Complex Variables II: Homework 4

Read Chapter 12 in Stewart and Tall.
I. Exercises 12: \#2 (ii), (iii), (iv) and (v); \#4; \#6; \#7, \#14, \#19; \#26; \#27
II.:

1. Let z_{o} be an isolated singularity of f. We saw in class that if $\lim _{z \rightarrow z_{o}}\left(z-z_{o}\right) f(z)=0$, then z_{o} is a removable singularity. For this problem, assume z_{o} is an isolated singularity of f, and let $D=N_{R}\left(z_{o}\right) \backslash\left\{z_{o}\right\}$ be a deleted neighborhood on which f is analytic. Prove that if

$$
\iint_{D}|f(z)|^{2} d x d y<\infty
$$

then z_{o} is a removable singularity. Hint: Using polar coordinates and the Cauchy integral formula, prove that for any analytic function h on a disc $N_{\epsilon}(w)$,

$$
|h(w)|^{2} \leq \frac{1}{\pi \epsilon^{2}} \iint_{N_{\epsilon}(w)}|h(z)|^{2} d x d y
$$

Then, show that f cannot have an essential singularity or a pole.
2. Assume f and g are analytic on a disc $N_{R}\left(z_{o}\right)$. Assume the only zeros of g are at $z_{1}, z_{2}, \ldots, z_{n}$ and they are all of order 1. Compute

$$
\frac{1}{2 \pi i} \int_{C_{R}\left(z_{o}\right)} \frac{f(z)}{g(z)} d z
$$

in terms of $f\left(z_{1}\right), \ldots, f\left(z_{n}\right)$ and $g^{\prime}\left(z_{1}\right), \ldots, g^{\prime}\left(z_{n}\right)$. What changes in your formula if the orders of the zeros can be greater than 1 ?
3. Assume f is analytic and bounded on the unit disc. Fix $|w|<1$. Show that

$$
f(w)=\frac{1}{\pi} \iint_{N_{1}(0)} \frac{f(z)}{(1-\bar{z} w)^{2}} d x d y .
$$

Hint: Start by rewriting the integral using polar coordinates.

