Fast Algorithms for Spectral Collocation with
Non-Periodic Boundary Conditions

W. Lyons®!, H. D. Ceniceros®?, S. Chandrasekaran ™! and
M. Gu*®

& Department of Mathematics, University of California, Santa Barbara, CA
938106-3080, USA

b Department of Electrical and Computer Engineering, University of California,
Santa Barbara, CA 98106-9560, USA

¢Department of Mathematics, University of California, Berkeley, CA 94720-3840,
USA

Abstract

We present a method for the numerical solution of partial differential equations using
spectral collocation. By employing a structured representation of linear operators
we are able to use fast algorithms without being restricted to periodic boundary
conditions. The underlying ideas are introduced and developed in the context of
linearly implicit methods for stiff equations. We show how different boundary con-
ditions may be applied and illustrate the technique on the Allen-Cahn equation and
the diffusion equation.

Key words: Pseudospectral methods, Chebyshev collocation, fast algorithms, fast
direct solver, semi-separable, boundary conditions.

1 Introduction

An important factor in the rise in popularity of spectral methods is the avail-
ability of fast transform methods. Due to the global nature of the basis func-
tions employed, matrix representations of differential operators in the spatial
domain are not sparse and are costly to work with. Working in a transformed
domain returns us to a sparse representation.

I Partially supported by NSF grant number CCR-0204388.
2 Partially supported by NSF grant number DMS-0311911.

Preprint submitted to Elsevier Science 23 November 2004

In a number of situations, staying in the spatial domain may be highly de-
sirable. The most common reason for favoring a transform-free method is to
facilitate enforcing boundary conditions. If we wish to work on a non-periodic
problem and specify Dirichlet or Neumann boundary conditions, it is natu-
ral to work in physical space. However, if we do so our Chebyshev derivative
operator will be a full matrix and the size of problem we can tackle will be
severely reduced.

In this paper we introduce a new method for efficiently solving spectral dis-
cretizations of partial differential equations while staying in the spatial do-
main. We will develop our ideas in the context of linearly implicit (LI) meth-
ods. This approach is currently the most popular choice for PDEs with low-
order nonlinear terms and higher-order linear terms.

A recent paper by Kassam and Trefethen [9] includes a survey of methods
being applied to treat problems of this kind and indicates that LI methods
may not always be the best choice. As such, we also discuss how the ideas we
propose here can be used to similar advantage in integrating factor (IF) and
exponential time differencing methods (ETD). These methods are of recent
vintage but show great promise.

Linearly implicit (also known as implicit-explicit or IMEX) methods are widely
used and have a history going back at least to 1980. In these early papers we
find a full description of the method [15] and some results on stability [33].
More recent treatments include [2] and [3]. The defining feature of LI methods
is that they employ an implicit discretization of leading order linear terms and
an explicit discretization of the remaining, typically nonlinear terms. Thus, if
the inversion of the resulting linear system can be accomplished at a low cost
then one obtains an efficient method in which the leading order timestep-
ping stability constraint has been eliminated. Unfortunately, the solution to
such linear systems is costly for Chebyshev collocation and quite generally for
spectral discretizations when remaining in the spatial domain.

Here, by employing an appropriate representation of the differential operator
on the spatial domain, we can use an implicit time discretization of the leading
order linear operators and apply direct, fast, non-iterative methods to solve
the resulting linear system at each timestep. This allows us to remove the
highest order timestepping constraint while retaining nearly linear scaling in
the number of collocation points.

We illustrate this strategy in the particular case of functions on a finite inter-
val, discretized by collocation on the Gauss-Lobatto points.

2 Basic Strategy

The basis of our approach is a representation of differential operators. In trans-
form methods no explicit representation of the derivative operator is needed,
as the coefficients of the derivative are generated through recursion. In the
spatial domain, the derivative has a matrix representation and classically this
is what is used in physical space numerical methods.

However, the matrix representation of the derivative is not sparse, symmetric
or even normal (see [17]). It is computationally expensive to work with such
matrices. The matrix of the derivative is also ill-conditioned, so even a brute
force solution of a discretized differential equation using iterative methods will
be very expensive.

In our approach we represent the Chebyshev derivative operator not with a
matrix, but with a hierarchically semi-separable representation (also known as
a rebus). This is a representation closely related to the fast multipole method
(FMM) in the form developed by Starr and Rokhlin [31] and by Yarvin and
Rokhlin [34]. Similar developments along these lines have since been made by
Beylkin, Coult and Mohlenkamp in [7] and Beylkin and Sandberg in [10]. The
formulation we adopt here was introduced by Chandrasekaran and Gu in [13].
We place this representation in historical context in Section 3 and proceed to
review the definition and properties of the representation below in Section 4.

Our approach to solving the PDEs is as follows. Starting from the governing
equations, we discretize the time dependence using an implicit discretization
of the leading order linear terms. This avoids high stability restrictions on the
allowable time step. Then we introduce the rebus representation of the spectral
derivative operator and use fast algorithms to generate the needed higher order
linear operator for a timestep. After this, the linear system that results from
the implicit or semi-implicit time discretization and the application of the
boundary conditions is solved in rebus form using specialized fast algorithms.

3 Relations to earlier work

As noted by Golub and Van Loan [19] good matrix algorithms rely on ex-
ploiting structure. Although the methods being presented here are new, the
structure they exploit has been noted before. A number of representations and
algorithms have arisen to take advantage of the same properties.

We will briefly compare and contrast the current approach with others which
rely on the same principles. We will try to emphasize the differences between

each approach and the one advocated here.

3.1 Tree Codes

For N-body problems of the type encountered in astrophysics, computational
chemistry, plasma physics and other fields relying on particle simulations, the
cost of evaluating the mutual interactions grows as N? and realistic problems
are frequently intractable.

In response to this, a number of procedures were created to reduce the burden
of these calculations. Notable amongst these were the Barnes-Hut tree code [5],
Appel’s method [1] and particle-in-cell methods and their descendants, the
particle-particle, particle-mesh methods [22].

The underpinning of these methods was the observation that although short
range interactions can be arbitrarily complex, the long range effect of a cluster
of particles will be relatively smooth. An alternative viewpoint is that the
matrix of the interaction will have low rank away from the diagonal or will
contain off diagonal blocks that can be accurately approximated by low rank
matrices.

Structured low rank representations lie behind the tree codes and are redis-
covered periodically. They are methods for fast summation and all of the
applications rely on the fast evaluation of matrix-vector products. In N-body
particle interaction, we are summing the contributions to the potential from
N sources and the application is direct.

An extension of fast summation is the solution of linear systems. By using
conjugate gradient or other iterative methods, the rate-determining step in
the solution of a linear system becomes the rapid evaluation of matrix-vector
products. Thus tree codes may be used to solve linear systems, notably those
arising from partial differential equations.

3.2 Fast Multipole Methods

The fast multipole method (FMM) was originally introduced to solve inte-
gral equations [28]. A different formulation was used as a fast summation
method [20] and it is this algorithm that has had the most impact and is
generally known as the FMM.

The work of Rokhlin and collaborators on FMM structure resulted in a rich
complex of ideas dealing with much more than fast summation. After the

initial application to integral equations, it was applied to evaluating conformal
mappings [27], two-point boundary value problems [31], ordinary differential
equations [30], 2-dimensional integral equations in scattering theory [29], the
wave equation [14] and Laplace’s equation [23].

Of particular interest to us here is Rokhlin and Starr’s work presented in [30]
and [31]. Here the authors use a recursive partitioning to solve an integral
equation. The apparatus developed is analytic in nature and specific to in-
tegral equations. The development demonstrates that integral equations can
be solved efficiently using a recursive partitioning. The off-diagonal blocks in
this partitioning are shown to have low rank. However, unlike the partitioned
low rank representations in Section 3.1, the representations in each block are
not independent, but are related in a multilevel framework, where information
may be projected or interpolated between fine and coarse scales.

The twin ideas of a partitioned SVD representation and a full FMM interaction
tree arise again in Rokhlin and Yarvin’s work [34].

These ideas are further developed by Beylkin, Coult and Mohlenkamp in [7],
where the authors use a recursive block decomposition to enable them to
work efficiently with spectral projection operators. This is the same block
decomposition used in Rokhlin’s work that also arises in rebus methods. They
prove spectral projection operators to have a compact representation in terms
of low rank blocks. Further, they develop an efficient algorithm to multiply
together two matrices stored in this form. The algorithm used is similar to
that employed for multiplying in non-standard wavelet form [18].

3.3 Rebus Methods

Our motivation in developing rebus-based methods was that all of these appli-
cations of the FMM were exploiting the same underlying structure. Although
the expansions and representations used in the FMM papers cited above were
problem specific, the underlying ideas were consistent. By confining ourselves
to a specific recursive block partitioning we further develop the ideas of the
FMM to allow an efficient representation of differential and integral operators
in general, as opposed to treating specific operators.

By this restriction to a specific FMM tree (which is what a rebus is), we
lose the flexibility of the full FMM but it becomes possible to develop a full
algebra. Thus we can implement a fast rebus-vector multiplication, rebus-rebus
multiplication, perform LU factorization and code direct rebus solvers. The
rebus structure is a hybrid, retaining enough FMM structure to design fast
algorithms but simplifying matters enough to make algorithms algebraically
tractable.

All the algorithms developed to operate on this structure share some desirable
features. They are intrinsically parallel since calculations happen locally and
are propagated in discrete stages through the tree. The algorithms are also in-
trinsically multiresolution. All have recognizable “upsweep” and “downsweep”
recursions corresponding to interpolating or projecting information to a differ-
ent scale. All are easily formulated as adaptive algorithms, where refinement
is performed only locally and as needed. An example of this in the case of the
solution of linear systems is found in Chandrasekaran, Gu and Lyons [12].

4 Rebus Representation

The rebus, or hierarchically semi-separable representation of a matrix, was
described in [13] and forms the basis for the numerical method being described.
We give a brief review here to establish notation.

4.1 Definition

A rebus representation is based on a hierarchical block structure and may be
described in terms of block partitioning. Given any dense matrix we consider it
as a block 2 x 2 matrix where the blocks are of arbitrary size and in particular
need not all be the same size.

We use the notational device of preceding the usual positional subscripts with
the “level” of splitting, so the original dense matrix A can be thought of as
Ap.11. That is, the (1,1) block of the matrix partitioned zero times. Using this
notation and block partitioning we get

The off-diagonal blocks are factored and stored as
Al;ij = Ul;iBl;ij‘/lfg for (7'7.]) = (17 2)7 (27 1)7
where V denotes the Hermitian conjugate of V.

The notation here should be reminiscent of that conventionally used for the
singular value decomposition (SVD), A = UXV#. The purpose of the factor-
ization is to allow us to take advantage of rank deficient blocks. However, it is
in fact not a simple SVD, as the global structure places constraints on which
factors are allowable.

We repeat the above process for each of the diagonal blocks. That is, we
subdivide Al;ll and Al;gg to get

Asq1 Agao
A1 =
Agio1 Agioo
and
Agz3 Aoaa
Ao =
Aoz Asay

The off-diagonal blocks of these matrices are again factored in the form
A2;ij - UQ;iB2;ij‘/2I;§ for (Zaj) = (17 2)7 (27 1)7 (37 4)7 (47 3)

The new diagonal blocks are again split, and this process continues down to
some lowest level where they are simply stored as dense matrices.

For an appropriate factorization, this will enable us to use a low-rank repre-
sentation of the off diagonal blocks. The resulting block structure is illustrated
in Figure 1. The benefit of this structure for representing differential operators
is demonstrated in Section 4.2.

"

i

i

i

e

Ee

Fig. 1. Block structure used to generate rebus representation.

Together with the (low-rank) representations of the off diagonal blocks, there
is a tree structure as follows: we do not store the factors Uy, and Vj,; at
every level. Instead, we store them at some lowest level only, and then store

intermediate quantities Ry ; and W}, ; which satisfy the relationships

Uk;mRk;m
Ur-1i = V= (wavs wivs) ()
; kim Y k;m kinVkn
Uk;anz;n

where level £ — 1 is the parent of level k. This allows us to store only the
“lowest level” factorizations and small transformations which relate them to
the factors at the next highest level.

To ensure that this is possible, we must relate the factorizations at each level
of the rebus. It is for this reason that we cannot simply take a singular value
decomposition of each block at each level. The Uy, at the lowest level must
not only provide a basis for the column space of A, it must provide a basis
for the column space of the whole row n of Ay (excluding the diagonal block).

Once we have performed this recursive splitting and factorization we obtain
the components of the rebus: the diagonal blocks Dy, the lowest level factors Uy,
and Vj and a binary tree of low rank factors R, W and B. This representation
allows us to efficiently recover the original matrix, while exposing any low-rank
structure.

4.2 Rebus Representation of Differential Operators

The rebus is a hierarchical low-rank representation of a linear operator. It is
especially suitable for integral and differential operators.

To show the extent to which we may expect to realize savings in storage and
number of operations, consider the hierarchical partitioning of a 1024 by 1024
Chebyshev derivative matrix illustrated in Figure 2. It is a special case of
the partitioning described in Section 4.1. In this example each partition takes
exactly half the rows or columns.

The shading of the figure is proportional to the percentage of full rank, with
black squares being full rank. Table 1 shows the rank at each hierarchical level.

The goal of the rebus representation is to keep the derivative operator, the
timestepping operator and all related quantities in rebus form at all stages of
the numerical method. This allows us to use the low-rank representations for
these blocks and use fast algorithms designed to take advantage of the binary
tree structure to achieve large computational savings.

The details of the algorithms used for constructing the representations and
solving the resultant systems are available elsewhere and are not the subject
of this article. Details of these algorithms can be found in [13] and [12].

Fig. 2. Rank structure of the Chebyshev derivative matrix with shading proportional
to rank.

N | Rank of N x N block | % of full rank
512 11 2.1
256 10 3.9
128 10 7.8

64 9 14

32 8 25

16 7 44

8 6 75

4 4 100

Table 1
Rank structure of the 1024 x 1024 Chebyshev derivative matrix.

5 Numerical Method

We consider a general partial differential equation (PDE) that can be written
in the form

u = L(x,t,u) + N(x,t,u), t>0, x€Q, (2)

where L and N represent a linear and a nonlinear differential operators, respec-
tively. Inhomogeneous terms, if present, are also included in N. The domain
() is bounded and the equation is supplemented with appropriate initial and
boundary conditions. We also assume that the leading order terms at small
scales (e.g. terms with the highest order derivatives) are linear and thus con-
tained in L.

With a collocation method the computational cost of incorporating boundary

conditions of Dirichlet, Neumann or mixed type is low. It is most convenient,
in this approach, to use boundary bordering as described by Boyd in [11].

To illustrate ideas let us consider the particular case where the right hand side
of the differential equation can be written as the sum of a linear elliptic op-
erator and a nonlinear operator, possibly including an inhomogeneous forcing
term:

ur =V - (aVu) + N(x,t,u), (3)

where a > 0. This type of equations arises routinely as diffusion-convection
equations in computational fluid dynamics or reaction-diffusion problems in
chemistry. As explained earlier, a popular approach in this situation is to treat
the elliptic part implicitly and the other terms explicitly. The reason for this
linearly implicit approach is that the elliptic term is the stiffest and gives rise
to severe timestep constraints if treated explicitly. The remaining nonlinear
terms are treated explicitly as their implicit discretization would result in a
nonlinear system which would be difficult and costly to invert.

Terms that we are treating explicitly need to be evaluated before we proceed
to solve the system. Since the rebus representation of the derivative is already
being computed, it may be applied cheaply to a vector by using a rebus-
vector multiply as described in [13] to efficiently calculate any derivatives in
the explicit term. This would be needed for example in the common case of
an advective term. Here we focus on the problem of integrating implicitly the
stiff elliptic term without leaving the physical space.

5.1 Elliptic Problem

The timestepping solution of PDEs of this type reduces to solving an elliptic
equation at each timestep. Since we are in the spatial domain, imposing the
boundary conditions at each timestep introduces no extra complications.

In most spectral methods, a finite difference discretization is used in time. As
the most simple example, consider a first-order (backward Euler) discretiza-
tion. Higher order schemes in time can be easily implemented with exactly the
same approach. The time discretization is

Alt(u(x, t+ At) —u(x,t)) = L(x,t + At,u) + N(x, ¢, u).

To step our solution forward in time with given, time-dependent Dirichlet
boundary conditions we solve

Lau(x,t + At) = u(x,t) + AIN(x, £, u), (4)

10

where Lo, = 1 — At - L.
The solution at each timestep consists of the following steps.

(1) Generate the rebus representation of D, the Chebyshev derivative oper-
ator.

(2) Use the fast rebus-rebus multiplication algorithm to generate the relevant
D™ operator.

(3) Use scaling and diagonal updates to generate La;. Algorithms for this
are presented in Sections (5.2) and (5.3).

(4) Evaluate the nonlinear term N(x,¢,u) using u and possibly the rebus
representation of D.

(5) Add the right hand side terms to obtain a single, vector-valued, right
hand side.

(6) Apply boundary conditions via an efficient leaf-update of £Lx;, described
in Section (6).

(7) Solve the system using the algorithm presented in [12].

Step 1 may of course be done only once for a given set of nodes and may
then be stored. In nearly all problems of interest, step 2 may be done as
a preprocessing step and need not be repeated. For a constant coefficient
equation with uniform timesteps, step 3 may also be taken out of the loop. In
this special case we need only evaluate the nonlinear term, update boundary
conditions and solve.

5.2 Rebus Scaling

Consider the operation A — c¢- A. For a matrix representation of A we clearly
update the matrix elements a;; — ¢ - a; ;. Now consider the equivalent rebus
operation. We will use the notation of Section 4.1.

The interaction of each subdomain with each other subdomain is represented
either by Dp.; or the product Uk;in;i,ijIfj, for some k. U and V themselves
satisfy the relations (1).

Thus, the structure can correctly be scaled by
2K

Dk, —c-Dg,; fori=1...

and
Byij — ¢ Bg;; fork=1...K and (4,j) = (1,2),(2,1).

All other factors of the rebus remain unchanged.

11

5.8 Diagonal Updates

The backward Euler timestepping discretization of the PDE is given by
(I — At-L)u(x,t+ At) = u(x,t) + AtN(x, ¢, u)
and in this case the operator we must represent as a rebus is
L=1-At-L.

Given the rebus representation of L, forming this operator requires a scaling
by —At, followed by a diagonal update.

Every off-diagonal block of I — At - L is equal to the corresponding block of
—At-L. Thus the update need operate only on the blocks Dg,;. But these are
exactly the blocks which are stored explicitly as normal matrices in our rebus
representation.

Thus, the structure can be correctly updated by
DK;i_)I_DK;i forizl...ZK,

where Dp.; are the diagonal blocks of our scaled rebus.

6 Boundary Conditions by Boundary Bordering

The main reason for pursuing these methods is to efficiently treat PDEs with
nonperiodic boundary condition. It is appropriate then, to consider how to
enforce various boundary conditions in the rebus formulation.

As discussed by Boyd in [11], the most robust and flexible method of imposing
physical boundary conditions for a matrix formulation of Chebyshev colloca-
tion is boundary bordering. The principle of this method is to allocate m rows
of the matrix to explicitly imposing the m boundary conditions, of whatever
type. Thus, to impose Dirichlet boundary conditions on a discretization of a
second order equation in one dimension we collocate at N — 2 interior points
of the interval and use two rows of the matrix to impose boundary conditions.

The equivalent process for a rebus proceeds as follows. Instead of using the first
two rows of the matrix we need to respect the spatial structure and operate
on the first and last rows, corresponding to the boundary positions. We can
then accomplish the bordering. However, the rows that need to be replaced
are not readily available, as they are split between a number of blocks, which
are themselves factored.

12

The process is less straightforward than bordering a matrix, but is not difficult.
The process may be broken down as follows.

Initialize by setting the m required rows to zero within the rebus.

Form the required boundary conditions as dense matrix rows.

Construct a low-rank product expressing the desired boundary conditions
in matrix form.

Use Algorithm (6.4) to add this low rank product to the rebus.

Thus the procedure amounts to zeroing out m rows of the rebus and perform-
ing one rank-m addition.

6.1 Initialization

We may modify the first and last diagonal block, Dg.; and D,y directly, as we
would the corresponding matrix. However, the remaining factors contributing
to the border rows still need to be set to zero. (We tacitly assume here that
all the border rows can be contained in the rows covered by these blocks. The
procedure below extends to the more general case).

We use the fact that each other element of the first row is the first row of a
block Uk;in;kag-, for some k, and that all of the Uy,; are generated from the
lowest level Uk, via the relation

Up—1;i = R (5)

Our requirement is that
P g
Z Z(Uk;i)l,u(Bk;iJ)#,v(Vkl;{j)l/,n =0
p=1v=1

for all k for each block. Thus it is sufficient to require that
(Uka)1,, =0 forall o for all k.
And from the recursion relation (5) it is sufficient to enforce
(Uka)1,, =0 forall p
to achieve boundary bordering of the first row.

Similarly, we impose analogous conditions on all other rows that are to be

13

used for boundary conditions. For example, we would use

(Ur.N)Ng,n =0 for all p

for boundary bordering on the final row.
6.2 Boundary conditions in matriz form

We now generate the boundary rows that we would border with in a matrix
method.

For Dirichlet boundary conditions or conditions on any linear combination of
endpoint or interior values in the form

;%‘U(%’) =

where z; are our Chebyshev nodes, we simply border with the vector of weights
w. In the Dirichlet case this amounts to a single 1 in the first or last position.

Alternatively, we may be presented with Neumann conditions or conditions
on some linear combination of derivatives at the endpoints or interior points.
Our boundary condition then would have the form

sz z;)

Let D be the Pseudospectral derivative operator. Using the matrix represen-
tation of the derivative, our condition is equivalent to

> (S wiby) uley) = (©

7j=1

Thus, we border our matrix with a linear combination of rows from the deriva-
tive matrix D as determined by the weights w. In the case of a simple Neumann
condition at x = —1, we would border with the first row of D.

For more exotic boundary conditions or constraints the treatment is equally
straightforward. An integral condition may be represented by any suitable

Chebyshev quadrature scheme, for example the Gaussian or Clenshaw-Curtis
scheme. Since quadratures are expressed in terms of weights as

;wju(%) =

the correct boundary row is again simply the vector of weights w.

14

6.3 Formulation as a low-rank product

Given our m boundary conditions, we now need to position them appropriately
in our rebus. For Dirichlet conditions in one dimension, for example, we should
respect the geometry of the problem and border on the first and last rows.
Similarly for Neumann conditions. The treatment of more exotic conditions
is less obvious but should be guided by attempts to preserve locality in the
rebus structure.

Putting our m boundary conditions together into an m by n matrix B, we
then write a simple n by m permutation matrix II so that the product I1B
contains the rows in their chosen position relative to the rows in the rebus.

These are the same rows that were initialized in Step (6.1) and should also
have the corresponding value of the condition a on this row on the right hand
side of our rebus equation.

6.4 Low-rank addition

It remains to combine the initialized rebus with the boundary conditions. We
can do this using an efficient algorithm for a low-rank update of a rebus.

Consider the problem of adding the product ACT to a rebus. As in Section 4
we will name the components of the rebus as follows: diagonal blocks Dy, the
lowest level factors U, and V) and a binary tree of low rank factors R, W and
B.

We first partition the columns of A and C' commensurately with the rebus.

AQ;I
A A Ao
A = AO _ 1;1 _ 2;2 _ _ ’
A1;2 A2;3 A
k;2k
A2;4

and similarly for C.

At the k'level we need to represent Dy.i + Ak;iC',zi for j = 1...2% and
Urii Bri Vil + Ao CE for (i, 5) = (20,21 — 1), (20 — 1,21), for [=1... 251,

15

The off diagonal blocks can be updated by assigning

By.i; 0
Ukii (Uk;i Ak‘;@’) o Vi (Vk;j Ck;J> ; By < 0 I)

where m is the rank of the product ACT.

It remains to treat the diagonal blocks. These are either dense matrices or
each is a rebus with one fewer levels than the case just treated. If a block is a
dense matrix (a zero-level rebus) we simply perform the addition

If the block is a rebus with one fewer levels, we recursively apply the original
procedure until all the diagonals have terminated with a dense block.

So using a straightforward recursive algorithm we can efficiently add a low
rank matrix to a rebus.

7 Limitations and Extensions
7.1 Conditioning of Chebyshev derivative operators

Working with Chebyshev collocation methods with many collocation points,
high order derivatives and multiple dimensions is a numerically dangerous
proposition. The methods presented in this paper aim to make certain types
of calculation much more efficient. However, the numerical considerations of
roundoff error and ill conditioning remain.

It is well known that the discretization of the derivative operator on Chebyshev
nodes gives rise to an ill-conditioned matrix. As IV, the number of discretiza-
tion points, increases, the condition number of the derivative matrix D grows
with O(N?). Similarly, the condition number of the second derivative operator
grows with O(N*). As the order of the linear term or the dimension increases,
this can quickly become unmanageable.

For example in a Kuramoto-Sivashinsky equation [35] we would have an O(N®)
condition number in 1d or O(N') in 2d. If we are working with 16 digits
of accuracy then at a grid size around N = 10? we can expect our answer
to contain no meaningful digits. In a two dimensional simulation we cannot
expect accuracy on any grid at all.

16

Dealing with this issue is part of using pseudospectral Chebyshev methods
and there is a considerable literature dealing with it.

7.1.1 Classical Approaches

In the literature, there are a number of well known strategies to improve the
condition number and accuracy of pseudospectral derivative matrices.

Numerical evaluation of the matrix representation of the derivative is subject
to serious roundoff errors, especially near the boundary points. Bayliss shows
how a simple adjustment to the matrix, chosen to ensure that constant func-
tions lie in the null space of the matrix, can improve this [6]. It is also possible
to use alternate formulae to generate the matrix elements, as in Tang and
Trummer [32] in order to avoid the cancellations leading to numerical error.
Each of these methods can improve the accuracy of the matrix by a few or-
ders of magnitude. The scaling of the condition number is unfortunately not
improved.

In a series of papers Heinrichs [21] described a specific basis recombination
strategy to improve the condition number of D* to order N*. This strategy is
also treated by Boyd in [11]. There is also the mapped Chebyshev approach
introduced by Tal-Ezer [24] and further studied in [16]. This also reduces the
condition number of the k" order derivative to O(N").

7.1.2 FExtended Precision

The most straightforward way to keep ill-conditioning from interfering with
calculations which require high precision is to take advantage of extended
precision floating point numbers. These are now available on a number of
architectures and supported by many compilers [4].

Using quadruple precision allows us to, for example, calculate on a 100 by 100
grid using Chebyshev collocation and still retain 16 digits of accuracy. In a
less extreme case, if 8 digits sufficed, we could use 1000 Chebyshev nodes in
each direction.

Calculating at extended precision incurs its own costs and does nothing to
mitigate the poor numerical behavior of the underlying problem. However, it
does keep numerical errors at bay without requiring any extra algorithmic or
analytic complexity. Thus for practical problems that are otherwise intractable
it offers a realistic approach.

17

7.1.3 Alternate Basis Sets

It is well known that other global basis sets, while lacking the optimality
properties of the Chebyshev polynomials, lead to much better conditioned
derivative operators. Depending on the specifics of the problem it may be
advisable to work in a basis of Legendre or Jacobi polynomials.

We note that the methods developed here for Chebyshev collocation methods
are equally applicable in any other basis. The low rank structure we are taking
advantage of stems from the smoothness of the operator itself, not the basis
in which it is represented.

7.1.4 Iterative Refinement

If we are only able to obtain relatively low accuracy, but have our system in
factored form it may be desirable to employ a few cycles of iterative refinement.
By calculating our backward error and performing another fast solve we may
extend the accuracy of the solution.

7.1.5 FEzxploiting Limited Precision

We can also use the fact that our final accuracy is known to be limited to
our advantage. Whether it is due to the order of our timestepping scheme or
due to the conditioning of the differential operator, we often know that we are
working to less than machine precision.

Similar to a wavelet representation, the rebus is a thresholded representation
and captures the operator to arbitrary but finite precision. The thresholding
is similar to that of an economy SVD, where basis vectors corresponding to
small singular values are discarded.

If we know that our solution will not have more than, say, 10 digits of accuracy
we can threshold more aggressively, discarding factors of the off diagonal blocks
corresponding to singular values smaller than 1071°. This results in lower rank
representations of the off-diagonal blocks and hence faster computation speed.

By remaining aware of the limitations imposed on the accuracy of our solution
in timestepping methods we may at least dispense with unnecessary computa-
tions and work with the relevant components of our problem. If only very low
accuracy is required, as would be the case for a preconditioner or an iterative
refinement step, we may work with a coarse approximation to the operator
and proceed through the calculations very rapidly.

18

7.2 Alternate Timestepping Schemes for Stiff Nonlinear PDFEs

Linearly implicit methods are a popular choice for solving PDEs with a non-
linear contribution and a stiff linear term. However, there are other methods
available. Kassam and Trefethen compare the available schemes in [9], and
suggests the integrating factor (IF) and exponential time differencing (ETD)
schemes may be superior choices. Methods of the ETD type appear to have
been introduced by Beylkin, Keiser and Vozovoi in [§].

These alternate methods rely on the observation that the linear part of the
equation can be solved exactly by a matrix exponentiation. As ever, a suitable
explicit step is sought for the nonlinear terms so as to avoid an iterative
solution of a nonlinear system.

To take a timestep using this type of method, the linear term must be inverted,
exponentiated or raised to a power. In the scheme favored in [9], (ETDRK4,
an exponential time differencing technique based on the fourth order Runge
Kutta scheme) all of these must be done. This poses no particular problem
if we have periodic boundary conditions in one dimension. However, if this
is not the case and we cannot diagonalize our operator we must be able to
efficiently invert, exponentiate and multiply a full matrix.

We will sketch how the rebus methods described in Section 5 extend to
timestepping with these modern methods.

7.2.1 Matrix Exponentiation

In calculating the timestep in the [F and ETD schemes, matrix exponentiation
plays a central role. The integrating factor which multiplies both sides of the
PDE is of the form e, and needs to be calculated. If the linear operator is
constant, it only needs to be calculated once. If we are working in Fourier
space, the operator can be rendered diagonal and again, the calculation is
straightforward. Note that the exponential will itself not be sparse.

The more difficult case is that of a function L on a finite domain with physical
boundary conditions. If a pseudospectral Chebyshev discretization is used,
the matrix exponential becomes very expensive to evaluate. It is an O(N?)
operation and even for relatively modest N may be the rate determining step.

The matrix exponential is most often computed using the scaling and squaring
algorithm favored by Golub and Van Loan in [19] and in the review papers
[25], [26]. The calculation is accomplished with matrix multiplications and a
matrix solve and is therefore easily implemented for the rebus structure.

19

With an O(N) matrix exponentiation, IF and ETD schemes could be applied
to problems with a time-varying linear operator and to large problems with
non-periodic boundary conditions. A similar observation led to the introduc-
tion of ETD schemes in [8], where the authors demonstrated a sparse matrix
exponentiation for wavelet representations of strictly elliptic operators .

8 Numerical Examples

The following section reports the results of applying these methods to a num-
ber of test problems. Since conventional methods find the combination of non-
periodic boundary conditions with many collocation points the most problem-
atic, we focus on such problems.

The implicit treatment of the diffusion terms corresponds to the conven-
tional use of linearly implicit methods (see [3]) for the convection-diffusion or
reaction-diffusion equations arising in chemical simulation. Such simulations
typically use a spectral discretization in space and face exactly the problem we
address: efficiently solving the equations arising from an implicit discretization
in time.

8.1 Time-varying non-homogenous Dirichlet conditions

Consider the test problem of a diffusion equation applied to a Gaussian func-
tion.

ou J*u
— = —1<z<1 >
ot~ 0a swsl 120,
u(z,0) = exp(z?) t=0, (7)
1 —1
£1,t) =\ —— —_— t .
u(£Lt) t+1eXp<4(t+1)> =0

Note that the Dirichlet boundary conditions are non-homogenous and time
varying. This is the same kind of boundary condition we would need to apply
for a Dirichlet boundary control problem.

This mixed initial-boundary value problem has the exact solution

[1 —a?
u(z,t) = P <4(t+1)> . (8)

20

A second-order Crank-Nicolson scheme was employed for the time integra-
tion of the linear term and this example does not have a nonlinear term. To
demonstrate that the current approach retains the second order convergence
expected of a Crank-Nicolson method we first refine our timestep on a fixed
grid. Table 2 demonstrates the effect of taking 2" steps for n = 3...14 on a
collocation grid of 64 Gauss-Lobatto points.

loga(At) At error

-3 1.25E-01 | 3.29E-05
-4 6.25E-02 | 1.07E-05
-5 3.13E-02 | 1.93E-06
-6 1.56E-02 | 4.87E-07
-7 7.81E-03 | 1.22E-07
-8 3.91E-03 | 3.04E-08
-9 1.95E-03 | 7.61E-09
-10 9.77E-04 | 1.90E-09
-11 4.88E-04 | 4.75E-10
-12 2.44F-04 | 1.24E-10
-13 1.22E-04 | 2.82E-11
-14 6.10E-05 | 7.05E-12

Table 2
Convergence after N rebus timesteps on 64 Chebyshev nodes

Assuming the error of the scheme is of the form ||u(z, 1) —a(z,1)||ec = k- N~
a regression of the data determines o = 2.0 with R? = 1.00. As expected, our
implementation of the Crank-Nicolson scheme is second-order.

To demonstrate the scaling properties of the method, now fix At and refine our
collocation grid. As the spatial accuracy is already exponentially convergent,
our accuracy is limited by the fixed timestep size. We are refining the grid in
order to show the desirable scaling properties of the method as N grows.

We solve Equation 7 from ¢t = 0 to ¢ = 1 for a changing number of collocation
points while maintaining our error ||u(z,1) — 4(z,1)||c < 107°. We report
timings and uniform errors with At = 0.01.

A regression analysis of the data in Table 3 shows the cost to scale as N'3 with
R? = 1.00. This exponent is not optimal, as linear scaling can theoretically
be achieved [13]. The performance is competitive with the N log(/N) currently
possible for transform-based, diagonalizable problems. It is clearly superior to

21

N | CPU TmME (s) | error (e-6)
200 2.13 1.20
400 5.23 1.19
800 14.1 1.19
1600 38.5 1.20
3200 87.4 1.22
6400 213 1.44
Table 3
Timings for 100 rebus timesteps on N Chebyshev nodes.
120 - ’ 100 —
100 — 50
80 20
CPU § CPU
time (s) o ' time (5) 10 //é/lope ~ 13
40 5
20 *
. * 27
o+ *
(‘) 20‘0(] 40‘00 Gd()() 2[‘)0 5(‘)(] 10‘00 2[)‘0() 5()‘(]()
Collocation points Collocation points

Fig. 3. Timings for 100 rebus timesteps on N Chebyshev nodes with linear and log
scales.

the N3 cost expected for non-diagonalizable problems.

8.2 Homogenous Neumann conditions

Having demonstrated the second order convergence of the method and the
scaling of computational cost with grid size, we now apply the method to a
more challenging simulation. We timestep a reaction-diffusion equation with
a nonlinear term and Dirichlet boundary conditions.

Consider the initial value problem for an Allen-Cahn equation of the form

ut:eum—i-u—US —1<z<1, t>0,
u(z,0) = sin(brz/2) t=0, (9)
U(£1L,1) =0 t>0.

Equation 9 has stable equilibria at u(x) = £1 and an unstable equilibrium

22

at u(x) =0 . It also demonstrates slow dynamics, whereby metastable states
may persist for relatively long periods before undergoing a rapid transition to
a lower energy state [35].

In this case the linear term was integrated via a Crank-Nicolson scheme, the
nonlinear term via a second order Adams-Bashforth scheme and the Neumann
boundary conditions were enforced as described in Section 6. Table 4 shows
the computational time taken for different grid sizes.

N | CPU TIME (S)
200 2.06
400 5.12
800 13.9
1600 35.5
3200 86.7
6400 206

Table 4
Timings for 100 rebus timesteps on N Chebyshev nodes.

A regression of the data in Table 4 shows that the scaling exponent has re-
mained 1.3, as in Section 8.1, again with R? = 1.00. The addition of Dirichlet
boundary conditions and a nonlinear term has not altered the scaling behavior
of the method.

The initial and final states are shown in Figure 4 and the evolution of the
state is shown in Figure 5. Around the midpoint of this evolution we observe
the transition out of the metastable state. High order methods are desirable
for tracking transitions such as this. As the solution is stable over relatively
long periods, an adaptive step size would also be appropriate for this kind of
problem. This is straightforward to implement in a rebus scheme. Whatever
timestep is needed, the relevant operator is still generated via fast operations
from the derivative rebus, which is already known.

All experiments were carried out on a dual 1GHz PowerPC G4 with 2MB L3
cache per processor, and 1.5GB RAM, using vendor supplied BLAS in double
precision. Only a single CPU was used.

9 Conclusion

In this paper we demonstrate a new approach for efficient time integration of
partial differential equations via Chebyshev spectral discretization. By using

23

11— 11—
0.5+ 0.5
ux) 07 ux) 07
-0.5 —0.54
14 1
T T T T T T T T T T
-1 —0.5 0 0.5 1 -1 —0.5 0 0.5 1
x x

Fig. 4. Initial condition and final (¢ = 127) state for the Allen-Cahn equation.

X
14
1.0
0.8
0.6
0.4
0.2
0+ 0.0

—14

Time

Fig. 5. Time evolution between the states of Figure 4.

a hierarchically semi-separable representation (a rebus) it becomes possible
to use an implicit discretization in time and still directly solve the resulting
system of equations in physical space. The cost is shown to scale at a rate
which is competitive with the N-log N cost of current fast methods for periodic
problems.

The fact that the method allows different types of boundary condition to be
combined with a fast algorithm for solution constitutes an advance over current
methods. In situations where the problem cannot be diagonalized or periodic
boundary conditions imposed, these methods allow us to work efficiently with
the resulting non-sparse matrices. Nonperiodic problems arise frequently in
practice.

These advantages, combined with the efficient handling of dense matrices
which arise in other timestepping methods, such as exponential time differenc-
ing, give these methods the potential to treat problems that may previously
have been intractable.

24

References

[1] A. W. Appel. An efficient program for many-body simulation. SIAM J.
Sci. Stat. Comput., 6(1):85-103, January 1985.

[2] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri. Implicit—explicit Runge-Kutta
methods for time-dependent partial differential equations. Appl. Numer. Math.,
25(2-3):151-167, 1997.

[3] U.M. Ascher, S. J. Ruuth, and B. Wetton. Implicit-explicit methods for time-
dependent partial differential equations. SIAM J. Num. Anal., 32:797-823,
1995.

[4] D. H. Bailey. A portable high performance multiprecision package. Technical
Report RNR-90-022, Moffett Field, CA 94035, 1992.

[5] J.E. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm.
Nature, 324(6270):446-449, 1986.

[6] A. Bayliss, A. Class, and B. J. Matkowsky. Roundoff error in computing
derivatives using the Chebyshev differentiation matrix. J. Comput. Phys.,
116:380-383, 1994.

[7] G. Beylkin, N. Coult, and M. J. Mohlenkamp. Fast spectral projection
algorithms for density-matrix computations. J. Comput. Phys., 152(1):32-54,
1999.

[8] G. Beylkin, J. M. Keiser, and L. Vozovoi. A new class of time discretization
schemes for the solution of nonlinear pdes. J. Comput. Phys., 147(2):362-387,
1998.

[9] G. Beylkin and K. Sandberg. Fourth-order time stepping for stiff pdes.
Technical Report NA-03/14, Oxford University, 2003.

[10] G. Beylkin and K. Sandberg. Wave propagation using bases for bandlimited
functions. Technical Report APPM 518, University of Colorado, 2003.

[11] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Springer-Verlag, New
York, 1989.

[12] S. Chandrasekaran, M. Gu, and W. Lyons. A fast and stable adaptive solver
for hierarchically semi-separable representations. Technical Report UCSB Math
2004-20, U.C. Santa Barbara, 2004.

[13] S. Chandrasekaran, M. Gu, and T. Pals. Fast and stable algorithms for
hierarchically semi-separable representations. Submitted for publication, 2004.

[14] R. Coifman, V. Rokhlin, and S. Wandzura. The fast multipole method for
the wave equation: a pedestrian prescription. IEFE Antennas Propag. Mag.,
35(3):7-12, June 1993.

[15] M. Crouzeix. Une methode multipas implicite-explicite pour 1’approximation
des equations d’evolution paraboliques. Numer. Math, 35:257-276, 1980.

25

[16] W. S. Don and A. Solomonoff. Accuracy enhancement for higher derivatives
using Chebyshev collocation and a mapping technique. SIAM J. Sci. Comput.,
18(4):1040-1055, 1997.

[17] B. Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge
University Press, Cambridge, UK, 1996.

[18] D. Gines, G. Beylkin, and J. Dunn. LU factorization of non-standard forms
and direct multiresolution solvers. Appl. Comput. Harmon. Anal., 5(2):156—
201, 1998.

[19] G. Golub and C. Van Loan. Matriz Computations. Johns Hopkins University
Press, Baltimore, MA, 1996.

[20] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. .J.
Comput. Phys., 73(2):325-348, 1987.

[21] W. Heinrichs. Improved condition number for spectral methods. Math. Comp.,
53:103-119, 1989.

[22] R. W. Hockney and J. W. Eastwood. Computer simulation using particles.
Taylor & Francis, Inc., 1988.

[23] P. Jones, J. Ma, and V. Rokhlin. A fast direct algorithm for the solution of
the laplace equation on regions with fractal boundaries. J. Comput. Phys.,
113(1):35-51, 1994.

[24] D. Kosloff and H. Tal-Ezer. Modified chebyshev pseudospectral method with
O(N~1) time step restriction. J. Comput. Phys., 104:457-469.

[25] C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the
exponentional of a matrix. SIAM Rev., 20(4):801-836, 1978.

[26] C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the
exponentional of a matrix, twenty-five years later. SIAM Rev., 45(1):3-49,
2003.

[27] S. T. O’Donnell and V. Rokhlin. A fast algorithm for the numerical evaluation
of conformal mappings. SIAM J. Sci. Stat. Comput., 10(3):475-487, May 1989.

[28] V. Rokhlin. Rapid solution of integral equations of classical potential theory.
J. Comput. Phys., 60:187-207, 1985.

[29] V. Rokhlin. Rapid solution of integral equations of scattering theory in two
dimensions. J. Comput. Phys., 86(2):414-439, 1990.

[30] P. Starr. On the numerical solution of one-dimensional integral and differential
equations. Technical Report YALEU/DCS/RR-888, Yale University, 1991.

[31] P. Starr and V. Rokhlin. On the numerical solution of two-point boundary value
problems II. Technical Report YALEU/DCS/RR-802, Yale University, 1990.

[32] T. Tang and M. R. Trummer. Boundary layer resolving pseudospectral methods
for singular perturbation problems. SIAM J. Sci. Comput., 17:430-438, 1996.

26

[33] J. M. Varah. Stability restrictions on second order, three level finite difference
schemes for parabolic equations. SIAM J. Numer. Anal., 17:300-309, 1980.

[34] N. Yarvin and V. Rokhlin. A generalized one-dimensional fast multipole
method with application to filtering of spherical harmonics. J. Comput. Phys.,
147(2):594-609, 1998.

[35] D. Zwillinger (Ed.). Handbook of Differential Equations. Academic Press,
Boston MA, 3rd edition, 1997.

27

