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Abstract

The effects of surface-active agents on the formation and evolution of small capillary ripples de-
veloping in the forward front of short water waves is investigated numerically. The capillary waves,
believed to have a significant relevance in the process of wave breaking and the onset of turbulence,
accompany the initial development of spilling breakers. A novel hybrid numerical methodology is
introduced to couple the full two-fluid Navier-Stokes equations with the free boundary motion and
with the surfactant dynamics. The hybrid method uses dynamically adaptive Front-Tracking to
accurately represent interfacial quantities and forces and to aid in treating the numerical difficulties
associated with surface tension. At the same time the method employs the Level Set approach
to efficiently update the material properties of the flow. It is found that the capillaries are dra-
matically affected by the presence of surfactants. The capillary region is invariably marked by
accumulation of surfactants that reduces locally the interfacial tension. The size of the wave roller
(bulge) diminishes and both the amplitude and wavelength of the capillary ripples also decrease
as interfacial tension gradients increase. When surface convection dominates over diffusion, the
accumulation of surfactants in the capillary region intensifies and the roller gets smaller and flatter.
Large concentration gradients can be produced and these lead to an spread of vorticity along the
spilling breakers as a result of the tangential Marangoni stress. In addition to the full two-phase
viscous flow simulations, boundary integral computations of the corresponding potential inviscid
flow are also performed to compare and contrast the two models in the case of uniform interfacial
tension. Differences between the potential and the viscous flows are observed as soon as the wave

steepens and develops high-curvature regions.
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I. INTRODUCTION

Capillary ripples observed in the forward face of sufficiently steep water waves with short
wavelength have significant relevance in the process of wave breaking and the onset of
turbulence. It is a capillary phenomenon that accompanies the initial development of spilling
breakers which are characterized by the formation of a localized zone around the wave crest
where the water surface becomes rough and bubbles and droplets form. Duncan [1] reviews
the recent advances in the study of spilling breakers and the pattern of surface-tension
dominated ripples. The rich effects of surface tension on free and forced waves are also
discussed in a review article by Perlin and Schultz [2].

The formation and striking dynamic evolution of these short (often called parasitic)
capillary waves have been remarkably captured by the early experimental work of Ebuchi,
Kawamura, and Toba [3] for wind driven waves and by the more recent experiments of
Duncan, Philomin, and Wenz [4] for gentle spilling breakers. The experiments show that
as the wave steepens a “bulge” (roller) forms in the forward face at the crest. The leading
edge of this bulge called the toe marks the formation of a train of small amplitude capillary
waves which grows rapidly and subsequently breaks down into a random pattern indicating
turbulent flow.

Some understanding of these important phenomenon has also been gained with the theo-
retical work of Longuet-Higgins [5-8| and collaborators [9-11]. Longuet-Higgins has modeled
the phenomenon as a capillary jump [7] in steady inviscid waves and has also addressed the
crest instabilities of the almost highest Stokes waves [9-11]. The potential flow computa-
tions of Yao, Wang and Tullin [12], Jiang, Lin, Schultz and Perlin [13], and Ceniceros and
Hou [14] have also revealed important nonlinear behavior. But as pointed out by Duncan [1]
breaking in the viscous flow occurs well before the late stages of development found in the
potential boundary integral/element simulations. And both experimental and theoretical
work support the importance of the viscous shear. One of the few documented attempts to
address this numerically is the work by Mui and Dommermuth [15] who combined poten-
tial flow-full viscous flow simulations to study the vorticity distribution associated with the
capillary waves. There is a clear need for more full viscous flow simulations.

An outstanding open question is how the presence of surface-active ambient agents called

surfactants would affect the formation and dynamic development of the capillary waves.



The nonuniform concentration of surfactants produces surface tension gradients that could
have dramatic effects on the surface-tension dominated motion. Because in the real world
surfactants are almost always present, this is a question of both practical and fundamental
importance. The goal of this work is to present a numerical investigation, the first one to
our knowledge, of this problem. As pointed out by Stone and Leal [16], there are two main
competing effects associated with the presence of surface-active agents: (i) the concentration
of surfactant by convection reduces the surface tension and tends to produce larger interfacial
deformations and (ii) the dilution of surfactant due to larger interfacial area increases the
surface tension and thus acts opposite to the convection of surfactant.

The numerical simulation of water wave motion with the presence of surface-active agents
is a challenging problem. It requires the solution of the incompressible two-phase Navier-
Stokes equations with a free boundary coupled with an advection-diffusion equation govern-
ing the evolution of the surfactant concentration. To make the problem even more difficult,
the water surface has very high curvature points at the toe and in the rest of the capillary
ripples whose amplitude and wavelength are very small. Here we introduce a novel hybrid
Level Set/Front-Tracking method (LeFT). Dynamically adaptive Front-Tracking is used to
accurately represent interfacial quantities and forces and to aid in treating the numerical
difficulties associated with surface tension. At the same time the method employs the Level
Set approach to efficiently update the material quantities of the flow. The combination
of these two typically disjoint approaches to numerical free surface problems allows us to
resolve the intricate coupled flow-fluid interface-surfactants dynamics.

Our numerical investigation reveals that the capillaries are dramatically affected by the
presence of surfactants. The capillary region is invariably marked by accumulation of surfac-
tants that reduces locally the interfacial tension. The size of the roller diminishes and both
the amplitude and wavelength of the capillary ripples also decrease as interfacial tension
gradients increase. When surface convection dominates over diffusion, the accumulation of
surfactants in the capillary region intensifies and the roller gets smaller and flatter. Large
concentration gradients can be produced and these lead to an spread of vorticity along the
spilling breakers as a result of the tangential Marangoni stress.

In addition to the full two-phase viscous flow simulations, boundary integral computations
of the corresponding potential inviscid flow are also performed to compare and contrast the

two models in the case of uniform interfacial tension. Differences between the potential and



the viscous flows are observed as soon as the wave steepens and develops high-curvature
regions. Rotational and viscous effects, as well as the presence of a second phase appears to
have a noticeable influence in the fully nonlinear flow.

The rest of the paper is organized as follows. The equations of motion are introduced
in Section II. Section IIT is devoted to the presentation of the numerical methodology and
its implementation. A numerical validation is given in Section IV. The numerical study
is presented in Section V. This is followed by some concluding remarks and comments for

ongoing and future work.

II. THE GOVERNING EQUATIONS

We model the wave motion as that of a free interface separating two incompressible
immiscible fluids (labeled 1 and 2) with air-water viscosities and densities ratios in two
dimensions. We assume that the flow is periodic in the horizontal direction and that it is
limited by walls (with slip boundary condition) in the vertical direction. The starting point

is thus the Navier-Stokes equations for each phase:

i 1 1 i

V-uz- = 0, (2)

where w;, p;, p; and p; (¢ = 1,2) are the velocity field, the pressure, the density, and the
viscosity of each fluid respectively, and g is the gravity acceleration constant. At the fluid

interface, the surface stress satisfies the jump condition:
—(p2 _pl)ﬁ+ (82 —Sl)ﬁ: —O'liﬁ—sz', (3)

where # is the unit normal pointing into Fluid 2, S; = u;(Vu; + Vu?) is the viscous stress
tensor, o the surface tension coefficient, x is the mean curvature and V; is the surface
gradient. Figure 1 gives a schematic of the problem and the definition of the tangential and
normal vectors, and the curvature. V o represents the Marangoni stress resulting from a
non-uniform surface tension.

The interfacial tension ¢ depends on the surface concentration I'* of surfactant and is
given by an equation of state of the form o = o(I'*). We assume that initially there is a

uniform concentration of surfactant I'y (measured in units of surfactant mass per unit area).
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Letting I' = I'* /Ty the equation of state can be written as [17]:

O(F) = Gs(l - ﬁr)a (4)

where o, is the surface tension of the clean surface and 3, which satisfies 0 < § < 1, is a
physico-chemical dimensionless parameter that measures the sensitivity of surface tension
to changes in surfactant concentration. The equation of state (4) has been used by Stone
and Leal [16], by Pozrikidis [18], and by Siegel [19] in the context of Stokes bubbles.

The changes in the surfactant concentration at the fluid interface are governed by a

convection-diffusion equation that can be written as [20]:

or oX
Il % g r—v,.(fu,)+Tku-f+ D,VT
| " o Vv, Vs - (Tus) + Tku -0+ DV, (5)

where u, represents the velocity vector tangent to the fluid interface, X(«,t) is a
parametrization of the interface, and D, is the surface diffusivity. We consider the sur-
factant to be insoluble so there is no net flux of the surface-active material to and from
the interface from the bulk phases. Finally a kinematic boundary condition is imposed on
the fluid interface. The normal velocity Ui of a point on the fluid interface equals the

corresponding velocity of the fluid evaluated at the interface:

=13

UNf =

(u-n). (6)

III. THE NUMERICAL METHOD
A. A Hybrid Level Set-Front Tracking Approach

The need to accurately compute interfacial forces and to resolve the short and high-
curvature capillary train makes Front-Tracking based methods the most suitable for this
type problem. In Front-Tracking methods [21] the interface is tracked by a separate grid
(surface markers) on a lower dimension. Thus, such methods would be a natural choice also
on the account that the surfactants reside and change dynamically only on the fluid interface
and not in the bulk phases.

Typically in multiphase flow simulations the different phases are treated as one fluid with
variable material properties (density and viscosity). In the Front-Tracking setting these

quantities are often updated by solving a Poisson equation [22] at every time-step. However
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this procedure produces occasionally erroneous values away from the interface and small
over- and under-shoots [22]. This situation is particularly aggravated when there are high
density ratios as is the case for an air-water system whose density ratio is O(10%). The
Level Set Method [23] offers a more natural and smoother fluid indicator than the largely
discontinuous density (or the viscosity). In this method the fluid interface is embedded as
the zero level set of a “color” function ¢ that, when re-initialized properly [24], defines at
all times a signed distance function to the interface. Moreover the evolution of ¢ can be
captured accurately and at optimal cost using the well-established numerical methodology
for conservation laws. Here we propose to combine the Level Set Method, normally used as
an interface-capturing tool, with Front-Tracking to obtain a hybrid Level Set Method /Front-
Tracking (LeFT) method that exploits some of the best features of each individual approach.
The rationale is that the accurate computation of interfacial quantities via Front-Tracking
leads to more accurate velocity fields which in turn produce more accurate updates of the
bulk fluid material quantities obtained via the Level Set Method. Moreover, as will be
discussed later, the use of adaptive Front-Tracking allows us to relax a numerical difficulty
associated with surface tension.

To describe the method we first rewrite the equations of motion using the immersed
boundary (¢ function) setting [25] to account for the stress jump condition (3) and add the
level set equation and an evolution equation for the interface position. In dimensionless form

the governing equations become:

¢t +u-Vo = 0, (7)
L WS By Ay
u+u-Vu = p(¢)Vp+Rep(¢)V w(e)(Vu+ Vu') FT+F’ (8)
o — 1 d(ot) a ) — x)da
F) = g | Zon (X (at) = x)do. )
V-u =0, (10)

X,(a,t) = / a(x)3(x — X(a, £))dx, (11)

where ¢ is the level set function (¢ = 0 for the points on the interface, ¢ > 0 for water and
¢ < 0 for air). The position of the fluid interface is specified in parametric form by X(c, t)
and t is the unit tangent vector to the interface. 4 is the two-dimensional delta function.
Note that the normal surface tension and the Marangoni stress have been combined into

one term [22] using the Frénet formula 0,t = xfi, where 9, denotes derivative with respect
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to arclength.
In the nondimensionalization, the three dimensionless flow parameters are the Reynolds

number Re, the Froude number F'r, and the Weber number We defined as:

— pwater)\Uc FT‘ . UCZ We — ,Owater)\[]c2

Re , =<
Hwater g )\ Os

where ) is the wavelength and U, is a characteristic velocity. Here we take F'r = 1 so that
the velocity scale is given by U, = /g\. Thus, the dimensionless wavelength is 1 and the
linear wave period 7T is v/ 2.

The dimensionless density and viscosity are given by:
p(¢) = r+(1—-r)H(9), (12)
w(@) = n+ (1 —-n)H(9), (13)

where 7 = pair/pwater = 1.2 X 1072 and 7 = o/ phwater = 1.57 x 1072 and H(¢) is the
Heaviside function defined by

0 If¢ <0,
H(¢)=q1 1¢=0, (14)
1 If¢>0.

Note that, as remarked above, ¢ is only used to obtain p and p through (12)-(14) but the
interface and the surface tension force pF are computed directly from X(a, t).

The dimensionless surface tension ¢ is given by the equation of state
o(l')=1-pT. (15)

Equations (7)-(15) are coupled to the convection-diffusion equation of the surfactant concen-
tration (5). We discuss next a computationally efficient frame for the front-particle motion

and rewrite (5) using this frame.

B. Dynamically Adaptive Front-Tracking: Particle Equidistribution

The short capillary waves on the front of water waves develop regions of very high cur-
vature, a feature shared by other important multi-phase fluid applications. While Front-

Tracking methods allow us to better capture these high curvature regions, it is well known
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that in Front-Tracking methods the surface marker particles develop excessive clustering,
often at the wrong places [26]. And as a result, regridding algorithms (static point inser-
tion and deletion) are usually employed to redistribute the particles to avoid poor overall
resolution and a prohibitively small time step.

In the context of boundary integral methods Baker and Nachbin [26] note that keeping
the surface particles approximately equidistributed in arc-length relaxes significantly the
surface tension-induced time step constraint of an explicit method. Also in the context of
boundary integral methods Hou, Lowengrub, and Shelley [27] use particle equidistribution
as one of the main ingredients to efficiently remove the numerical stiffness associated with
surface tension.

Following these observations we change the interface parametrization dynamically to
enforce surface particle equidistribution. The kinematic condition (6) gives us room to
introduce an arbitrary tangential velocity in (11) so that the evolution equation for X

becomes:

X,(a, 1) = / u(x)8(x — X(a, £))dx + U4 = Ul ) + UL, (16)

where U4 is arbitrary and determines the frame or parametrization used to describe the
interface. It can be easily shown that if the particles are initially equidistributed in arc-

length they will be kept so if [27]
Ud =-U" +/ [sakUN — < 5,6UN >]dd/, (17)
0

where UT = U - t, s, = /X2 +Y2 kis the mean curvature, and < - > stands for the
spatial mean (over one spatial period).
Using this dynamic parametrization the convection-diffusion equation governing the evo-

lution of the surfactant concentration can be written in dimensionless form as:

or _(UT+UA) or 1 9(ru’) 1190 <1ar>
ot ’

S T 7§ p——
Sq Ox

oo s, O« P, s, O« (18)

a a Sa
where UN = U -, UT = U -t, and P, = A\U,./D; is the Péclet number that measures the

importance of convection relative to diffusion.



C. Time Integration and Implementation

Finally, to discretize the full coupled system of equations (7)-(18) we replace the delta and

the Heaviside functions by mollified versions. Here we choose Peskin’s delta function [25]

i[l#—cos%] If [z] <,
be(x) = "
0 Otherwise,
and
O If €T < _6’
He(z) = Qi1+ 2+ Lsin™] If [z] < (20)
1 If x > ¢,

where € is a numerical parameter depending on the Eulerian grid mesh size Ax. For the
computations reported here ¢ = 2Az. Note that % = 0..

We describe next one Euler step of the time discretization scheme. The spatial discretiza-
tion is standard second order except for the convection terms which are discretized using a
third order ENO scheme. First, the fluid interface position, the surfactant concentration,

and the level set function are updated:

XM = X* o+ AU + UM+ UVAY, (21)
1 1 0 1 ornt!

"t =TI 4 At— — AtG" 22

* P, s"t1 0o (s@“ da ) i ’ (22)

¢n+1 — ¢’n _ At(u” . Vqsn)’ (23)

where G™ stands for the right hand side of (18) minus the diffusion term, evaluated at the
n-th time-step. With the standard second order spatial discretization Equation (22) can
be solved efficiently for I'"*! with a tridiagonal solver. The nonuniform surface tension
o(I'™*1) is evaluated using the equation of state (15) and the interfacial tension term (9) is
computed. Using this force the velocity field is updated with the Projection Method on a
staggered MAC grid in the standard two-stage process [28]:

u—-u" = —u"-Vu" + LV . u"(Vu” + VunT) _ L + Fn—|—1 (24)
At Repm Fr ’
u"t! —u* 1
_ +1
At ! VT, (25)
where, to enforce the incompressibility condition V-u™t!, p"*! is the solution of the equation
Vo (—vpt) = v (26)
pn+1 p - At ’
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with homogeneous Neumann boundary conditions at walls and periodic in the horizontal
direction. To solve this elliptic equation we employ the Conjugate Gradient Method (CQG)
preconditioned with a robust multigrid method that uses matrix dependent prolongation [29].
This particular multigrid handles efficiently discontinuous and high contrast coefficients and
convergences rapidly even for the very high density ratio (10%) of this problem. The CG
method corrects locally the solution to enforce the horizontal periodic boundary conditions.
The multi-grid preconditioned CG converges within truncation error typically in less than
10 iterations. Note that the viscous term is treated explicitly as for high Reynolds numbers
such as the one considered here the explicit treatment is more efficient computationally.
Following Kang, Fedkiw, and Liu [30] we embed the Euler step into a third order total
variation diminishing (TVD) Runge-Kutta [31] as follows. Denoting the Euler step by E(V)

where V stands for all the dynamic variables we obtain [30]

1 2 3 1

Being the scheme a one-step method, adaptive time stepping can be implemented natu-
rally. Finally, we note that the level set function ¢ is re-initialized with the procedure
described in [24] to maintain it as a signed distance function. Also a fourth order filter [32]:
X; %(—Xj,g +4X, 1 + 10X; + 4X;;1 — X, ;o) is applied every time step to the in-
terface position to eliminate the small amplitude mesh-scale oscillations characteristic of
the immersed boundary setting. In the numerical experiments the overall LeFT method is
very stable and robust. In particular, the interfacial tension-induced constraint enhanced

by excessive particle clustering has been relaxed. A more detailed study of the method will

be presented elsewhere.

IV. NUMERICAL VALIDATION

Given that the numerical methodology employed here is new we conduct first a numerical
validation. In view of the lack of results for nonuniform tension capillary waves, we consider
the case of constant surface tension. This also allows us to compare with inviscid potential
flow boundary integral simulations. Furthermore, to compare also with experimental results
we follow Jiang, Lin, Schultz, and Perlin [13] and select initial conditions that approximate

those produced in the laboratory with a flap-type wavemaker following a sinusoidal motion.
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In particular, we consider the linear wave initial conditions in [13], £ = kacos(kx) and
¢ = kasin(kzx), where £ and ¢ are the initial free surface elevation and velocity potential
respectively and ka is the wave steepness. In our dimensionless variables, the initial wave

profile is given in parametric form by

X(e,0) = «, (28)
Y(a,0) = Acos(2ma), (29)

for 0 < a < 1 and where 27 A is the wave steepness. The initial velocity potential is
o = \%—W sin(2r«). To obtain the initial velocity in the whole computational domain from
free surface-defined ¢ we proceed as follows. First, we compute the (unnormalized) vortex

sheet strength ~ by solving the integral equation [14]

¢4@:%«@+m{5@24ywnmﬂmw—zmmm}, (30)

21
where Z(a) = X (o) +iY (o) and R stands for the real part. The solution 7y is computed via

fixed point iteration using a spectral discretization as described in [14].

With v known, the initial vorticity wy in the whole domain is given by

%®:A7mwm@—mm (31)

Then, the stream function 1) is found by solving numerically (with standard second order

finite differences) the Poisson’s equation
A’lp = —Wwo, (32)

with periodic boundary conditions in the streamwise direction and Dirichlet homogeneous

conditions in the vertical direction. Finally, the initial velocity is computed from v using

Ug = d}ya (33)
Uy = _wz‘a (34)

with centered differences.
Figure 2 shows the profile of a wave with initial steepness 2rA = 0.2, We = 47%/0.07

(A = 6.5 cm, as in [13]), and Re = 45627 at times ¢ = T and t = 7. T = /21 is

the dimensionless linear wave period. Two resolutions (continuous curve), 512 x 512 with
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512 interface markers and 1024 x 1024 with 1024 interface markers, are plotted in the same
figure. Also shown in Figure 2 (dashed-dotted curve) is the corresponding profile for inviscid
infinite depth potential flow. This inviscid profile is computed with the boundary integral
method described in [14] and matches that shown in Fig. 2 in [13]. The vertical scale is eight
times the horizontal one as in [13]. The two resolutions of the full two-fluid Navier-Stokes
flow give profiles that are indistinguishable within plotting resolution. At ¢ = T [Fig. 2(a)],
also the inviscid profile is very close to the viscous one. At t = LT [Fig. 2(b)], a more
significant difference can be observed between the inviscid potential flow profile and the
two-fluid viscous profiles. The amplitudes of the wave and the capillaries in the viscous flow
are smaller than those in the potential flow. It is unlikely that this is due to underresolution
of the viscous simulations as the profiles computed with the two different resolutions almost
coincide. Thus, Fig. 2(b) shows in effect the difference between the potential flow and the
two-fluid viscous flow when the capillary waves are fully developed. Rotational and viscous
effects, as well as the presence of a second phase have a noticeable influence in the fully
nonlinear flow. The viscous profiles compare well with the experiments in [13] for initial

steepness equal to 0.19, Fig. 13(a) in [13].

V. THE NUMERICAL EXPERIMENTS
A. Initial Conditions

For our study we focus now on a wave similar to the wind generated spilling breakers
investigated experimentally by Ebuchi et al. [3]. The wave has initial steepness 2mA =
0.335 as in [3]. Fr = 1 as before but we take now We = 980 which corresponds to a
wavelength of 8.53cm. We keep the same Reynolds number, Re = 45627, to afford resolve
the viscous boundary layer thickness ~ \/W (the actual Reynolds number is higher).
The initial position of the fluid interface is given again by (28)-(29) but now there is a
uniformly concentrated vorticity distribution initially at the fluid interface (a vortex sheet):
v = —1/4/9.8. The initial velocity is obtained from (31)-(34).

The full two-phase viscous flow simulations are computed with the hybrid LeFT method
as follows. A 512 x 512 mesh with 512 interface markers is used to compute up to ¢t = 0.87.

Then, linear interpolation is performed and the computations are continued from ¢t = 0.87
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to t = T with a 1024 x 1024 mesh and 1024 interface markers. The time ¢t = 0.87 was
selected because the capillary waves are not yet fully developed and the flow can be resolved
with the coarser mesh. The accuracy and resolution were assessed by comparing the profiles
computed with the two different meshes. The profiles coincided within plotting resolution

at ¢t = 0.87 and the maximum difference in Y () at ¢ = T was less than 2 x 1073,

B. Uniform Surface Tension

In the absence of surfactants I' = 0 and the surface tension remains constant in space
and time. Figure 3 shows the evolution of the wave at different times. The corresponding
potential flow profile, computed with the boundary integral method, has also been plotted
(dashed-dotted curve) before and after the formation of the capillary waves for comparison.
A hump develops around x = 0.4 and reaches maximum height at about ¢ = 0.487. A
slight difference between the potential flow profile and the full two-phase viscous flow profile
can already be seen at this early time. When the hump falls, the mass of water creates
a right-moving wave and a small bulge ending in a point of growing curvature (the toe)
emerges around ¢ = 0.827 forming a bore-like structure. At this time a train of fairly small
amplitude capillary waves begins to be visible on the leading side of the toe. The main
wave reaches a maximum height around ¢ = 7T after which it begins to fall again. The
wavelength of the capillary waves at ¢ = T, estimated from the first two curvature maxima
is 0.056. The potential and the full two-phase viscous profiles differs noticeably at ¢t = T
precisely at the roller-capillary region which is characterized by large curvature points. It is
not unreasonable that both rotational and viscous effects may play a significant role there.

Figure 4 depicts the vorticity field before and after the formation of the short capillary
waves. At t = 0.47T before the onset of the capillaries, the vorticity extrema occur at
the front and back of the wave crest. The vorticity remains fairly concentrated at the free
surface but a small negative amount has already been shed into the air side in the immediate
vicinity of the fluid interface. With the capillaries fully developed at ¢ = T, the bulge (roller)
preceding them is characterized by a region of high vorticity ( maxw = 73) as observed in the
wind-tunnel experiments of Okuda [33]. The toe has fairly large curvature and the vorticity
achieves its largest absolute value minw = —247 precisely at the toe. This is consistent

with Longuet-Higgins [34] observation that the vorticity is proportional to the curvature
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for a steady flow in which the tangential stress vanishes. The structure of the capillaries
can be better appreciated in Figure 5 which provides closeups of vorticity contours and the
curvature around the capillary region at ¢ = 7. The location of the free surface in Figure 5(a)

is marked by a dashed-dotted curve.

C. The Effects of Surfactants

There are two parameters associated with the presence of the surface-active agents and
their dynamics. The physico-chemical parameter S which determines the sensitivity of
interfacial tension to changes in surfactant concentration I' and the Péclet number Pe. We
illustrate the effects of these parameters on the flow in Figs. 6-8. The figures show (a) a
comparison of the wave profile in the presence of surfactants and the corresponding clean-
surface profile (dotted line) at ¢t = 7', (b) the curvature of the surfactant-affected surface
also at t = T, and (c) the surfactant concentration at ¢ =0, ¢ = 0.87, and t = T'. Figure 6
and Fig. 7 share the same Péclet number (Pe = 1) but different 3, 0.5 and 0.7 respectively,
while Fig. 8 presents results for 8 = 0.7 and a higher Péclet number (Pe = 10). All the
computations begin at ¢ = 0 with a uniform surfactant concentration I' = 1.

As it is evident from the wave profiles, the presence of surfactants reduces the size of
the roller and the amplitude of the capillary waves. This is accompanied by an increased
curvature at the toe. In the case of Pe = 1 (Figs. 6 and 7), surface diffusion dominates
and the surfactant concentration develops only a relatively small variation with respect to
the initial uniform value. Nevertheless, it can be clearly observed in box (c) of Figs. 6
and 7 that the flow leads to an accumulation of surfactant around the main-wave crest
with a concentration peak at the toe. Furthermore, as the fluid interface stretches, during
t = 0.8T-T, the surfactant is diluted and its concentration becomes less than one. At the
continuous level the total amount of surfactants must remain constant in time. Following
Stone and Leal [16] the local surfactant concentration is rescaled every time step to enforce
this requirement. The wavelength of the capillary waves at ¢t = T for Pe = 1, estimated
from the first two curvature maxima, is 0.033 for 8 = 0.5 and 0.023 for § = 0.7, significantly
smaller than that in the clean-surface flow (0.056). Thus, as expected from the reduction in
interfacial tension, the surfactants also produce a decrease in the capillary wavelength.

In the case of Pe = 10 (Fig. 8), there is a stronger flow convection transporting the
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surfactant toward the crest and producing a larger variation in the concentration. Note in
particular that for this Péclet number the concentration is greater than one in the capillary
region at t = T" and the wave profile shows a less rounded roller with a smaller toe curvature
than that for Pe = 1 and the same [ (Fig. 7). Furthermore, the main wave height is
visibly smaller for Pe = 10. This is not merely a delay in the dynamics induced by the
surfactants as both waves have reached their maximum height and are already beginning to
fall down at ¢ = T (longer time dynamics will be addressed in the next subsection). The
wavelength of the capillary waves for Pe = 10, § = 0.7 at t =T is 0.024. In summary, for a
small fixed Péclet number the size of the roller appears to decrease and both the amplitude
and wavelength of the capillary waves also decrease as the physico-chemical parameter g
increases. For a fixed 3, an increase in the Péclet number intensifies the transport and the
accumulation of surfactants in the capillary region, reducing there the interfacial tension
and producing a less deformed roller and a wave with a smaller height.

We can gain some understanding of the observed effects of surfactants if, following Stone
and Leal [16], we let [' = 1+I" where I" is a small perturbation of the uniform concentration

equal to one, and then write the stress balance at the free surface as:

. 1 . 1 . .
—(p2 —p1)h + ﬁ(sz —Sy)h = TWe ™ + We*(f ) [Meh + VI, (35)
where
. We
We = m, (36)

is an effective Weber number. The first term on the right hand side of (35) corresponds
to the usual normal surface tension force but with an increased Weber number We*. The
second term modifies this force only slightly for §|T'|/(1 — 8) small, as it turned out to
be in the cases we have considered so far. But Marangoni term gV,IV/(1 — 3) , last term
on the right hand side of (35), may have a significant contribution if large concentration
gradients occur due to the flow transport of surfactants. As we have seen, for small Péclet
numbers, the surfactant concentration develops only small variations around the uniform
value one. Thus, the dominant effect of surfactants is to decrease the surface tension from
os to 0 = o4(1 — ). Consequently, for small Péclet numbers the evolution of the free
surface with interfacial tension gradients can be expected to be close to that with constant
surface tension o* and Weber number We*.

Figure 9 shows a comparison of the § = 0.7 variable interfacial tension profiles, Pe = 1
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(dashed curve) and Pe = 10 (dashed-dotted curve), with the constant surface tension We* =
We/(1—0.7) profile (continuous curve). For Pe = 1 the free surface almost coincides with the
constant tension We* interface with the largest deviation occurring at the leading portion
of the roller. The wavelength of the capillary waves in the constant tension We* flow is
0.022 which is about the same as that observed in the S = 0.7 profiles. There is however an
appreciable difference in the roller-capillary region between the We* flow and the Pe = 10,
B = 0.7 flow. As noted before, when the Péclet number is increased, convection leads to
a larger accumulation of surfactants in the roller-capillary region and thus decreasing the
surface tension there. At the same time larger concentration gradients are generated and
these bring into play the tangential Marangoni stress. As a result of this complex flow
dynamics a less deformed roller and a reduced wave height are produced but the wavelength
of the capillaries does not seem to be significantly affected.

To investigate further the effect of the Marangoni term we consider now a much larger
Péclet number, Pe = 100, keeping S = 0.7. The results are summarized in Fig. 10. Fig-
ure 10(a) compares the capillary region with the one obtained for Pe = 1 and Pe = 10 while
Fig 10(b) shows the surfactant concentration of the Pe = 100 flow at ¢t = T (plotted with
equal aspect ratio). The largest Péclet number profile shows an even flatter and smaller
crest than that for Pe = 10. The surfactant has been swept toward the crest and the for-
ward front of the wave while being diluted at the back. Moreover, a sharp variation of the
surfactant concentration around the crest (~ z = 0.7) is observed. The resulting effect is
that that capillary ripples have been completely inhibited up to this time.

One of the effects of the tangential Marangoni stress can also be seen in the vorticity
fields of the studied flows presented in Figure 11. Just as in the absence of surfactants, a
strong concentration of vorticity at the roller and toe is observed in Fig. 11(a)-(c). The
vorticity at time ¢t = T is still fairly confined to the fluid interface but a small amplitude
vorticity can be seen in a vicinity of the free surface at both fluids. The Pe = 100, 5 = 0.7
flow, for which a strong Marangoni effect is expected, presents a large vorticity at the crest
but the field is more uniformly spread along stretched regions at the back and front of the
wave. This a clear indication of the tangential stress generated by the variable interfacial

tension.
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D. Longer Time Dynamics

For 8 = 0.7 and Pe = 100 the complex coupled surfactant-flow dynamics inhibited the
formation of capillary ripples up to ¢t = 7. It is natural to ask whether or not the onset
of the capillary waves will occur at a later time. To address this question we look a longer
time dynamics for both the § = 0.7, Pe = 100 flow and the clean-surface We = 980 flow.
Figure 12(a) shows the wave profile of the surfactant-affected flow at three subsequent times.
The wave achieves its maximum height shortly before t = 7" and then the crest begins to fall.
At t = 1.0967, a well defined toe can now be identified and as the wave continues to drop
a very small amplitude first ripple begins to form at ¢ = 1.1977". The clean-surface wave
has a similar motion except that it is accompanied by the train of capillaries. Figure 12(b)
contrasts the differences between the clean-surface flow and the Pe = 100 flow at ¢ = 1.1977".
The surfactants do not merely delay the onset of the capillary ripples but almost completely
inhibit them when the flow transport becomes significant. A much longer time simulation
using the boundary integral method for the constant interfacial tension potential flow shows
that the main wave rises up again and the capillary waves intensify. Unfortunately, similar
simulations for the full two-phase viscous flow would too demanding computationally in
terms of both increased resolution and CPU time.

Finally, as noted by Jiang, Lin, Schultz, and Perlin [13], the steepness of the capillary
ripples appears to be sensitive to variations of the the main wave initial steepness. For
the particular initial conditions on which we focused this study we observe, through poten-
tial flow simulations, that the steepness of capillary waves tends to increase as the initial

steepness is slightly increased.

VI. CONCLUDING REMARKS

The effect of surface-active agents on the formation of short capillary waves has been
investigated numerically. The full two-fluid incompressible Navier-Stokes equations coupled
with a surface-defined advection-diffusion equation for the surfactant concentration have
been solved with a novel numerical approach. The new hybrid methodology combines level
set and adaptive Front-Tracking techniques to achieve an accurate and stable treatment of

interfacial tension in a multi-phase flow.
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Through high-resolution numerical experiments it is found that capillaries are dramati-
cally affected by the presence of surfactants. The capillary region is invariably marked by
accumulation of surfactant concentration. For a small fixed Péclet number the size of the
roller decreases and both the amplitude and wavelength of the capillary ripples also dimin-
ishes as interfacial tension gradients increase. The dominant effect of the surfactants in the
flow with strong surface diffusion is a net reduction of the interfacial tension. As the Péclet
number is increased the surface transport and the accumulation of surfactants in the capil-
lary region intensify and the roller gets smaller and flatter. Large concentration gradients
can be produced as the flow sweeps the surfactants toward the wave front and dilutes them
at the back. These gradients lead to an spread of vorticity along the spilling breakers as a
result of the tangential Marangoni stress.

Three-dimensional effects during the formation and evolution of the capillary waves re-
main a mystery. The novel numerical methodology presented here can naturally be extended
to three dimensions. This is however a quite challenging computational problem and will be

the subject of future work as will be the investigation of much longer time dynamics.
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FIG. 1: Schematic of the problem and definition of tangential and normal vectors, and curvature

(k).
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FIG. 2: Profile of a 6.5cm wave with linear wave initial conditions and initial steepness equal to
0.2 at (a) t =T and (b) t = ¥ T. Shown in solid curve are the two-fluid flow profiles obtained with
resolutions 512 x 512 with 512 interface markers and 1024 x 1024 with 1024 interface markers. The
dashed-dotted profile is the boundary integral simulation of the corresponding potential flow. The

vertical scale is eight times the horizontal one.
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FIG. 3: Wave profile at different times in the absence of surfactants. The potential inviscid flow

profile is also shown at ¢ = 0.487 and t =T as a dashed-dotted curve.
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FIG. 4: Vorticity field w before and after the formation of capillary waves in the absence of
surfactants. (a) ¢ = 0.47, maxw = 6 (crest front), minw = —16 (crest back) and (b) ¢t = T,

maxw = 73 (at roller), minw = —247 (at the toe).
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FIG. 5: Close up around the capillary region at ¢ = T of (a) vorticity contours (the position of free

surface is shown with a dashed-dotted curve) and (b) the curvature.
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FIG. 6: 8 = 0.5 and Pe = 1 shown are (a) the wave profile compared with the uniform sur-
face tension (dotted curve) profile at ¢ = T, (b) the curvature at ¢ = 7', and (c) the surfactant

concentration at t =0,t =0.87,and t ="T.
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FIG. 7: 8 = 0.7 and Pe = 1 shown are (a) the wave profile compared with the uniform sur-
face tension (dotted curve) profile at ¢ = T, (b) the curvature at ¢ = 7', and (c) the surfactant

concentration at t =0,t =0.87,and t ="T.
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FIG. 8: 8 = 0.7 and Pe = 10 shown are (a) the wave profile compared with the uniform sur-
face tension (dotted curve) profile at ¢ = T, (b) the curvature at ¢ = 7', and (c) the surfactant

concentration at t =0,t =0.87,and t ="T.
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FIG. 9: Comparison of the 8 = 0.7 profiles, Pe = 1 (dashed curve) and Pe = 10 (dashed-dotted
curve), with the constant surface tension profile with Weber number We* = We/0.3 (continuous

curve).
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FIG. 10: (a) The Pe = 100 profile (continuous curve) compared with the Pe = 1 (dashed curve)
and Pe = 10 (dashed-dotted curve) profiles for fixed § = 0.7 at ¢t = T. and (b) its surfactant

concentration also at ¢ =T, plotted with equal aspect ratio.
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FIG. 11: Vorticity field at t = T for (a) § =0.5 and Pe=1, (b) =0.7 and Pe =1, (c) = 0.7
and Pe = 10, and (d) 8 = 0.7 and Pe = 100.
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FIG. 12: (a) Wave profile at three different times for § = 0.7 and Pe = 100. (b) Comparison of
the 8 = 0.7, Pe = 100 profile (dashed-dotted curve) with the constant tension We=980 profile

(continuous curve).
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