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Recently there has been a strong interest in the area of defect formation in ordered structures on
curved surfaces. Here we explore the closely related topic of self-assembly in thin block copolymer
melt films confined to the surface of a sphere. Our study is based on a self-consistent field theory
(SCFT) model of block copolymers that is numerically simulated by spectral collocation with a
spherical harmonic basis and an extension of the Rasmussen-Kalosakas operator splitting algorithm
[J. Polym. Sci. Part B: Polym. Phys. 40, 1777 (2002)]. In this model, we assume that the
composition of the thin block copolymer film varies only in longitude and colatitude and is constant
in the radial direction. Using this approach we are able to study the formation of defects in the
lamellar and cylindrical phases, and their dependence on sphere radius. Specifically, we compute
ground-state (i.e., lowest-energy) configurations on the sphere for both the cylindrical and lamellar
phases. Grain boundary scars are also observed in our simulations of the cylindrical phase when
the sphere radius surpasses a threshold value Rc ≈ 5d, where d is the natural lattice spacing of the
cylindrical phase, which is consistent with theoretical predictions [Phys. Rev. B 62, 8738 (2000),
Science 299, 1716 (2003)]. A strong segregation limit approximate free energy is also presented,
along with simple microdomain packing arguments, to shed light on the observed SCFT simulation
results.

PACS numbers: 81.16.Rf, 81.16.Dn, 68.18.Fg, 68.55.-a

I. INTRODUCTION

Over 100 years ago, just before the formulation of
quantum mechanics, Thomson [1] investigated the prob-
lem of arranging classical electrons on the surface of a
sphere in order to explain the structure of the periodic
table. Constructing the ground state of crystalline pack-
ings of particles on a sphere has turned out to be a much
more involved problem and, even a century later, still
captures the interest of many research groups. A vast
number of systems have been investigated theoretically
and experimentally.

The problem of constructing the ground state of clas-
sical electrons confined on a sphere has since been gener-
alized to a number of different potentials and topologies.
A wide variety of experimental realizations of the prob-
lem has since been discovered, and this has expanded
the interest in fully understanding the influence of topol-
ogy on particle arrangement. The interest spans from
biology, covering virus and radiolaria architecture [2, 3],
flower pollen like the Morning Glory, cytoplasmic acidfi-
cation on a clathrin lattice morphology [4, 5], to colloid
encapsulation for possible drug delivery, like the colloido-
some [6, 7], and coming back to the original question of
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the Thomson problem, realized as multielectron bubbles
on the surface of liquid helium [8].

Theoretically, the field of lattices constrained on sur-
faces of constant curvature has been covered and explored
extensively. The main focus remains not only on spher-
ical geometry, with the advantage of experimental rel-
evance and well described parameters [9–15], but also
on more abstract surfaces of constant negative curva-
ture [16]. The problem of identifying the ground state at
zero temperature has proven to be very challenging for
large numbers of particles on a sphere and is still under
investigation. The major complication, from an analyt-
ical as well as from a simulation standpoint, is the vast
number of states with very small differences in energy.

The number of faces F , edges E and vertices V of
a covering of a closed surface by polygons are related
through the Euler-Poincaré formula:

χE = F − E + V, (1)

where χE is the Euler-Poincaré characteristic. By evalu-
ating Eq. (1) under the assumption that only three edges
intersect at each vertex, we can obtain an expression re-
lating the topology of a compact, orientable surface with-
out boundary to a sum over coordination number in an
embedded particle configuration via the Euler character-
istic:
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∑

z

(6 − z)Nz = χE. (2)
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where Nz is the number of polygons with z sides (i.e., z
nearest neighbors) on the surface [17, 18]. This simpli-
fying assumption of only three edges intersecting at each
vertex has been observed to be true in particle based
models such as the Thomson problem and in our results.
The derivation of Eq. (2) from Eq. (1) can be found in
Appendix A. Equation (2) can be used to determine
the minimum number of defects required due to topol-
ogy. For example, if we look at a sphere, which has an
Euler-Poincaré characteristic χE = 2, Eq. (2) tells us that
a large sphere covered with a particle lattice containing
many more than 12 particles, and only 5-, 6-, and 7-fold
coordinated sites, will exhibit 12 more 5-fold than 7-fold
sites due to the topology of the underlying manifold. In
the ground state, the excess 5-fold disclinations are posi-
tioned at the vertices of a regular icosahedron. We define
a disclination as a lattice site with coordination other
than 6 (more rigorous and extensible definitions of discli-
nations in terms of singularities in vector fields can be
found in standard texts on liquid crystals and condensed
matter physics, e.g., [19–21]).

In flat space, isolated disclinations are energetically ex-
pensive as their energy grows with the size of the system
squared: Edisclination ∝ R2, where R is the radius of the
system. The main contribution to the potential energy
comes from the elastic stretching of the lattice, in addi-
tion to the core energy of the disclination. Isolated discli-
nations are, therefore, never observed for larger systems
in the ground state on a flat surface. However, in curved
space, disclinations are required in order to screen the
Gaussian curvature. This transition from curved space
to flat space can be observed by increasing the ratio R

d
of sphere radius R to lattice constant d. The potential
energy of the disclinations increases due to the decrease
in local Gaussian curvature. Above a critical ratio, Rc

d ,
the ground state contains grain boundaries attached to
the 12 disclinations in order to screen the strain in the
lattice from each disclination [6, 9, 13, 14]. The critical
ratio is a balance between the decrease in strain energy
of the lattice caused by incorporating the grain bound-
aries and the energy required to create a grain boundary
plus the core energies of the defects involved in the grain
boundary.

For the lamellar phase, the topology of the sphere en-
forces a similar requirement on the defect structure. In
this phase, we have observed four relevant lamellar defect
structures, two different line and point defects. Each type
of defect is assigned a defect charge m whose values can
be either − 1

2 (line), + 1
2 (line), +1 (point), or −1 (point)

depending on their molecular arrangement and type [19].
When the lamellar phase (or equivalently, a vector field—
in this case the layer normal or director field) is realized
on a closed surface, topological constraints require that
the following equation be satisfied [22, 23]:

∑

i

mi = χE, (3)

where mi is the charge of the ith defect, χE is the Euler-

Poincaré characteristic, and the sum is over all defects on
the surface. Again, for the sphere, χE = 2, and thus the
total sum of defect charges on this surface is also equal
to two.

For a nematic liquid crystal phase on the sphere, the
ground state has been determined to consist of four + 1

2
defects [24, 25]. Less work has been performed for a
smectic-A liquid crystal phase on a sphere, which is anal-
ogous to the lamellar phase of block copolymers. Blanc
and Kleman [22] identified the two simplest configura-
tions of smectic-A defects on a sphere, which consists of
two +1 defects at the poles, or four + 1

2 defects confined
to a great circle, equally spaced 90◦ apart.

Ordered structures and defect formation on nonuni-
form curved surfaces are also of keen scientific interest.
Experimental studies have examined lipid bilayers [26],
Langmuir films, wrinkled surfaces [27], liquid crystal thin
films, and block copolymer thin films. A theoretical
study of such a system has been presented by Vitelli et
al. [28–30], which explored various aspects of a hexag-
onal lattice confined to a surface with a single isolated
Gaussian bump.

A viable system to experimentally study the relation-
ship between curvature and defect formation in block
copolymers (BCP) is a thin copolymer film on a SiO2

patterned substrate [29]. Numerically simulating such a
system with nonuniform curvature, however, is compu-
tationally demanding. Nonetheless, much can be learned
from the spherical geometry, which is the simplest ex-
ample of a curved surface with positive Gaussian curva-
ture. Lamellar and hexagonal patterns on the surface of
a sphere have already been seen through the use of Tur-
ing equations, which describe a generic reaction-diffusion
model for the concentration of several reacting species [3].
Numerical studies of non-grafted block copolymers on
spherical surfaces have been limited to a study by Tang et
al. [31] and Li et al. [32]. Tang et al. used a phenomeno-
logical model of block copolymer phase separation with
Cahn-Hillard dynamics. This model was adapted for the
geometry of a sphere and solved through a finite vol-
ume method. A limitation of this phenomenological ap-
proach is that the role of architectural variations of the
block copolymer and formulation changes (e.g. blending
with homopolymer) cannot be explored. Li et al., on
the other hand, adapted a full self-consistent field the-
ory (SCFT) treatment of block copolymers to thin films
confined on a sphere. A spherical alternation-direction
implicit scheme was used to solve the diffusion equation
through a finite volume method. While the primary fo-
cus of this study was on the numerical methods used to
solve the SCFT equations, some insights were provided
into the self-assembly behavior of lamellar and cylindri-
cal diblock microphases on a sphere (along with a brief
discussion of ABC triblock copolymers). In a recent ar-
ticle, Roan [33] studied the related system of a grafted
homopolymer blend on the surface of a sphere by a sim-
ilar numerical SCFT formalism. The quenched surface
grafting constraints in the homopolymer blend model,
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however, make this system fundamentally different than
the block copolymer films studied here.

In this investigation, we apply numerical self-consistent
field theory (SCFT) to study the self-assembly behavior
of a thin diblock copolymer melt film confined to the
surface of a sphere. Self-consistent field theory uses a
saddle-point (mean-field) approximation to evaluate the
functional integrals that appear in a statistical field the-
ory models of inhomogeneous polymers (for a detailed
discussion, see [34–36]). Although SCFT is one of the
most well-established and successful tools for modeling
diblock copolymer melt films in flat space [37, 38], aside
from the Li et al. [32] study mentioned above, it has
not been routinely implemented in curved geometries.
The primary difficulty in extending the standard SCFT
framework to a spherical surface is in the numerical solu-
tion of the modified diffusion equation (discussed below).
While Li et al. [32] and Roan [33] applied finite volume
and finite difference methods, respectively, to the SCFT
equations in spherical coordinates, we have developed a
spectral collocation (pseudo-spectral) approach [39] that
offers higher numerical accuracy and efficiency. Specifi-
cally, we present a pseudo-spectral (PSS) algorithm with
a spherical harmonic basis for solving the modified dif-
fusion equation and associated SCFT equations on the
surface of a sphere. Efficient discrete spherical harmonic
transforms are enabled by the SPHEREPACK 3.1 rou-
tines developed by the atmospheric modeling community
[40]. Our PSS algorithm for spherical films is an exten-
sion of the PSS algorithm already in widespread use in
flat space SCFT studies [36, 41].

Beyond developing an improved numerical method for
solving the SCFT equations in spherical geometries, we
report in the present paper on detailed numerical sim-
ulations of both lamellar and hexagonal ordering of a
spherical thin film of diblock copolymer. We investigate
the energies of competing defect structures as a function
of sphere radius R and compare the simulated ground
state structures to those predicted by analytical studies
of smectics and simple hexagonal lattices. In order to
gain further insight into the SCFT simulation results, we
develop an approximate analytical free energy expression
for the BCP cylindrical (hexagonal) phase on a sphere.
This approximate solution, which is based on the strong
segregation limit (SSL) [42], shows striking qualitative
agreement with our SCFT simulations, and helps to pro-
vide physical insights into the observed microdomain or-
dering on a sphere. For the lamellar phase, we examine
parallels with the classic elastic theory of smectic and
nematic liquid crystals, coupled with microdomain pack-
ing arguments, in order to draw conclusions about the
observed defect structures in the SCFT simulations.

II. MODEL AND SCFT

Our implementation of SCFT on a sphere is built on a
standard field theory model for an incompressible AB di-

block copolymer melt [35, 43]. Here we provide a review
of the basic Gaussian polymer model with a Flory-type
monomer–monomer interaction. We also provide a short
synopsis of the mean-field approximation, SCFT, and re-
laxation methods to obtain numerical SCFT solutions.

A. Block Copolymer Model

We consider nd monodisperse AB diblock copolymers
in a volume V . The volume fraction of A segments along
the polymer is denoted f , and the index of polymeriza-
tion is denoted N . We assume that the statistical seg-
ment lengths and segment volumes of the two polymers
are equal, i.e. bA = bB = b and νA = νB = ν0. The un-
perturbed radius of gyration of a copolymer is given by
Rg0 = b

√

N/6. With the incompressible melt assump-
tion, the average segment density is uniform in space and
given by ρ0 = 1/ν0 = ndN/V . Each block copolymer is
modeled as a continuous Gaussian chain described by a
space curve rα(s), where α = 1, 2, ..., nd is the polymer
index, and s ∈ [0, 1] is a polymer contour length variable
(s = 0 at the beginning of the A block, and s = 1 at the
end of the B block). The canonical partition function is
given by a functional integral over all chain configura-
tions (we set kBT = 1):

Z =

∫

(

nd
∏

α=1

Drα

)

δ[ρ̂A + ρ̂B − ρ0] ×

exp(−U0 − UI), (4)

where U0 is the Gaussian chain stretching energy,

U0 =
1

4R2
g0

nd
∑

α=1

∫ 1

0

ds

∣

∣

∣

∣

drα(s)

ds

∣

∣

∣

∣

2

, (5)

and UI captures the Flory segment-segment interaction,

UI =
χ

ρ0

∫

V

dr ρ̂A(r)ρ̂B(r). (6)

Here χ = χAB is the A–B Flory interaction parameter.
The microscopic A and B segment densities are given by
the usual expressions:

ρ̂A(r) = N

nd
∑

α=1

∫ f

0

ds δ(r − rα(s)), (7)

ρ̂B(r) = N

nd
∑

α=1

∫ 1

f

ds δ(r − rα(s)). (8)

In the partition function Eq. (4), δ[ρ̂A+ρ̂B−ρ0] is a delta
functional that enforces the incompressibility constraint
of the melt, ρ̂A(r) + ρ̂B(r) = ρ0 at all points r.

At this point, the standard procedure is to decouple
the many-body interaction implicit in Eq. (6) and the
incompressibility constraint by transforming the system
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into a field theory via a Hubbard-Stratonovich transfor-
mation. The details of this transformation can be found
elsewhere (e.g., see [36]). After the transformation, the
partition function becomes

Z =

∫

DW+DW− exp (−H [W+,W−]) , (9)

where

H [W+,W−] =

C

∫

V

dx [−iW+(x) + (2f − 1)W−(x)+

W 2
−(x)/χN

]

−

CV logQ[iW+ −W−, iW+ +W−].

(10)

We have introduced the dimensionless spatial coordinate
x = r/Rg0 and the dimensionless chain concentration
C = ρ0R

3
g0/N . All lengths are expressed in units of Rg0.

The Hubbard-Stratonovich fields W+ and W− couple to
the pressure and the AB composition of the BCP melt,
respectively.

In Eq. (10), Q is the partition function for a single

AB diblock copolymer interacting with an external field.
We can see that the A segments interact with the field
WA = iW+ −W− and the B segments interact with the
field WB = iW+ +W−. Q is calculated using the forward

propagator, q(x, 1; [WA,WB]):

Q[WA,WB] =
1

V

∫

V

dx q(x, 1; [WA,WB]). (11)

The forward propagator q(x, 1; [WA,WB]) gives the prob-
ability density of finding a polymer whose free B block
end terminates at position x. The forward propagator
satisfies a modified diffusion equation:

∂

∂s
q(x, s) = ∇2q(x, s) − ψ(x, s)q(x, s), (12)

where

ψ(x, s) =

{

iW+(x) −W−(x), 0 < s < f
iW+(x) +W−(x), f < s < 1,

(13)

and q(x, s) is subject to the initial condition q(x, 0) = 1.
The local volume fractions of A and B segments can

be computed as follows:

φA(x; [WA,WB]) =
1

Q

∫ f

0

ds q(x, s)q†(x, 1 − s), (14)

φB(x; [WA,WB]) =
1

Q

∫ 1

f

ds q(x, s)q†(x, 1 − s). (15)

where q†(x, s) is the backwards propagator. The back-
wards propagator satisfies a modified diffusion equation
analogous to Eq. (12) (for details, see [43]).

Up to this point we have not made specific mention
of the shape of the domain containing the block copoly-
mer melt. In this study, we are interested in a copolymer
thin film confined to the surface of a sphere of radius R
(where, as mentioned above, all lengths are expressed in
units of Rg0). We assume that the system is uniform

but finite in the radial direction so that densities and po-
tential fields have no radial dependence. The film thick-
ness is denoted by h and we assume thin films satisfying
h≪ R. Imposing spherical coordinates with fixed radius
r = R:

x = (x, y, z) → u = (φ, θ). (16)

with

x = R cosφ sin θ,

y = R sinφ sin θ,

z = R cos θ, (17)

As is conventional, φ ∈ [0, 2π) denotes longitude, and
θ ∈ [0, π] denotes colatitude.

In these coordinates, integrals over the system space
V can be split into two factors: 1) a constant factor cor-
responding to the radial integral, and 2) an integral over
u. This gives an integration measure

dx = R2h du, (18)

where

du = sin θ dθdφ. (19)

Thus,

∫

S2

du =

∫ 2π

0

dφ

∫ π

0

sin θ dθ = 4π, (20)

and

V =

∫

V

dx = R2h

∫

S2

du = 4πR2h. (21)

Furthermore, the Laplacian is given by

∇2 =
1

R2
∇2

u
, (22)

where ∇2
u

is the 2D Laplacian on the surface of a unit
sphere

∇2
u

=
1

sin2 θ

∂2

∂φ2
+

cos θ

sin θ

∂

∂θ
+

∂2

∂θ2
. (23)

B. Self-Consistent Field Theory (SCFT)

Implementing the exact field theory model outlined in
Sec. II A is nontrivial due to the complex nature of the
functional integral exhibited in the partition function,
Eq. (9). In order to simplify our model we will use an
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analytic approximation technique called Self Consistent
Field Theory (SCFT), which ignores field fluctuations
and assumes that the functional integral is dominated by
a single field configuration. This method is exact when
the dimensionless chain concentration C approaches in-
finity, and in the case of high molecular weight block
copolymer melts, where C can very large, this method
has been found to be quite accurate [36, 43].

We now discuss the method of determining mean-field
configurations of W±. In Eq. (10), we see that there
is an overall multiplicative factor of C. Therefore, in
the C → ∞ limit, we can use the method of steepest
descent to validate examination of saddle point solutions
of Eqs. (9) and (10). The saddle point solutions represent
mean-field configurations of W± [36]. The saddle point
equations are given by the expressions:

δH [W+,W−]

δW±(u)

∣

∣

∣

∣

W̃±

= 0, (24)

where W̃± are defined as the saddle point configurations
of the fields W±.

Equation (24) represents four equations, one equation
each for the real and imaginary parts of the complex
fields W̃±; however, the saddle point configuration of
W+ is strictly imaginary and the saddle point configu-
ration of W− is strictly real [43]. Accordingly, we define

a real-valued pressure field Ξ = iW̃+ = −Im[W̃+] and

a real-valued exchange or composition field W = W̃− =

Re[W̃−]. We use Eq. (10) to evaluate Eq. (24). This gives
the following real saddle point equations, which consti-
tute the mean-field equations of SCFT:

δH [Ξ,W ]

δΞ(u)
= C[φA(u) + φB(u) − 1] = 0, (25)

and

δH [Ξ,W ]

δW (u)
= C [(2f − 1) + 2W (u)/χN−

φA(u) + φB(u)] = 0. (26)

Previous research has shown that a continuous steep-
est descent search is one of the simplest and most effi-
cient ways to solve the SCFT equations [36]. We intro-
duce a fictitious time variable t, and at each time step
we advance the field values in the direction of the field-
gradient of the Hamiltonian. The saddle point search is
a “steepest ascent” in Ξ because the saddle point value
W̃+ = −iΞ is strictly imaginary. The saddle point search
is formally given by

∂

∂t
Ξ(u, t) =

δH [Ξ,W ]

δΞ(u, t)
, (27)

∂

∂t
W (u, t) = −

δH [Ξ,W ]

δW (u, t)
. (28)

Clearly, Eqs. (25) and (26) are satisfied when Eqs. (27)
and (28) are stationary.

This completes the standard framework for SCFT. We
relax towards mean-field configurations of W± by iterat-
ing the following scheme:

1. Initialize the potential fields Ξ(u, 0) and W (u, 0).

2. Solve the modified diffusion equations for q(x, s)
and q†(x, s).

3. Calculate Q, φA, and φB using Eqs. (11), (14) and
(15).

4. Update Ξ(u, t) andW (u, t) by integrating Eqs. (27)
and (28) forward over a time interval ∆t.

5. Repeat steps 2–5 until a convergence criterion has
been met.

C. Modified Diffusion Equation

In the SCFT scheme outlined above, the most costly
step is solving the modified diffusion equations—step 2.
In flat Euclidian space, specifically a parallelepiped com-
putational cell with periodic boundary conditions, an at-
tractive way to solve the modified diffusion equations is
the pseudo-spectral operator splitting method of Ras-
mussen and Kalosakas [36, 41]. This is an uncondition-
ally stable, fast, O(∆s2) accurate algorithm for solving
the modified diffusion equations. In Eq. (12) we identify
the linear operator L = ∇2 − ψ(x, s). Formally, one can
calculate q(x, s) at a set of discrete contour points s by
propagating forward along the polymer chain according
to

q(x, s+ ∆s) = e∆sLq(x, s), (29)

starting from the initial condition q(x, 0) = 1.
The Rasmussen-Kalosakas algorithm is based on the

Baker-Campbell-Hausdorff identity [44] which affects an
O(∆s2) splitting of e∆sL:

e∆sL = e−∆sψ(x,s)/2e∆s∇
2

e−∆sψ(x,s)/2 + O(∆s3). (30)

In a parallelepiped geometry with periodic boundary con-
ditions, the potential field ψ(x, s) is diagonal on a uni-
form collocation grid in real space and the Laplacian op-
erator is diagonal in Fourier space (plane wave basis).
Accordingly, the operator e−∆sψ(x,s)/2 is applied as a

multiplication in real space, and e∆s∇
2

is applied by a
multiplication in Fourier space. By this spectral collo-
cation approach [39], we can take advantage of efficient
transformations between real and Fourier space enabled
by the fast Fourier transform (FFT) [45].

For boundary conditions other than periodic and com-
putational domains of arbitrary geometry, it may not
be possible to efficiently apply the Rasmussen-Kalosakas
PSS algorithm. Fortunately, in the case of the spher-
ical geometry of fixed radius R studied here, the ba-
sis of spherical harmonics also yields a diagonal Lapla-
cian operator. For a 2D function defined on the sphere
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f(u) = f(φ, θ), the spherical harmonic expansion is de-
fined by

f(u) =
∞
∑

l=0

l
∑

m=−l

f̂ml Y
m
l (u), (31)

where Y ml (u) denotes the spherical harmonics,

Y ml (u) =

√

2l+ 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ, (32)

and f̂ml are the components of f(u) in “spherical-
harmonic space” (henceforth called lm-space). In
Eq. (32), Pml (cos θ) are the associated Legendre functions

(c.f., [46]). We calculate f̂ml by multiplying Eq. (31) by
the complex conjugate of Y ml (u), denoted Ȳ ml (u), and
integrating over all φ and θ. This gives

f̂ml =

∫

S2

du f(u)Ȳ ml (u), (33)

where we have used the orthogonality relationship for
spherical harmonics,

∫

S2

du Y ml (u)Ȳ m
′

l′ (u) = δll′δmm′ . (34)

Here δij is the Kronecker delta (c.f., [46]).
We can calculate the Laplacian of f(u) via application

of the operator termwise in the expansion of Eq. (31).
This gives

∇2f(u) =
1

R2
∇2

u
f(u) =

∞
∑

l=0

l
∑

m=−l

−l(l+ 1)

R2
f̂ml Y

m
l (u).

(35)
In other words, the 2D Laplacian is diagonal in lm-space.
We can evaluate the 2D Laplacian of a function f(u) de-
fined on the surface of a sphere of radius R by first cal-

culating the coefficients of f in lm-space f̂ml then multi-

plying f̂ml by −l(l+ 1)/R2 for all l and m. The product

−l(l+1)f̂ml /R
2 corresponds to the components of 1

R2∇
2
u
f

in lm-space. We can recover 1
R2∇

2
u
f by evaluating the

sum in Eq. (35). Consequently, the Rasmussen-Kalosakas
operator splitting algorithm outlined above can also be
applied to solve diffusion equations on a sphere, the only
difference being that we need an efficient method of trans-
forming between grid points on the sphere (i.e., u-space)
and lm-space, as opposed to conventional FFT transfor-
mations between real and Fourier space. Fortunately,
a software package, SPHEREPACK 3.1, is available for
performing fast efficient transformations between the val-
ues of a function f(u) sampled on a grid on the unit

sphere and its spherical harmonic coefficients f̂ml . The
application of this software, along with the relevant nu-
merical methods, including our choice of discretization in
u, s, and t, is described in Appendix B.

D. Euler and SIS

A simple algorithm for solving the relaxation equations
in Eqs. (27) and (28) is an explicit forward Euler update
at the intermediate step (denoted ∗),

Ξ∗ = Ξn + ∆t
δH [Ξn,Wn]

δΞn
, (36)

W ∗ = Wn − ∆t
δH [Ξn,Wn]

δWn
, (37)

followed by a uniform field shift,

Ξn+1 = Ξ∗ −
1

4π

∫

S2

du Ξ∗, (38)

Wn+1 = W ∗ −
1

4π

∫

S2

du W ∗, (39)

where the superscript n denotes discrete steps in the fic-
titious time variable t (we have dropped explicit depen-
dence on u or, equivalently, i for simplicity). More in-
formation on how we discretize t and u can be found
in Appendix B. We were able to successfully imple-
ment this scheme, but the poor stability of the algo-
rithm considerably restricted the size of the time step
∆t and hence its efficiency. Indeed, the forward Euler
algorithm’s slow convergence was problematic for some
of our high-resolution simulations.

To alleviate some of the problems associated with the
forward Euler method, we adapted a more stable algo-
rithm for our spherical system, which was proposed by
Ceniceros and Fredrickson [47] to solve the SCFT equa-
tions in flat Euclidian space. The scheme uses a random
phase approximation (RPA) to expand the density opera-
tors to first order in Ξ and W . These two linear function-
als of Ξ or W , are then added (at the future time step)
and subtracted (at the present time step) to the right
hand side of Eqs. (36) and (37) (see [36, 47] for a more
in-depth discussion). This semi-implicit-Seidel (SIS) al-
gorithm, which has been successfully implemented in flat
space through the use of FFTs, is known to converge to
a SCFT solution of prescribed accuracy one or two or-
ders of magnitude faster in the number of fictitious time
steps nt than the forward Euler method. This is par-
tially due to the enhanced stability of the SIS algorithm
which allows a much larger time step ∆t to be used. To
implement this scheme in our spherical geometry, some
changes to the SIS equations for the block copolymer sys-
tem presented in [47] must be made, but since the basic
methods used in the spherical derivation are similar to
the flat space derivation in [47], only the final equations
will be presented. For the block copolymer system of
interest, the SIS update for the pressure field Ξ at the
intermediate step is:

Ξ∗ − Ξn

∆t
= −(gAA + 2gAB + gBB) ∗ Ξ∗

+
δH [Ξn,Wn]

δΞn
+ (gAA + 2gAB + gBB) ∗ Ξn, (40)
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and the update for the exchange field W at the interme-
diate step is:

W ∗ −Wn

∆t
= −

2

χN
W ∗

−
δH [Ξ∗,Wn]

δWn
+

2

χN
Wn, (41)

The Debye scattering functions for the diblock system
are expressed in lm-space (ĝAA, ĝAB, ĝBB) according to:

ĝAA(k2) =
2

k4
[fk2 + e−k

2f − 1], (42a)

ĝAB(k2) =
1

k4
[1 − e−k

2f ][1 − e−k
2(1−f)], (42b)

ĝBB(k2) =
2

k4
[(1 − f)k2 + e−k

2(1−f) − 1], (42c)

where k is a “spherical wavevector” defined according to

k2 =
l(l + 1)

R2
. (43)

The convolutions appearing in Eq. (40) are evaluated in
lm-space according to

g ∗ µ =

∞
∑

l=0

l
∑

m=−l

ĝ(k2)µ̂ml Y
m
l (u). (44)

After implementing Eqs. (40) and (41), the fields are then
uniformly shifted to obtain their value at the next time
step using Eqs. (38) and (39). The Debye scattering func-
tions defined above in lm-space are identical to those de-
rived in Fourier space for the diblock copolymer [47], but
where the Fourier wavevector is replaced by the spherical
wavevector defined in Eq. (43).

III. RESULTS AND DISCUSSION

As mentioned in Sec. I, particle-based models have
been the prevailing way to study the ordering of particles
and the formation of defects on the surface of a sphere,
but in these types of studies the number of particles on
the sphere are fixed. Since block copolymers are self-
assembling materials that do not require a fixed number
of microdomains to be present on the sphere surface, it is
possible that certain lattice configurations are so energet-
ically unfavorable that they are completely avoided for all
values of the sphere radius R. In reference to the block
copolymer cylindrical phase, “lattice” refers to the char-
acteristic array formed by the centers of mass of the cylin-
drical microdomains. With a well defined lattice, we can
use the above definitions of “coordination” and “discli-
nation.” Hoping to shed light on this question, we use
SCFT simulations to determine the mean-field free en-
ergy density for different distributions of microdomains.
Specifically, we monitor an energy density E defined by

E ≡
H [Ξ,W ]

4πR2hC
(45)

In Sec. III A we discuss the results of the SCFT simu-
lations of the BCP cylindrical phase on a sphere, specifi-
cally the observed microdomain defect structures, pack-
ing arrangements, and associated energetics. In Sec. III B
we examine a strong segregation limit (SSL) approximate
free energy for the BCP cylindrical phase on a sphere.
This free energy, in addition to exhibiting strong qual-
itative agreement with the SCFT simulations, provides
insight into the driving forces behind the observed cylin-
drical microdomain structures on the sphere.

In Sec. III C we discuss grain boundary scars, and we
summarize our SCFT simulations of the BCP cylindrical
phase for large sphere radii.

SCFT simulation results for the lamellar phase are pre-
sented in Sec. III D. In order to better understand this
system, we examine parallels with liquid crystal theory,
and we discuss commensurability effects in relation to
lamellar packing on the sphere (presented in Sec. III E).

A. SCFT Cylindrical Phase Results

We used SCFT to determine the number of cylindrical
phase microdomains that yields the lowest free energy
density for a sphere radius of 3 to 4, with χN = 25 and
f = 0.8. Initially, several runs were performed starting
from random initial conditions, but this approach did not
consistently generate the lowest-energy configuration for
a given value of R. This is because the SIS algorithm
is also capable of relaxing to metastable states [36]. In
order to obtain insights into the globally stable solution
at each sphere radius, we instead seeded our simulations
with density profiles that consist of 10 to 17 cylindri-
cal microdomains for the radii of interest. We believe
that these profiles, which were generated from our SCFT
simulations starting from random initial conditions and
that display the allocation of disclinations observed in the
classical Thomson problem [1] for particle-based models,
correspond to global minima. In Fig. 1 we present a rep-
resentative composition profile for the block copolymer
cylindrical phase on a sphere—specifically, the case of 12
microdomains covering a sphere. We present more infor-
mation about the distribution of microdomains that were
selected as initial conditions in our SCFT simulations in
Appendix C.

Using our SCFT model, we determined the number of
domains that correspond to the lowest free energy den-
sity for a sphere radius between 3 to 4. In Fig. 2 we plot
E vs. R for 10 to 17 domains, where the energy den-
sity E is approximately equal to the free energy density
in the mean-field approximation [36]. From this graph
we were able to determine the number of microdomains
that correspond to the ground-state configuration for our
range of radii. In Fig. 3 we show that as the radius of
the sphere is increased, the number of microdomains cor-
responding to the lowest-energy configuration increases.
Of particular interest is the lack of lowest-energy stability
regions corresponding to 11 and 13 microdomains. We
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FIG. 1: (Color Online). Representative composition profile
(bright colors correspond to large A-segment fractions) for
the 12 microdomain, ground-state cylindrical phase on the
sphere. The key indicates how the coloring corresponds to
A-segment fractions. The twelve 5-fold coordinated cylinders
are located at the vertices of a regular icosahedron. While
the other cylinder phase configurations have a very similar
appearance, they have different numbers of microdomains and
a different unit cell structure.
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FIG. 2: Graph of E vs. R for 10 to 17 microdomains on
a sphere. Each data point is the result of a single SCFT
simulation seeded with an initial condition with the target
number of microdomains. There are regions where 10, 12, 14,
15, and 16 domains are the lowest-energy configuration, while
11 and 13 microdomains are nowhere lowest in energy.

also note that the 12 microdomain configuration, illus-
trated in Fig. 1, has the lowest energy (is stable) for the
largest range of R, while the stability regions correspond-
ing to 10, 14, 15, and 16 microdomains are significantly
narrower.

Figure 3 also contains an “area estimate” prediction for
the number of microdomains covering a sphere. Here, the
approximate area for a hexagonal Wigner-Seitz cell (see
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FIG. 3: Graph of number of microdomains vs. R for the
ground-state (i.e., lowest-energy) configurations. The solid
line represents the results obtained through an “area esti-
mate,” while the data points represent data that was acquired
from our SCFT simulations. The SCFT simulations indicate
that the ground-state configuration contains 10 domains from
R = 3 − 3.16, 12 domains from R = 3.17 − 3.73, 14 domains
from R = 3.74 − 3.81, 15 domains from R = 3.82 − 3.84, and
16 domains from R = 3.85 − 4.

[21] for a definition of Wigner-Seitz cells) was obtained
from a fully relaxed, flat-space unit cell simulation with
the same parameters as our block copolymer system. It
was determined through this approach, which does not
capture the effect of curvature, that a microdomain 6-fold
coordinated unit cell occupies an area of approximately
10.6 in flat 2D space. One can divide this approximate
Wigner-Seitz cell area into the total surface area 4πR2

of the sphere to obtain an approximation for the num-
ber of expected block copolymer microdomains that will
cover a sphere of a given radius. There is a striking dis-
agreement between this approximation for the number
of microdomains and the observed lowest-energy config-
urations from the SCFT simulations. The area estimate
calculations do not capture the effects of topological con-
straints, nor the competition between interfacial energy
and chain stretching on a curved surface, so we view this
deficiency as the primarily reason for the disagreement
with SCFT.

The cylindrical phase was further studied for larger
sphere radii, where we observed structures called grain
boundary scars. These results will be presented in
Sec. III C.

B. Cylindrical Phase and the Strong Segregation
Limit Approximation

To better understand the behavior observed in
the SCFT simulations of cylinder-forming AB diblock
copolymers on a sphere, specifically the lack of stable
configurations exhibiting 11 or 13 microdomains, we ex-
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FIG. 4: Graph of ESSL = F/4πR2 vs. R [given by Eq. (C13)]
for 10 to 16 microdomains on a sphere. The unit cell config-
uration used to construct each curve was selected from the
observed Wigner-Seitz cell configurations in the SCFT simu-
lations, summarized in Table III. Note the striking qualitative
agreement with Fig. 2.

amine a strong segregation limit (SSL) approximation for
the free energy F of a thin-film AB diblock copolymer
system on a sphere.

This calculation is divided into two distinct parts. The
first part involves determining the relevant Wigner-Seitz
cell configuration for block copolymer microdomains cov-
ering a sphere. The second part involves identifying the
SSL free energy of each unit cell and summing the SSL
free energy over all unit cells on the sphere. We discuss
the derivation of the SSL approximation as it applies to
the spherical system of interest in Appendix C.

In Sec. III B 1 we present the results of the SSL ap-
proximation.

1. SSL Cylindrical Phase Results

In Fig. 4 we plot ESSL = F/4πR2 vs. R for 10 to 16
microdomains on a sphere, were F is the total SSL ap-
proximate free energy, Eq. (C13), defined in Appendix C.
This figure was constructed using the unit cell configu-
rations from Table III. It is notable that this graph is
qualitatively very similar to the E vs. R graph for our
SCFT simulations, Fig. 2. Specifically, there is a small
region where 10 microdomains is the lowest-energy con-
figuration, there is a large region where 12 microdomains
is the lowest-energy configuration, the 13 microdomain
configuration is nowhere lowest in energy, there is a large
region where 14 microdomains is the lowest-energy con-
figuration, and the 15 microdomain configuration only
has a small region of stability. For 13 microdomains,
the chain stretching penalty is apparently too great, and
both the 12 and 14 microdomain arrangements are lower
in energy than the 13 microdomain arrangement over all
radii of interest.

In spite of the excellent qualitative agreement, there
are a few noticeable differences between Fig. 2 and Fig. 4.
First, the scale for R in Fig. 4 is shifted by approxi-
mately a factor of 1.5 when compared to Fig. 2. Consid-
ering that our system is not strictly in the SSL limit and
the spherical SSL free energy involves numerous approx-
imations (specifically, the circular unit cell approxima-
tion, the neglect of curvature effects, and the equiareal
triangulation—see Appendix C for the descriptions of
these approximations), this discrepancy in the scale of
R is to be expected. Also, the SSL calculation predicts a
small window in R where the 11 microdomain configura-
tion is lowest in energy (specifically, from approximately
R = 4.90− 4.94). The SCFT results do not show the ex-
istence of such a region. Again, we believe this disagree-
ment is a consequence of the approximations inherent in
the SSL model.

Overall, the simple SSL model provides an illuminat-
ing picture for how BCP microdomains cover a sphere.
Of utmost importance is the effect that topological con-
straints have on the interfacial and stretching energy of
the BCP melt. High-symmetry solutions (e.g., 12 and 14
microdomains) have low-energy unit cell configurations,
and low-symmetry solutions (e.g., 11, 13, and 15 mi-
crodomains) are characterized by high-energy unit cells.

C. Grain Boundary Scars in the Cylindrical Phase

As the size of the sphere, and thus the number of
microdomains, is increased, isolated 5-fold disclinations
become more energetically costly due to the amount of
strain they produce. In order to reduce this elastic strain
energy, the system introduces dislocations (pairs of 5-
and 7-fold disclinations). Although some of these disloca-
tions are isolated, a majority of them produce high-angle
(30◦) curved chains of dislocations called grain boundary
scars [6]. These grain boundaries, which have been ob-
served to freely terminate within the lattice, are known
to consist of a chain of three to five dislocations, as well
as one extra 5-fold disclination; thus, in order to sat-
isfy the required net disclination charge of twelve (c.f.,
Eq. (2)), there should be a total of twelve grain bound-
aries on a sphere [6]. These scars, which have been stud-
ied both experimentally, on spherical crystals (formed by
self-assembled beads on water droplets in oil [6]), and the-
oretically, through the Thomson problem [13–15], have
been observed to appear when the ratio of the sphere ra-
dius R to the mean particle spacing d is approximately
greater than or equal to five, or when the number of par-
ticles exceeds approximately 360 [7].

To determine if our simulations are capable of exhibit-
ing grain boundary scars, a sphere of radius R = 20.0,
with f = 0.8 and χN = 25.0, was simulated starting
from random initial conditions. The final configuration
consisted of 446 microdomains (69 5-fold, 350 6-fold, and
57 7-fold coordinated sites), and, thus, it should exhibit
some scaring. To easily visualize these grain boundary
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FIG. 5: (Color Online). A Voronoi diagram for the cylindrical
phase on a sphere of radius R = 20.0, with f = 0.8 and
χN = 25.0. The sphere consists of 446 microdomains (69 5-
fold, 350 6-fold, and 57 7-fold coordinated sites) and exhibits
grain boundary scars.

scars, a Voronoi diagram was also produced, and is shown
in Fig. 5. Although the sphere does exhibit some scar-
ing, the scars are not arranged symmetrically around the
sphere—which is known to be the lowest-energy config-
uration [6]. This is not surprising since large-cell SCFT
simulations started from random initial conditions are
well known to produce defective metastable states [36].
The number of metastable states increases rapidly with
the total number of domains [12], so SCFT trajectories
for large spheres initiated from random initial conditions
invariably fail to generate the lowest energy configura-
tion. In the future, we plan to report on the applica-
tion of annealing techniques to achieve ground state scar
structures.

D. SCFT Lamellar Phase Results

To study the lamellar block copolymer phase on the
surface of the sphere, we used SCFT to determine the
morphology that yielded the lowest free energy density
for a sphere radius of R = 3.1 − 4.9 and R = 10 − 11.8,
with χN = 12.5 and f = 0.5. The lamellar block copoly-
mer phase is analogous to the smectic-A phase of liquid
crystals [19, 48]. Accordingly, we observe defect struc-
tures familiar from liquid crystal theory, and we are com-
pelled to make comparisons of our results with liquid
crystal systems.

Although the nematic liquid crystal phase constrained
to the surface of a sphere has been explored (e.g, see

[24, 25]), studies of smectic ordering in this geometry
have been quite limited [22]. The defect configuration
with two +1 defects, one on each pole, has been ob-
served (or discussed) in both nematics and smectic-A
liquid crystal systems (hedgehog). However, the configu-
ration with four + 1

2 defects differs between the two sys-

tems. For a nematic, the + 1
2 defects are located on the

vertices of a tetrahedron (baseball) [24, 25], while for a
smectic-A they all lie on a great circle, each separated
by 90◦ (quasi-baseball) [22]. This is due to the different
elastic properties of the two systems. A discussion of +1
and + 1

2 defect structures in liquid crystals can be found
in de Gennes and Prost [19].

In Fig. 6 we summarize the defect structures that
were observed in our SCFT simulations of lamellar block
copolymers on a sphere. We observed both the hedgehog
and quasi-baseball defect structures as described above.
However, we also observed a variant of the quasi-baseball
where the four + 1

2 defects are located on a great circle,
but are not separated by 90◦ (spiral). This defect state
resembles a double spiral. All three of these configura-
tions were also recently identified by Li et al. [32].

The presence of these three defect configurations in
our SCFT simulations is not surprising. In fact, related
states can be systematically constructed from the sim-
ple hedgehog state. If we cut the hedgehog sphere per-
fectly along a great circle that intersects the two +1 de-
fects, and then rotate one of the hemispheres by an in-
teger number of lamellar spacings, we can construct a
wide range of quasi-baseball and spiral defect structures.
Clearly, transitions between the various lamellar defect
configurations will not proceed by such a transformation,
but this cut-and-rotate exercise is useful for visualizing
the defect structures.

In our SCFT simulations, we observed an R-dependent
transition in lowest-energy configuration from a smectic-
A texture with two singular +1 defects (hedgehog) to
a configuration with four + 1

2 defects (spiral) and vice
versa. To facilitate a quantitative study of the energetics
of competing structures, three configurations were seeded
into our simulations, the quasi-baseball, hedgehog, and
spiral structure, in the same manner as was done for the
cylindrical phase. Although the spiral and quasi-baseball
structure both have four + 1

2 defects, they differ in the
number of continuous lamellae stripes they contain on
their surface, and in the positioning of those stripes. The
spiral structure contains one continuous lamellar stripe,
while the quasi-baseball structure contains two or more
stripes. Furthermore, on the quasi-baseball, the defects
are equally spaced at 90◦ intervals on a great circle, while
on the spiral, the four defects are not necessarily evenly
spaced.

In Figs. 7 and 8, we show the free energy density versus
sphere radius determined from SCFT simulations of the
competing hedgehog, quasi-baseball, and spiral phases.
These studies, which were conducted with parameters
χN = 12.5 and f = 0.5, identify the ground state con-
figuration for two intervals of sphere radii: R = 3.1− 4.9



11

FIG. 6: (Color Online). Three lamellar configurations (den-
sity composition profiles where bright colors correspond to
large A-segment fractions) that were obtained and studied
through our SCFT simulations. Again, the key indicates how
the coloring corresponds to A-segment densities. (a), (d), and
(g) are flat 2D projections of the spiral, hedgehog, and quasi-
baseball phases, respectively. (b), (e), and (h) are the spiral,
hedgehog, and quasi-baseball phases, respectively, projected
on the surface of a sphere. (c), (f), and (i) are slices of the
2D spherical projections, which show that the defects of these
lamellae phases all lie on a great circle.

and R = 10 − 11.8. For the interval R = 3.1 − 4.9, the
hedgehog is consistently the lowest-energy configuration,
except at R = 3.88. For the interval R = 10 − 11.8, we
observe an alternation in stability between the hedgehog
and the spiral defect structures.

E. Analogy with Smectic-A Liquid Crystals

1. Applicability of Smectic-A Models

As discussed in de Gennes and Prost [19], the elastic
energy density (per unit area) of the smectic-A phase can
be approximated in flat space as:

fsmA =
1

2
B̄ǫ2 +

1

2
K1σ

2, (46)

where B̄ and K1 are the dilation (compression) modulus
and mean curvature (bending) modulus, respectively, ǫ
is a strain of dilation (compression), and σ is a bending
strain. The ratio of the two moduli is often expressed as
λ2 = K1/B̄, where λ is a length scale that is comparable
to the layer thickness when the system is far from a phase

transition. For block copolymers, λ ≈ 0.1d, where d is
the lamellar repeat spacing [48, 49].

For a confined smectic-A system, we expect a com-
petition between the bending and compression degrees
of freedom that is dependent on the confinement scale.
Indeed, commensurability is less of a factor for large con-
finements. The characteristic confinement length of a
smectic-A system L sets the order of magnitude of the
lamellar bending [22]. For a large confinement λ ≪ L,
and compression effects are negligible: ǫ ≪ λ/R and
B̄ǫ2 ≪ K1σ

2 [22].
For the spherical system of interest here, the natural

confinement length is set by the sphere radius R. There-
fore, we expect layer compression, and consequently
lamellar commensurability, to play less of a role in se-
lecting lowest-energy configurations for large sphere radii.
Furthermore, it is reasonable to assume that commensu-
rability effects play a more important role in selecting
lowest-energy configurations for small sphere radii.

It is interesting to note that for R = 3.1 − 4.9 the
sphere radius is comparable to the lamellar spacing, d.
Elastic liquid crystal theories have a short-length-scale
cutoff, below which elastic theory does not apply. This
cutoff often corresponds to the liquid crystal defect core
radius, which, for a smectic-A liquid crystal, is of order
the layer repeat spacing. Therefore, our spherical BCP
lamellar system lies outside the applicable range of classic
liquid crystal theory for small sphere radii.

For the interval R = 10 − 11.8, the sphere radius is
still relatively small, but likely inside the applicable range
of elastic liquid crystal theory. Therefore, according to
the above argument, we expect the dilation-compression
mode to play an important role in determining the lowest-
energy state. With this in mind, the observed alternation
between hedgehog and spiral defects in Fig. 8 is not sur-
prising.

For even larger sphere radii, perhaps of order R = 100,
we expect dilation-compression effects to have less of a
direct effect and the alternation between ground states
to be less pronounced (and perhaps non-existent).

2. Quasi-Baseball/Spiral Defect Configurations
as a Helfrich-Hurault Transition

In order to understand the mechanism driving
the hedgehog–quasi-baseball/spiral transitions for large
sphere radii, we can examine Eq. (46) and an approxi-
mate analytic result. Comparing the two defect struc-
tures, we can see that the hedgehog morphology exhibits
minimal dilation (here we use the term “dilation” to refer
to dilation or compression, as they represent the same de-
gree of freedom) when the sphere circumference is an in-
teger multiple of the lamellar spacing, while dilation can
be large for intermediate values of sphere circumference
(i.e., not corresponding to an integer number of lamellar
spacings). To compensate for the high dilation at inter-
mediate values of sphere radius, the quasi-baseball/spiral
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FIG. 7: E vs. R for the lamellar phase on a sphere from SCFT
simulations for f = 0.5 and χN = 12.5. For the radius range
of R = 3.1 − 4.9, the hedgehog structure was the observed
lowest-energy configuration except at R = 3.88.
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simulations for f = 0.5 and χN = 12.5. For the interval R =
10−11.8 the hedgehog (R = 10−10.54 and R = 11.08−11.77)
and spiral (R = 10.6 − 11.05 and R = 11.8) configurations
alternate as the ground state.

arrangement produces areas of curvature (bend) that, in
turn, relieve dilation, and thus lower the overall free en-
ergy.

To determine the approximate radii Rhn where the
hedgehog structure is lowest in energy, we assume that
the circumference of the sphere is equal to an integer
number of lamellar periods nd:

Rhn =
nd

2π
. (47)

When the radius of the sphere is increased or decreased
from these optimum values for the hedgehog morphology,
there is a large elastic energy contribution from lamellar
compression or dilation, and a Helfrich-Hurault transi-
tion occurs, where the lamellar layers exhibit undulations

TABLE I: Values of Rhn and Rsn obtained from Eqs. (47)
and (48), respectively. Only values of R in the interval of our
SCFT simulations (R = 3.1 − 4.9 and R = 10 − 11.8) are
reported. Table II provides similar data collected from the
SCFT simulations.

n Rhn Rsn

6 3.32 3.60
7 3.87 4.15
8 4.43 4.71
18 - 10.25
19 10.52 10.80
20 11.07 11.35
21 11.63 -

TABLE II: Values of Rh and Rs obtained from the approx-
imate minima of the hedgehog and spiral E vs. R curves,
respectively, in Figs. 7 and 8.

Rh Rs

3.62 -
4.20 -
4.78 -
10.30 -

- 10.90
11.40 -

to fill the extra space produced by expanding the sys-
tem [19]. We believe that the spiral (and quasi-baseball)
structures are obtained through this type of transition,
where layer bending substitutes for layer compression or
dilation. The radius Rsn where the spiral (or perhaps
the quasi-baseball) morphology is lowest in energy can
be roughly approximated by:

Rsn =

(

n+ 1
2

)

d

2π
, (48)

where the extra term of + 1
2 represents the intermediate

sphere radii where the circumference is not a full inte-
ger multiple of the lamellar repeat spacing. From this
simple calculation, we expect that there will be alternat-
ing regions where one defect morphology will be lower in
energy than the others.

To calculate the natural lamellae repeat spacing d, a
fully relaxed unit cell calculation in flat space was per-
formed using the same system parameters (i.e., f = 0.5
and χN = 12.5). From this simulation we found that
d ≈ 3.48. Using Eqs. (47) and (48), we can calculate the
approximate radii where the hedgehog structure and spi-
ral (or quasi-baseball) structure are predicted to be low-
est in energy. These results are summarized in Table I.
Note that the results in Table I approximately agree (at
least qualitatively) with the behavior observed in our
SCFT simulations for large R, summarized in Fig. 8 and
Table II.

At small sphere radii, the above commensurability cal-
culation fails to provide a qualitative explanation for the
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SCFT results, although it does roughly correlate with the
near-stability of the spiral phase at R ≈ 3.3, 3.9, and 4.4.
At larger radii, 10 < R < 12, the commensurability argu-
ment becomes semi-quantitative and alternating regions
of spiral and hedgehog stability are observed. For even
larger spheres, we expect that the energetics of dilation-
compression of the layers will be less important and that
the ground state morphology will be dictated to a larger
extent by layer bending forces.

3. Quasi-Baseball and Spiral Defect Configurations

As mentioned above, the topological defect structure
of the quasi-baseball and the spiral configurations are
very similar. The primary difference is the observed lo-
cation of the + 1

2 defects. For large R, we argued that the
spiral configuration relieves elastic compression-dilation
frustration by introducing layer bending. However,
the quasi-baseball structure is an alternate structure
that substitutes lamellae bending for layer compression-
dilation. One possible explanation for the observed sta-
bility of spiral relative to baseball structures in our SCFT
simulations is that for a given sphere radius, there are
only two possible quasi-baseball structures, whereas the
spiral has many different manifestations. For example,
the + 1

2 defects on the spiral can be separated by 1 or
more lamellae stripes and the spiral can have varying
degrees of “twist.” Accordingly, it is reasonable to ex-
pect that the more “compliant” spiral structure will have
a lower energy than the quasi-baseball structure over a
broader range of sphere radii.

F. The Role of Fluctuations

By using the mean-field (SCFT) approximation to
simplify our field-theoretic model, we ignore field fluc-
tuations that are otherwise present in the model and
can play a role in experimental systems. In flat-space,
two-dimensional systems and bulk block copolymers in
three-dimensions, field fluctuations can have the effect
of shifting phase boundaries and stabilizing the disor-
dered phase relative to the ordered microphases [36].
In the context of the present work, fluctuations could
be especially important in determining the relative sta-
bility of phases on the sphere when the mean-field free
energy densities of competing phases are close in magni-
tude (see Figs. 2, 7, and 8). We expect that lower sym-
metry phases, e.g. spirals and baseballs, which possess
easily excitable undulation modes on the sphere, will be
fluctuation-stabilized relative to higher symmetry phases
in such circumstances. In any event, the importance of
fluctuations can be controlled by the Ginzburg parame-
ter C and strictly eliminated in the limit C → ∞ where
mean-field theory becomes exact. Experimentally this
can be approached by working with copolymer melts of
very high molecular weight. Fluctuation effects could

also be theoretically explored in the present model by
conducting stochastic complex Langevin simulations [36],
although such simulations would be considerably more
expensive than the SCFT calculations reported here.

IV. CONCLUSIONS

We presented a new spectral collocation scheme for
developing numerical SCFT solutions of inhomogeneous
polymers confined to the surface of a sphere. We believe
that our numerical methods are the most accurate and
efficient available for the spherical geometry and repre-
sent a significant advance over previous finite difference
and finite volume approaches. In application to a stan-
dard model of AB diblock copolymer melts confined to a
thin film on a sphere, we used numerical SCFT to study
defect structures that arise due to a spherical geometry.
Specifically, we determined ground-state configurations
for both the lamellar (χN = 12.5, f = 0.5) and cylindri-
cal (χN = 25, f = 0.8) phases.

For the cylindrical phase, we found that there was
a delicate competition between topological constraints
and chain stretching that selected the ground-state mi-
crodomain configuration observed on the sphere. In the
SCFT simulations, configurations with 11 and 13 cylin-
drical microdomains were never observed to be lowest in
energy. We believe that the topological constraints for
such configurations resulted in unit cell structures that
contained excessive amounts of chain stretching, and thus
a high free energy relative to other microdomain config-
urations.

Although our model was also capable of producing
grain boundary scars for large sphere simulations of the
cylindrical phase, additional work will be required to in-
vestigate the ground-state configuration. Because of the
large sphere size required to obtain scar structures and
the high spatial resolution required for accurate free en-
ergy evaluation, it is computationally difficult to apply
SCFT in this context.

For the lamellar phase, we found that for small sphere
radii, the hedgehog defect configuration was almost al-
ways lowest in energy. For larger sphere radii there was
competition between the hedgehog and spiral defect con-
figurations. Quasi-baseball configurations, with defect
structures closely related to the spiral, were found to be
metastable, but close in energy to the spiral, especially in
regions of sphere radius where the hedgehog was strongly
disfavored.

To qualitatively explain the SCFT results, analytic
approximations using microdomain packing arguments,
elastic liquid crystal models, and the BCP strong seg-
regation limit were also presented. While not as robust
as SCFT, these calculations provided useful insights into
the driving forces behind the observed BCP microdomain
and defect structures on the surface of a sphere.

In this study, we considered a diblock copolymer thin
film on the surface of a sphere, where the system is uni-
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form but thin in the radial direction. These conditions
may be difficult to realize experimentally, such as in col-
loids and nanoparticles coated with a thin layer of block
copolymer. Specifically, it might prove difficult to neu-
tralize both inner and outer surfaces of the layer, so that
the block copolymer microphases “stand up” and are
compositionally homogeneous in the radial coordinate.
The thinness constraint is less problematic, because as
the radius of the sphere is increased into the colloidal do-
main, it becomes more experimentally viable to produce
thin films satisfying the inequality R ≫ h. For a more
detailed investigation of the ground state configuration
on small spheres, or under conditions where preferen-
tial wetting occurs on the inner or outer surfaces of the
copolymer film, it may be necessary to abandon our 2D
model and invest in a full 3D SCFT calculation. We plan
to conduct future studies along these lines that will en-
able the design of functional colloids and nanoparticles
with copolymers adsorbed, coated, or grafted on their
surfaces.
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APPENDIX A: DERIVATION OF EQ. (2) FROM

THE EULER-POINCARÉ FORMULA

Consider a compact manifold M without boundary
with Euler-Poincaré characteristic χE. Further consider
a covering of M by polygons. The Euler-Poincaré char-
acteristic of M is defined as

χE = F − E + V, (A1)

where F , E, and V are the number of faces, edges, and
vertices in the covering, respectively. If we restrict our
attention to coverings where exactly c edges intersect at

each vertex, then we find:

E =
c

2
V. (A2)

Therefore, Eq. (A1) becomes

χE = F +
2 − c

2
V. (A3)

Let Nz be the number of polygons in the covering with
exactly z sides. Then,

F =
∑

z

Nz, (A4)

and
∑

z

zNz = cV. (A5)

This last formula follows because each vertex is common
to exactly c polygons.

¿From Eqs. (A3), (A4), and (A5), it follows that

2c

2 − c
χE =

2c

2 − c
F+cV =

2c

2 − c

∑

z

Nz+
∑

z

zNz, (A6)

which can be simplified to obtain

∑

z

(

2c

c− 2
− z

)

Nz =
2c

c− 2
χE. (A7)

With the assumption that exactly three edges intersect
at each vertex, c = 3 and Eq. (A7) can be rewritten as:

1

6

∑

z

(6 − z)Nz = χE, (A8)

which is identical to Eq. (2).

APPENDIX B: SPHEREPACK 3.1 AND
NUMERICAL METHODS

Although there are several choices of basis functions
that can be used for spectral collocation solutions on the
sphere, spherical harmonics are the most “ideal” due to
their properties of completeness, orthogonality, exponen-
tial convergence (for functions that are infinitely differ-
entiable on the sphere), and equiareal resolution. The
spherical harmonic basis also circumvents the “pole prob-
lem,” which is often encountered in algorithms that uti-
lize a finite difference or finite element grid. Thus, with
spherical harmonics, features on the sphere are equally
resolved independent of the location of the poles. More
information about the spherical harmonics basis and the
pole problem can be found in [40, 50, 51].

As mentioned above, spherical harmonics are also de-
sirable because they are the eigenfunctions of the two-
dimensional Laplacian operator in spherical coordinates

∇2
u
Y ml (u) = −l(l+ 1)Y ml (u). (B1)
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This property, which closely mimics the Fourier basis in
flat Euclidian space with periodic boundary conditions,
makes it possible to efficently calculate the Laplacian in
the modified diffusion equations [e.g., Eq. (12)] through
the method explained in Sec. II C.

In order to simulate the block copolymer system of
interest it is necessary to discretize the variables φ and
θ. It proves convenient to utilize a 2D equally spaced
grid in colatitude and longitude to discretize our system.
Specifically, we define:

θi = πi
N−1 , i = 0, ..., N − 1

φj = 2πj
M , j = 0, ...,M − 1

(B2)

where N andM are the total number of grid points in the
θ and φ directions respectively. We will use the symbol i

to refer to the ordered pair (i, j). The chain contour vari-
able s and the fictitious time variable t are also sampled
on discrete intervals:

sµ = µ
ns

, µ = 0, ..., ns
tn = n∆t, n = 0, ..., nt

(B3)

where ns and nt are the number of contour steps on the
polymer backbone and the number of iterations that are
utilized to relax the SCFT equations, respectively. The
choice of SCFT time step ∆t depends on the method
used to integrate Eqs. (27) and (28).

In order to easily transform between real and lm-
space, we use a package of FORTRAN 77 subrou-
tines, SPHEREPACK 3.1, which were produced by John
Adams and Paul N. Swarztrauber of the National Center
for Atomospheric Research [40]. Since our SCFT equa-
tions only involve real-valued scalar functions, the real
representation of the transforms that this software library
utilizes is ideal because it requires only half the compu-
tation associated with the complex form represented in
Eq. (31) [52]. The subroutines use the following “triangu-
lar truncated” expression for the spherical harmonic ex-
pansion, which allows us to approximate a smooth func-
tion f(u) to arbitary precision for some integer value of
L [40]:

f(u) ≈

L
∑

l=0

l
∑

m=0

Pml (θ)(alm cos(mφ) +

blm sin(mφ)). (B4)

Since spherical harmonics are a Fourier series in lon-
gitude, the longitudinal grid points are most optimal
when they are evenly spaced, but this is not the case
in the colatitude direction since a simple FFT cannot be
used [50]. There are currently several methods that can
be applied to calculate these transforms using either an
equally spaced or Gaussian grid in colatitude [51], and
in order to account for this choice there are two ver-
sions of each SPHEREPACK 3.1 subroutine. The calcu-
lations reported in this paper were performed using the
version that applies an evenly spaced grid in both coor-
dinates, as described above. For the uniform colatitude

grid, SPHEREPACK 3.1 utilizes the method of Machen-
hauer and Daley [40], which is known to have the same
high level of accuracy as Gaussian quadrature. More de-
tails about the actual method can be found in Ref. [53].

The main computational difficulty associated with the
spherical harmonic basis is the lack of a fast Legendre
transform. Since the basis is a Fourier series in longitude,
FFT algorithms can be used to efficently calculate the
Fourier transforms in this one dimension. Significantly
more computational time is spent performing the Legen-
dre transform in colatitude. The overall operation count
for a transform or inverse transform utilizing a triangular
truncation with L2 spherical harmonics is O(L3 log2 L)
operations [50].

APPENDIX C: DERIVATION OF THE SSL FREE
ENERGY FOR THE CYLINDRICAL PHASE IN A

SPHERICAL THIN FILM

a. Approximate SSL Free Energy for the Cylindrical Phase

We begin with an approximate free energy of a Wigner-
Seitz cell valid in the strong segregation limit (i.e., χN ≫
10) [54, 55]:

Fc = Fcore + Fcorona + Finterface. (C1)

where Fcore is the chain-stretching free energy of the
cylindrical core of the circular unit cell, Fcorona is the
chain-stretching free energy of the corona of the circu-
lar unit cell, and Finterface is the interfacial energy of the
core-corona interface (i.e., the B-A interface). The cir-
cular Wigner-Seitz cell approximation is utilized by re-
placing the actual Wigner-Seitz corona boundary by a
circle of radius Rc. The radius Rc is selected by requir-
ing that the circular unit cell have the same total area as
the actual Wigner-Seitz cell.

The details of this model can be found in the literature
(c.f., [54, 55]). Here we are primarily concerned with the
functional form of each term. Specifically, from Ref. [55],

Fcore =
π2

96

(

πhb2

6ν0

)

R4
c , (C2)

Fcorona =
1

16
log

[

1

(1 − f)

](

πhb2

6ν0

)

R4
c , (C3)

and

Finterface = 2
√

6(1 − f)χN

(

πhb2

6ν0

)

Rc, (C4)

where Rc is in units of the unperturbed radius of gyration
Rg0. As before, h is the thickness of the BCP thin film, b
is the statistical segment length, ν0 = 1/ρ0 is the average
segment volume, N is the total number of segments per
chain, f is the fraction of A segments (we have assumed
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that f > 0.5), and χ is the A-B Flory interaction param-
eter. Combining terms, we find that the free energy in
Eq. (C1) can be expressed in the more compact form

Fc = CI

(

πhb2

6ν0

)

Rc + CS

(

πhb2

6ν0

)

R4
c , (C5)

where the first term captures the energy associated with
interfacial tension, the second term captures the energy
associated with chain stretching, and CI and CS are f -
and χN -dependent parameters.

Dividing both sides of Eq. (C5) by πhb2/6ν0 yields a

dimensionless free energy F̃c,

F̃c = CIRc + CSR
4
c , (C6)

where

CI = 2
√

6(1 − f)χN, (C7)

and

CS =
π2

96
+

1

16
log

[

1

1 − f

]

, (C8)

For the system of interest here, with f = 0.8 and χN =
25, CI ≈ 10.9545 and CS ≈ 0.2034.

We need to determine the area of the Wigner-Seitz
cell so that we can calculate the corresponding circular
unit cell radius Rc. Provided we know the type, number,
and area of all microdomain unit cells covering a sphere,
we can generate an approximate free energy of the block
copolymer thin-film by summing up the SSL free energies
for all unit cells.

This approximation does not explicitly address curva-
ture. Furthermore, our simulations with χN = 25 are
not strictly in the strong segregation limit [56]. How-
ever, we believe that the primary forces driving the ob-
served spherical microdomain unit cell structures are a
combination of stretching energy, interfacial energy, and
geometric packing (enforced by topological constraints).
This rudimentary SSL model, coupled with some sim-
ple geometric arguments, can capture all three of these
elements.

b. Wigner-Seitz Cells and SSL Free Energy on a Sphere

In order to apply the SSL free energy discussed above,
we need to determine the relevant Wigner-Seitz cell con-
figurations on the sphere. Furthermore, if we are inter-
ested in the dependence of SSL free energy on the sphere
radius R, then we need to determine how the unit cell
areas depend on R. This will allow us to connect the
circular unit cell radius Rc to the sphere radius R.

Let SR represent a sphere of radius R and M represent
the total number of minority (B-block) microdomains
covering SR. Figure 1 illustrates the example of 12 B do-
mains covering a sphere. For a specific microdomain on

TABLE III: Relevant Wigner-Seitz cells for M = 10, 11, .., 16
microdomains on a sphere. This table reflects only a small
fraction of the geometrically allowed unit cells; however,
these unit cell configurations are consistent with ground-state
SCFT configurations of BCP on a sphere and with ground-
state configurations of the Thomson problem [1].

M N4 N5 N6

10 2 8 0
11 2 8 1
12 0 12 0
13 1 10 2
14 0 12 2
15 0 12 3
16 0 12 4

SR, the number of nearest-neighbor B domains is given
by the number of sides of the microdomain’s Wigner-
Seitz cell. The total number of z-gon Wigner-Seitz cells
on SR is denoted Nz (equivalently, this is the number
of z-fold coordinated microdomains). A specific unit cell
configuration of M microdomains on SR is given by the
set of all Nz; we denote this set {Nz|

∑

z Nz = M}, or
{Nz}M for short. Note that the set {Nz}M is not unique.
However, for non-degenerate ground-states, only one set
{Nz}M is physically relevant (for small M , we expect the
lowest-energy configuration is non-degenerate), but from
a purely geometric and topological standpoint, many dif-
ferent unit cell configurations are possible.

Perhaps the easiest way to identify the physically rel-
evant {Nz}M is to perform a Voronoi analysis on the
density composition profiles output by our SCFT simu-
lations, as a Voronoi analysis provides the Wigner-Seitz
cell structure (see [57] for details about Voronoi anal-
ysis of BCP density profiles). For the cases of M =
10, 11, ..., 16, Table III summarizes the observed Wigner-
Seitz cell structure obtained from Voronoi analysis of the
SCFT density profiles. These are the same configurations
used to seed the simulation results presented in Sec. III A.
We note that the observed distribution of Voronoi cells
for M microdomains on a sphere is consistent with the
known results of the M -particle Thomson problem (i.e.,
the problem of finding the ground state of M particles
constrained to a sphere, interacting via the Coulomb po-
tential [1]).

We still need to calculate the unit cell areas in order
to apply Eq. (C6) to sum the SSL free energy over the
sphere. All relevant unit cell polygons (i.e., square, pen-
tagon, and hexagon) can be constructed from triangles:
a square is made up of 4 triangles, a pentagon is made up
of 5 triangles, and a hexagon is made up of 6 triangles.
For a regular n-gon, the area of the polygon is given by
An = nATn, where ATn is the area of each triangle. Fig-
ure 9 provides a schematic of the relevant unit cells, and
the appropriate decomposition into component triangles.
In general, the unit cells will not always be regular poly-
gons, and the triangles will not all have the same area;
in general, ATn 6= ATm, for n 6= m. However, if we make
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FIG. 9: Schematics of (a) approximate circular, (b) square,
(c) pentagon, and (d) hexagon Wigner-Seitz cells. Note that
for each of the polygon unit cells, the component triangles
have been drawn. Our approximation assumes that the area
of all triangles, in all unit cells covering the sphere, is given
by AT [see Eq. (C10)]; thus, the area of an n-gon unit cell is
approximated by An = nAT. The radius of the approximate
circular unit cell Rc is determined by requiring that circular
unit cell area πR2

c is equal to the area of the actual Wigner-
Seitz cell, or in our case, the approximate n-gon unit cell area,
An.

two approximations, we can simplify the calculation sig-
nificantly.

When calculating the approximate areas of the
Wigner-Seitz cells, we make two assumptions:

1. We assume that the sphere is covered with an
equiareal, triangular array, where the total num-
ber of triangles nT is calculated using {Nz}M as
follows:

nT =
∑

z

zNz. (C9)

The area of each triangle is given by

AT =
4πR2

nT
. (C10)

Recent work by Travesset [12] suggests that the
general problem of finding the lowest-energy state
for a collection of constrained particles (in this case,
topologically constrained) is equivalent to finding
the particle distribution which is nearest to a per-
fect, equilateral triangulation. Accordingly, our ap-
proximate triangulation seems reasonable.

2. We assume the area of an z-gon Wigner-Seitz cell
is given by

Az = zAT.

Note that AT, and thus Az, is a function of the
sphere radius R.

While this method only yields approximate unit cell
areas, it is reasonably consistent with published results
relating the relative sizes of BCP Wigner-Seitz cells.
From above, we see that A5/A6 = 5/6 ≈ 0.83 and
A7/A6 = 7/6 ≈ 1.17. Hammond et al. report thatA5/A6

is between 0.80 and 0.90, and A7/A6 is between 1.13 and
1.20, depending on the method used to calculate the unit
cell area [58]. We note that while the SSL unit cell ener-
gies are evaluated in flat space, the equiareal, equilateral
triangulation does account for the topological constraints
of the sphere.

We are now in a position to calculate an approximate
SSL free energy of a thin film of microphase separated
cylinders covering a sphere of radius R. For a given con-
figuration {Nz}M , we can use the above two assump-
tions to calculate the areas of all Wigner-Seitz cells on
the sphere. This, in turn, allows us to estimate the SSL
free energy. This procedure is outlined as follows:

1. Given the Wigner-Seitz cell structure {Nz}M on
SR, calculate nT using Eq. (C9) and AT by means
of Eq. (C10).

2. For all relevant coordination numbers z, calculate
the circular Wigner-Seitz cell radius Rcz:

Rcz =

√

zAT

π
. (C11)

This gives the radius of the circular Wigner-Seitz
cell in terms of the sphere radius.

3. For all relevant coordination numbers z, calculate
the SSL approximate free energy F̃cz:

F̃cz(R) = F̃c (Rcz) . (C12)

4. The total SSL approximate free energy over the
sphere is given by:

F (R, {Nz}M ) =
∑

z

NzF̃cz(R). (C13)

For the purpose of comparing to the SCFT simulations
results, we elect to plot the free energy density ESSL ≡
F/4πR2 in Fig. 4.

In Sec. III B 1 we used Eq. (C13) to evaluate the SSL
free energy for the unit cell configurations summarized in
Table III.
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