Complex Variables II: Homework 5

Re-read Chapter 12 in Stewart and Tall. Turn in the following problems (the starred ones are optional.)

I. Exercises 12: #21, #22, #23, #24, #25*

II.:

1. Let f and g be analytic on $\overline{N_1(0)}$. Assume that the zeros of f are at $z_1, z_2, ..., z_k$ in $N_1(0)$ and that f has no zeros on the circle $C_1(0)$. Compute

$$\frac{1}{2\pi i} \int_{C_1} \frac{f'(z)}{f(z)} g(z) \, dz.$$

2. For each fixed integer n and each $0 \le k \le n$, give an example of a sequence of analytic functions $f_j : N_1(0) \to \mathbb{C}$ that converge uniformly on compact sets in the unit disc to a limit f_o with the following properties: Each f_j has at least n roots in the unit disc (counting multiplicities); but f_o has exactly k roots (counting multiplicities). What assumption can you add to guarantee that the limit f_o does have n roots?

3. (a) Prove that if p(z) is a polynomial and all the zeros of p(z) are contained in a disc $N_r(0)$, then all of the zeros of p'(z) are also contained in $N_r(0)$. (Hint: Compute $\frac{p'(z)}{p(z)}$.)

(b) If f(z) is an analytic function that has n zeros in a disc, can you say anything about the zeros of f'(z)?

4^{*}. Prove that if f is analytic on $\overline{N_1(0)}$ and f is one-to-one on the boundary $C_1(0)$, then f is one-to-one on $\overline{N_1(0)}$.

5^{*}. Assume that if f is analytic on a domain D and f is invertible on D. Fix $z_o \in \mathbb{D}$ and let $w_o = f(z_o)$. Prove that if $\delta > 0$ is sufficiently small, then

$$f^{-1}(w) = \frac{1}{2\pi i} \int_{C_{\delta}(z_o)} \frac{zf'(z)}{f(z) - w} \, dw$$

for all $w \in N_{\epsilon}(w_{\alpha})$ for some ϵ sufficiently small.

We can use this to find the same Taylor series expansion for $f^{-1}(w)$ that we found on a previous homework: Differentiate the above formula and show that

$$(f^{-1})'(w) = \frac{1}{2\pi i} \int_{C_{\delta}(z_o)} \left(\frac{1}{f(z) - w_o}\right) \left(1 - \frac{w - w_o}{f(z) - w_o}\right)^{-1} dz.$$

Use a geometric series to expand the integrand, and integrate term-by term to obtain a sum for $(f^{-1})'(w)$. Let $f^{-1}(w) = \sum_{n=0}^{\infty} a_n (w - w_o)^n$, and find a formula for the coefficients a_n .