Complex Variables II: Homework 2

Read Chapter 10 in Stewart and Tall.
I. Exercises 10: $\# 13, \# 15, \# 16, \# 19, \# 20$
II.:

1. Assume f and g are analytic on a domain D. Prove that if $f(z) g(z)=0$ for all $z \in D$, then either $f \equiv 0$ or $g \equiv 0$.
2. Assume f and g are entire and g never vanishes. If $|f(z)| \leq|g(z)|$ for all z, prove there exists a constant c such that $f(z)=c g(z)$. What happens if g has zeros?
3. Assume f is entire and $|f(z)| \rightarrow \infty$ as $z \rightarrow \infty$. Prove that f is a polynomial.
4. Let $\mathcal{F}=\left\{f: N_{1}(0) \rightarrow \mathbb{C}: f\right.$ is analytic and $|f(z)| \leq 1$ for all $\left.z \in N_{1}(0)\right\}$. Let $\alpha \in \mathbb{C}$ be such that $|\alpha|<1$. Prove that $\max _{f \in \mathcal{F}}\left|f^{\prime}(\alpha)\right|$ is attained, and find its value.
5. Let $\left\{p_{n}(z)\right\}$ be a sequence of polynomials. Assume there exists $N \in \mathbb{N}$ such that degree $\left(p_{n}\right) \leq N$ for every n. If the sequence $\left\{p_{n}(z)\right\}$ converges uniformly on compact sets, prove that the limit is a polynomial $p(z)$ with $\operatorname{degree}(p) \leq N$.
6. Assume f is analytic on $N_{1}(0)$ with $f(0)=0$ and $f^{\prime}(0)=1$. Can you find an analytic function g (on a neighborhood of 0) such that $g(f(z))=z$? (Hint: Find a Taylor series for g.)
