerical examples. In Section 4, we
illustrate with an application the effectiveness of the SSBDF scheme at removing the
stiffness associated with explicit methods applied to SPDEs. With a judicious choice
of the drift coefficient splitting, we propose a discretization of the stochastic Cahn-
Hilliard equation (1.1) which improves upon time step restrictions of current methods
by several orders of magnitude. In Section 5, we state and prove a convergence
theorem for the SSBDF scheme.
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2. Background.

2.1. Multistep methods and their application to SDEs with small noise.
The SSBDF scheme (1.6) is an example of a stochastic multistep method; a numerical
method which uses past values of the numerical iterate and past values of the Wiener
process to approximate future values of the numerical iterate. In general, as pointed
out in [7], since the Wiener process and the solution of (1.4) are not differentiable,
high order convergence is only possible when the multi-step scheme includes sufficient
information about the Wiener process (through multiple stochastic integrals). Mul-
tistep methods which only use Wiener increments as in (1.6) will only attain strong
convergence of order 1/2. But convergence is an asymptotic property and when the
influence of noise is not dominant it is possible to retain some of the behavior of the
multistep methods in the deterministic setting for suitable step sizes [7].

For example, consider the SDE (1.4) with small noise coefficient G(z,t) = eG(x, t):

(2.1) X(t) = X(to) + t F(X(s),s)ds +e¢ [ G(X(s),s)dW(s),

to

where f(x,t) = L(z,t)+ N(z,t) and G(z,t) are O(1) and € is a small parameter. We
prove in Section 5 that, given certain smoothness and growth conditions on the drift
and diffusion coefficients, the global strong error of the SSBDF scheme applied to the
SDE (2.1) with small noise is of order O(e2At'/? 4 eAt 4 At?). Thus when At > O(e),
the SSBDF scheme exhibits second order accuracy.

When the method of lines is applied to SPDEs, the resulting system of SDEs is
often of the form

(22) X1 = X(t) + M /t FIX(5), 5)ds + Ao /t G(X(s), 5)dW (s),

where f and G are O(1) and |\;| >> | 2| due to the presence of high order derivatives.
With a time rescaling this system can be recast into the form (2.1).

We note that numerical methods already appear in the literature for SDEs with
small noise. In [8], [9] Milstein and Tretyakov derive explicit and implicit Taylor and
Runga-Kutta methods for SDEs with small noise and in [7] Buckwar and Winkler
derive explicit and implicit multistep methods for SDEs with small noise. Addition-
ally in [7], the general theory of the mean-square (strong) convergence of multistep
methods applied to stochastic differential equations is developed. The analysis mir-
rors that of the theory for deterministic multistep methods and stochastic analogs of
zero stability and consistency are defined to prove convergence.

2.2. Stiff SDEs and absolute stability. When an explicit method is applied
to a stiff differential equation, the time step size necessary for the numerical iterate
to remain bounded is much smaller than the time step size necessary to resolve accu-
rately the underlying solution. The time steps for which the iterate remains bounded
determine the region of absolute stability.

To gain insight into how large time steps can be taken in practice for general
differential equations, it is useful to determine the region of absolute stability of a
numerical scheme applied to a test equation. In [10], the complex test equation

(23) dXt = OéXt + th
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with Re(a) < 0 is considered. The region of absolute stability of a one-step method
applied to (2.3) of the form

(2.4) Xe=G(aAt) - Xo—1 + Zyp_q,

where Z, are random variables independent of o and Xy, is the set of complex numbers
aAt such that given two arbitrary deterministic initial conditions X¢ and Yy (Xo # Yo)
the inequality

(2.5) €| = | Xe — Yol < |€r-1]

holds for all trajectories. Equivalently, the region of absolute stability is the set of
complex numbers aAt such that |G(aAt)| < 1.

We point out, as is done in [10], that for methods of the form (2.4) applied to
(2.3), the region of absolute stability is the same as the region of absolute stability
in the deterministic case when (2.3) has no additive noise. This follows because the
discrete noise terms Z, cancel out in (2.5) and the &, satisfy the deterministic recursion
formula & = G(aAt) - &—1.

For splitting schemes like the SSBDF scheme (1.6), we rewrite the test equation
(2.3) in the form:

(26) dXt = CYXt + ’LﬂXt + th,

where a < 0 and 3 are real. Equation (2.6) with zero noise is considered in [11] where
it corresponds to a Fourier mode of the linear advection-diffusion equation

(2.7) Ut = Algy + DUy,

The regions of absolute stability of several deterministic splitting schemes, includ-
ing SBDF, applied to (2.6) with zero noise are compared in [11]. Since the first term
in (2.6) corresponds to the second derivative in the advection-diffusion equation and
the second term corresponds to the first derivative we have that |«| > || for high
frequency modes. Thus the first term in (2.6) should be treated implicitly by splitting
schemes and the second term explicitly.

To find the region of absolute stability of the SSBDF scheme applied to (2.6) we
note that given deterministic initial conditions Xy, X7, Yy, and Y7 the error & =
Xy — Yy solves the recursion formula

(2.8) 38 — A&y 1+E&—0 = 208 (a4 20i&e—1 — Biki—2)

since the noise terms cancel out. Thus the region of absolute stability is the same as
in the deterministic case and can be found via the characteristic polynomial of the
deterministic scheme.

When |a| >> ||, it turns out that the SSBDF scheme has a very large region
of absolute stability and thus a mild time step restriction when applied to the test
equation (2.6) (see Figure 2.1). For this reason, we find that the SSBDF scheme
performs well when applied to SDEs which allow the splitting (1.5). In Example
3.2 in Section 3 and Section 4 on the Cahn-Hilliard equation we find that, for the
chosen parameter values, the SSBDF scheme allows for time steps several orders of
magnitude greater than the time steps allowed by explicit methods.
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We note here that other splitting schemes have been proposed in the literature for
the approximation of stiff SDEs. In [12], Petersen analyzes a second order accurate
scheme for the weak approximation of SDEs where the drift term is discretized by

(2.9) f(Xeg1y2) = %[L(Xm) + L(Xe) + N(Xguier) + N(X0)].
The discretization (2.10) is similar to a Crank-Nicolson discretization except for the
X Euier term which corresponds to a prediction step using the Forward FEuler scheme.
This scheme has a mild time step restriction when applied to (2.6) for |3] = O(1),
however, when |3] >> 1 the X gy, term leads to a small region of absolute stability
and a stringent time step restriction of the form |At| < % (see Figure 2.1).

Another splitting scheme, useful for initializing the SSBDF scheme, is the Semi-
Tmplicit (SI), or modified, Euler scheme:

(2.10) Xy — Xp_1 = At[L(Xp, te) + N(Xp—1,te—1)] + G(Xo—1,te—1) AW (te—1).

Along with the SSBDF scheme, SI Euler has a large region of absolute stability
when applied to (2.6). When applied to the SDE (2.1) with small noise coefficient
G = €@, we find with a similar estimate as in Section 5 that the global strong order
of convergence of the SI Euler scheme is O(e?At'/? + At). However, the local error is
order O(e2At + eAt3/? 4 At?) and thus the SI Euler scheme can be used to initialize
the SSBDF scheme without degrading the overall accuracy or stability.
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F1G. 2.1. Regions of absolute stability (white) for the SSBDF scheme (top), Petersen’s scheme
(left), and Forward Euler (right) applied to the test equation (2.6).
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3. Numerical Experiments.

3.1. Example 1. We first apply the SSBDF scheme to the linear test equation
(31) dXt = —Xt - dt + EXt . th, X(O) = 1,

where the exact solution is given by

(3.2) X (t) = exp << -1- ;ez>t + eW(t)).

For this example we choose the splitting L(z,t) = —0.9z and N(z,t) = —0.1z. For
all of the examples considered in this paper the SSBDF scheme is initialized with one
step of the SI Euler scheme.

We compute approximations of both the strong error and the weak error of the
numerical scheme. The strong error is approximated for the numerical solution of
(3.1) at time ty =1 by

=

1 M
(33 I (tx) = Xl = (7 21X exo5) = Xiv(op)l )
j=1

along with the Standard Error (S.E.) associated with this Monte-Carlo approximation.
Here the Standard Error of a sample {Y;}Y ; refers to the statistic

N vy, _¥)2
(3.4) .8, = | =V 2 V) :
N(N 1)
where Y is the sample mean.

As is done in [10], we use the term weak convergence synonymously with conver-
gence of moments. We thus illustrate weak convergence by approximating the pth
moment of the numerical solution of (3.1) at time txy =1 by

(3.5) E(X(tn))? — E(XN)?

1 M
~|ECe - 3 3 Xty
j=1

along with the Standard Error associated with this Monte-Carlo approximation.

In Tables 3.1-3.3 we document the strong convergence of the SSBDF scheme for
decreasing values of the noise coefficient €. In Table 3.1 (e = .1) we observe a decrease
in the order of convergence towards 1/2 as the time step size is decreased. As the noise
is decreased in Tables 3.2 and 3.3, we see improvement in the order of convergence
towards the deterministic order of convergence 2. In Table 3.4 we observe that the
SSBDF scheme has a higher order of convergence in the weak sense, for the test
equation (3.1). Here the noise is the same as in Table 3.1 (e = .1), but the order of
convergence stays above 1 as the time step size is decreased. This is not surprising
since schemes of strong order 1/2 are often order 1 weakly [10].

3.2. Example 2. Next we apply the SSBDF scheme to the stiff SDE
(3.6) dX; = —10%(X; —sin(5t)) - dt + 10%sin(X;) - dt + 10* - dW;, X(0) = 0.

Note the similarities with equation (1.1). When equation (1.1) is discretized in space
with D = € = 10~% and Az = 1073, the resulting system of stochastic ODEs contains
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TaBLE 3.1
Ezxzample 1: Strong Error, e = .1

At FError + S.E. Order
.10000 | .00263 4 .00011
.05000 | .00119 4 .00005 | 1.14
.02500 | .00064 & .00003 | 0.89
.01250 | .00038 &+ .00002 | 0.75
.00625 | .00024 4+ .00002 | 0.66

TABLE 3.2
Ezxample 1: Strong Error, e = .01

At Error £ S.E. Order
.10000 | .001464 £ .000051
.05000 | .000361 £ .000018 | 2.02
.02500 | .000098 £ .000006 | 1.88
.01250 | .000032 + .000002 | 1.61
.00625 | .000013 £ .000001 | 1.30

a linear term with negative eigenvalues on the order of 108, a nonlinear term of order
10%, and noise with a coefficient on the order of 10%.

Referring back to Section 2.2, standard explicit methods have a time step restric-
tion of the form At < % when applied to (3.6) and are thus impractical. The scheme
analyzed in [12], that uses the drift splitting (2.9), removes the stiffness contributed
from the leading order term but still has a time step restriction of the form At < %.
Fully implicit methods require the use of a nonlinear solver such as Newton’s method,
which in higher dimensions can be challenging to implement and computationally
expensive.

The SSBDF scheme, on the other hand, removes the stiffness contributed by
both the linear and nonlinear term and is straightforward to implement. We set
L(z,t) = —10%(z —sin(5t)), N(z,t) = 10°sin(x) and integrate up to time tx = 1. We
calculate E[F (X y)], where F(z) = —z+x%—23, using the Monte-Carlo approximation
(3.5) along with the Standard Error of the Monte-Carlo approximation. Here F(z)
is chosen such that the first, second, and third moments are represented equally

Letting X2 denote the approximation at time ¢ = 1 corresponding to the time
step size At, we estimate the error of the approximation and the order of convergence
by

(3.7) errora; ~ |E[F(X?2Y)] — E[F(X2Y)
and
(3.8) ordera; = log(errorans/erroras)/log(2).

In Table 3.5 we document the weak convergence of the SSBDF scheme applied to
(3.6) with the chosen function F'(x) above. Here the time step size is chosen to resolve
the slow time scale associated with the function sin(5¢) and we observe in Table 3.5
second order convergence. We note again that the time steps used in Table 3.5 are
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TABLE 3.3
Ezxzample 1: Strong Error, e = .001

At FError + S.E. Order
.10000 | .0014501 4 .0000162
.05000 | .0003481 4 .0000055 | 2.06
.02500 | .0000856 4 .0000019 | 2.02
.01250 | .0000213 £ .0000007 | 2.01
.00625 | .0000054 4 .0000002 | 1.98

TABLE 3.4
Ezxzample 1: Weak Error, e = .1

Moment At Error + S.E. Order
First Moment .10000 | .0014500 4 .0000146
.05000 | .0003479 4+ .0000039 | 2.06
.02500 | .0000855 4+ .0000019 | 2.02
.01250 | .0000212 4 .0000017 | 2.01
.00625 | .0000053 + .0000017 | 2.00
Second Moment | .10000 | .0012164 £ .0000122
.05000 | .0003271 4+ .0000035 | 1.89
.02500 | .0000977 4+ .0000016 | 1.74
.01250 | .0000328 4+ .0000013 | 1.57
.00625 | .0000124 4 .0000013 | 1.40
Third Moment | .10000 | .0007618 % .0000077
.05000 | .0002219 + .0000023 | 1.78
.02500 | .0000739 4+ .0000010 | 1.59
.01250 | .0000279 £ .0000008 | 1.41
.00625 | .0000117 4+ .0000007 | 1.25
Fourth Moment | .10000 | .0004234 = .0000043
.05000 | .0001309 + .0000014 | 1.69
.02500 | .0000467 + .0000006 | 1.49
.01250 | .0000188 4 .0000004 | 1.31
.00625 | .0000082 =+ .0000004 | 1.20

outside of the regions of absolute stability of explicit schemes and the scheme with
splitting (2.9).

TABLE 3.5
Example 2: Weak Error

Method | At E|F(Xy)| £ S.E. | Order
SSBDF | .10000 | 2.81607 £ .00001
.05000 | 2.80919 £ .00001
.02500 | 2.80773 £ .00001 2.23
.01250 | 2.80736 £ .00001 1.98
.00625 | 2.80728 £ .00001 2.21

4. The stochastic Cahn-Hilliard equation. In this section we illustrate with
the stochastic Cahn-Hilliard equation (1.1) how the SSBDF scheme can be imple-
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mented for stochastic partial differential equations to effectively remove the stiffness
associated with explicit methods.

Equation (1.1) has been investigated numerically in [3], [4], [5] to study its appro-
priateness for modeling phase separation. Following [3], we apply the method of lines
to (1.1) with periodic boundary conditions on the unit square, replacing the Laplacian
V2 by the standard discrete Laplacian £:

(41) Loy s(t) = (A%) (6i1,5(8) + b1 () + iy (1) + b1 () — ddi 5 (1).

Here (i,j) denotes a grid point in the spatial mesh. We discretize the noise term 7,
as was done in [3], by substituting the Kroneker delta d; ; and discrete Laplacian into
(1.3) and get

—2e6(t —t)
(4'2) <77i17j1 (t)niz,jz (t/)> :(A(I,)zl(_46i17;2;jlj2 + 6i1*i2+1,j1 —J2

+6i1—i2—1,j1 —ja T 5i1—i27j1—j2+1 + 52’1—1'27]'1—]'2—1)'
Thus when (i1, j1) and (ig, j2) are equal

o 8ed(t— 1)
<77i1,j1 (t)ninz (t )> = W

and when (i1, 71) and (ia,j2) are nearest neighbors

O O = )

Otherwise the correlation is zero. We can achieve these correlations by setting

(4.3) /Otm,j(s)ds {(AQ;)ALF (/ AW, (s) — /tdWil,j(s)

t
) dW7 1 (s) / AW}, )
where W:

Li(s), W, 2.(s) are independent standard Brownian motions. By combining
(4.1) and (4.3) we transform (1.1) into the form of (1.4):

t

(44)  60;(t) = 615(0) + / [~ DL265(s) + LV (605(5))]ds + / i (5)ds.

To choose the splitting of the drift term, we observe that given a deterministic
diffusion equation of the form

d¢

(4.5) =

=V - (a(¢)V9),
the finite difference scheme

ot + At) — o(t)

(4.6) A

= aVZp(t + At) + V- (a(¢(t)) Vo(t)) — aV2e(t)

is unconditionally stable when o > 1 max |a(¢)| [13].
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As is done in [14], we can apply the same idea to the deterministic Cahn-Hilliard
equation for we have that

(4.7) V20 (¢) = V- (U"'V).

Using the bound

(4.8) 9] < Va

which exists on the solution (where a is as defined in (1.2)), we set

(4.9) a = [¥"(Va),

(4.10) L(¢) = —DV*¢ + aV?¢,
and
(4.11) N(¢) = V2U/(¢) — aV3¢.

When we do so we find via numerical experiments that the SBDF scheme exhibits no
time step restriction.

For the Cahn-Hilliard equation with additive noise we proceed similarly. Since
the bound (4.8) no longer holds in the stochastic case we fix « to be the corresponding
« from the deterministic case. We then use the splitting (4.10) and (4.11) for the drift
term. To initialize the SSBDF scheme we use one step of SI Euler (using the splitting
(4.10) and (4.11) and the same «.)

When we do so we observe that for large time step sizes and long times of integra-
tion a percentage (which decreases as the time step size decreases) of the numerical
trajectories explode in finite time. In [15], Milstein and Tretyakov address this is-
sue and show that numerical methods which produce exploding trajectories can still
be used for the approximation of SDEs by rejecting the trajectories which leave a
sufficiently large sphere. We thus can use the SSBDF scheme, even with very large
step sizes, applying this criterion. But for moderate size time steps we find that the
SSBDF scheme produces no exploding trajectories .

For instance, we solve (4.4) (using Fast Fourier Transforms) on the square [0, 1] x
[0,1] with periodic boundary conditions and random initial conditions ¢; ;(0) = D -
Ui j(—1,1) where the U; j(—1,1) are independent uniform random variables. With
a=2 a=>5 D=2 =10"%and Az = .1- At = .002 we observed no exploding
trajectories when 100 trajectories of (4.4) were simulated up to time ¢t = 1 (see Table
4.1).

TABLE 4.1
SSBDF with parameters a =2, a =5, D = 2¢ = 10~

Lrinat | At | Az | number of exploding trajectories
10 2 1 .002 28/100
1 .02 | .002 0/100

In comparison, the Forward Euler scheme (used in [4], [5]) has a fourth order time
step restriction and thus produces exploding trajectories when time steps as small as
At =2-1078 are used, as demonstrated in Table 4.2
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TABLE 4.2
Forward Euler with parameters a =2 and D = 2e = 10~*

ttinal At Ax | number of exploding trajectories
1076 [ 2-107% | .002 100/100
1077 | 2-107? | .002 0/100

We note that nonlinear schemes combined with a Crank-Nicolson type discretiza-
tion have also been used to simulate both the deterministic Cahn-Hilliard equation
[16] and the stochastic Cahn-Hilliard equation [3]. These methods can yield fruitful
results, however, special care must be taken in choosing the iterative solver for the
nonlinear system of equations at each time step to avoid computational expense and
numerical instabilities (see [16] for more details).

5. Convergence Proof. In this section we state and prove a theorem concerning
the strong convergence of the SSBDF scheme (1.6) applied to SDEs of the form (2.1)
with small noise. We follow the work of Buckwar and Winkler in [7] on the strong
convergence of general two step schemes applied to SDEs with small noise. In [7],
consistency and numerical stability of general multistep methods are defined and
then shown to be sufficient for strong convergence. Numerical stability follows from
the multistep scheme satisfying Dahlquist’s root condition and the coefficients of the
SDE (2.1) satisfying Lipschitz conditions. Consistency is proved, provided that the
coefficients of the SDE are sufficiently smooth and satisfy a linear growth bound,
by first applying Ito’s Lemma to expand the local error formula and then applying
Lemma 2.12 in [7] to obtain local order estimates.

As is done in [7], we denote a multiple Wiener integral by

t+At
(5.1) = [ [ [ s o),

where r; € {0,...,m}, dWy(s) = ds, and a general multiple Wiener integral by

s mw = [ [T [ R s ) o),

We say that a function F(z,t) satisfies a Lipschitz condition uniformly in z if
(5.3) |F(x,t) — F(y,t)| < Llx —y| Yo,y e R",t €T,

and satisfies a linear growth bound uniformly in z if

(5.4) |F(z,t)] < K(1+ |z|)Y? Yz e R teT.

We also make use of the following operators which are defined in [7] to simplify
expansions of the local error:

1 m
AoF:FtI—FFQ/:f‘Fi;FN [97791"]

A’I‘F = Fglggra
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AJF = F/ + F, f,
AoF = ZF” [4r, ),

AF = Flg,.

With the above notations and definitions we now state the convergence theorem.
THEOREM 5.1. Suppose that the initial value X (to) of the SDE (2.1) is Lo
integrable and
I The coefficients f and g, = €j, of the SDE (2.1) with small noise are continuous
and satisfy Lipschitz conditions of the form (5.3),
II. f, g, and Agf have continuous partial derivatives up to order 2 in x and 1 in t,
1. Aof, Aogr, /A\Tf, /A\qgr, AOAgf, and /A\TAgf satisfy a linear growth bound of the
form (5.4).
Then the global error of the SSBDF scheme (1.6) applied to the SDE (2.1) satisfies

(5.5)
max X (t) = Xell, = O(EA? + At + AF) + O(max || X (te) — Xe|1,).

.....

Proof of Theorem 5.1.

First note that L and N in (1.6) and their derivatives satisfy conditions I-IIT
since L is linear and N = f — L. The numerical stability of the SSBDF scheme in the
sense of Definition 2.6 in [7] then follows from L and N satisfying condition I (the
Lipschitz condition) and the fact that the characteristic polynomial of the SSBDF
scheme satisfies Dahlquist’s root condition. The proof is the same as the proof of
Theorem 3.2 in [7].

The order estimate (5.5) then follows from equation (2.8) in [7], by setting Dy =
Ly, if the local error of the SSBDF scheme allows the expansion L; = R} +Si’)e+52°’£71
where E(S7 ,[Ft, ,) =0 and E(S5, %, ,) =0 and

(5.6) IR? |, = O(A? + EAt?),
(5.7) 1S5 illL, = O(At + eAt?/?),
and

(5.8) 155 ¢—1llz, = 0(62At + eAt3/2).

Thus we just need to obtain the estimates (5.6), (5.7) and (5.8) and show that the
random variables in (5.7) and (5.8) have zero expectation.

The local error of the SSBDF applied to (2.1) as defined by Definition 2.4 in [7]
is given by

S (X (te-1) = X(te-2)

(L(X (te),te) + 2N (X (1), 1) = N(X (te-3), tes))

(5.9)  Le= (X(te) — X(te—1)) —
2/t
_T

_Zgr (te—1),te—1)I-% + Zgr (tg—2),tg_o)Ile=2te—1,
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From Ito’s lemma we have that

(5.10)
N(X(to—1),te—1) = N(X(tr—a),te—z) + Iy " (AoN) + Y It=>"=1(A,N)
r=1
and

(5.11)
L(X (), te) = L(X (to—2), te_o) + 102" (AgL) + 15" (A L)
FYLE (ML) + Y (AL,
r=1 r=1
The SDE (2.1) implies the two identities
(5.12)
X(tr_1) — X(tr_o) = Atf(X(te—s), tr_o) + It“”H(A f)

m
+ZI;672M "(Arf) +Zgr (to—2), to—o)Ife=>"e1
r=1

+ D I (Aogy) + Z It (Aggy)

r,q=1
and, additionally using It6’s lemma,

(5.13)

X(t) = X(te—1) = A{F(X (te—z), te—2) + 1o (Ao f) + > _ T4 (A, )}
r=1

oo (Mo f) +th[ VA +Zgr (to—1),te—1)I}e-1k

+Zf” S og) + 3 T )

r,q=1
Inserting these identities into the local error formula yields
(5.14) L,=R;+ 5175 + 5275_1

where

(5.15) Ry = A" Y (Ao f) + 1567 (Ao f) — 71“’ 2H1 (Ao f)

2At 4At

S (BoL) + I (AL} = SR (M),

(5.16) 515_2{1% 1,te A f) Itz 1t1/(A L }JFZIW 1,te Aogr)

r=1
+ Z I (Aggy),

r,q=1
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and
(5.17)
Sapmr = ALY I (4, ) = qtstos (0, ) = St (4, ))
r=1
_,thf 2,te—1 (A f) _7ZIU 2,te—1 (Aogr) — Z Itz 2,te—1 (A gr).

rql

Using conditions IT and IT1, we have from Lemma 2.12 in [7] that

(5.18) 1S1.elln, = O(2At + eAt3/?)
and
(5.19) [S2.0-1llL, = O(2At + eAt3/?)

which are of the desired order. R A
Next we further expand R,. We have that Ag = Ag + e2Ag and Ry = Rf + €2R,
where

(5.20) = At~ AL ) + g (A ) - %15572’te71(1\ff)
_LN{IW sty (AL 4 gl lth(AfL)}_LAtItl 2te-1 (A )

and

(5.21) Ry = AL (Ao f) + 105V (Ao f) — 71“’ 2H (Ao f)

2A 4A
_J{IW 2,te— I(A L)—‘,—If( 17te(AO )} Stlézfz,teq

(AoIN).
The term €2R; is order O(e2h2?) by Lemma 2.12 in [7] and thus we only need to
concentrate on R{ .

Applying It6’s lemma to each term in the expression for R,{ and simplifying yields

(5.22) R = RetSuet S
where
(5.23)
R = %ﬁgw“*mméﬁ QA; Iy " (AT L)
AL (MAL ) — 2§t I (MoAf L) — 22 (A0A] V)
2t Jlete

(AoAE) = S5 (Mo ) + T (Ao ).

(5.24)

. m . 2A
So= e 1 (AL F) - tszé VA, AL,

r=1 =
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and
(5.25)
Q At2 - te—2,te—1 f 2At teg—2,t 1 f
52,@_1267;1,2 -t (AL A f) — Zﬂ =1 (A AL L)
to_o,tp—1 f 2At to_o,te—1 f
+eAtZI (AALF) - ZIT,O (A, Al L)
r=1
4At2 i
—e L (A AN) - ZI%OQ’“ (ARAL ).
r=1
We then have that L, = R} + 57, + S5 ,_; where
(5.26) Ry = R, + € Ry,
(5.27) Ste= Sie+ 51,[»
and
(5.28) 557571 = Sop_1+ 5(2,271~

The terms Sy, S2,¢—1 dominate the terms 5’175, 5'2,@,1 and from Lemma 2.12 in [7]
we get the order estimates

(5.29) IRZ|lz, = O(AF? + e*At?),
(5.30) 155 ellL, = O(At + eAt?/?),
and

(5.31) 155 s 1llL, = O(EAL+ eAt??),

and additionally from Lemma 2.12 in [7] we have that (5.27) and (5.28) have zero
expectation.

6. Concluding Remarks. We presented a new method for the approximation
of stochastic differential equations. The method is easy to implement, requiring no
evaluation of the derivatives of the drift or diffusion coefficients, and exhibits second
order accuracy when applied to SDEs with small noise. Furthermore, the method
allows for the efficient simulation of systems of the form (1.4) by reducing the time
step restrictions associated with explicit methods. Because only linear terms in (1.4)
are treated implicitly, fast linear solvers can be used alongside the method to keep
computational cost to a minimum.

Additionally, we were able to prove that the method converges strongly, and hence
weakly, under some assumptions of smoothness and growth of the drift and diffusion
coefficients.
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