Complex Variables II: Homework 3

Read Chapter 11 in Stewart and Tall.
I. Exercises 11: $\# 1$ (iii), (v), (vi); $\# 2$ (i, ii, iii) and (vi); \#6, \#14, \#17, \#22
II.:

1. Let f be analytic on the deleted neighborhood $D=\left\{z: 0<\left|z-z_{o}\right|<R\right\}$ except at an infinite sequence of poles $\left\{a_{n}\right\}$ in D such that $a_{n} \rightarrow z_{o}$. Show that for any $w \in \mathbb{C}$ there is a sequence $\left\{z_{n}\right\}$ in D such that $z_{n} \rightarrow z_{o}$ and $f\left(z_{n}\right) \rightarrow w$.
2. Prove a stronger version of the Casorati-Weierstrass Theorem: Assume f has an essential singularity at z_{0}. Let $w \in \mathbb{C}$ and $\epsilon>0$ be given. Then, for any $\delta>0$, there exists $\alpha \in \mathbb{C}$ with $|w-\alpha|<\epsilon$, such that $f(z)=\alpha$ has infinitely many solutions in $N_{z_{o}}(\delta)$.
3. Show that an isolated singularity of $f(z)$ cannot be a pole of $\exp \{f(z)\}$.
4. The expression

$$
\{f, z\}=\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

is called the Schwarzian derivative of f. If f has an zero of order m, what is the smallest power of $z-z_{o}$ in the Laurent expansion of $\{f, z\}$? What if f has a pole of order m ?
5. Assume f is analytic on $N_{1}(0)$ with $f(0)=0$ and $f^{\prime}(0)=1$. Can you find an analytic function g (on a neighborhood of 0) such that $g(f(z))=z$? (Hint: Find a Taylor series for g.)

