Complex Variables II: Homework 5

Re-read Chapter 12 in Stewart and Tall. Turn in the following problems (the starred ones are optional.)
I. Exercises 12: $\# 21, \# 22, \# 23, \# 24, \# 25^{*}$
II.:

1. Let f and g be analytic on $\overline{N_{1}(0)}$. Assume that the zeros of f are at $z_{1}, z_{2}, \ldots, z_{k}$ in $N_{1}(0)$ and that f has no zeros on the circle $C_{1}(0)$. Compute

$$
\frac{1}{2 \pi i} \int_{C_{1}} \frac{f^{\prime}(z)}{f(z)} g(z) d z
$$

2. For each fixed integer n and each $0 \leq k \leq n$, give an example of a sequence of analytic functions $f_{j}: N_{1}(0) \rightarrow \mathbb{C}$ that converge uniformly on compact sets in the unit disc to a limit f_{o} with the following properties: Each f_{j} has at least n roots in the unit disc (counting multiplicities); but f_{o} has exactly k roots (counting multiplicities). What assumption can you add to guarantee that the limit f_{o} does have n roots?
3. (a) Prove that if $p(z)$ is a polynomial and all the zeros of $p(z)$ are contained in a disc $N_{r}(0)$, then all of the zeros of $p^{\prime}(z)$ are also contained in $N_{r}(0)$. (Hint: Compute $\frac{p^{\prime}(z)}{p(z)}$.)
(b) If $f(z)$ is an analytic function that has n zeros in a disc, can you say anything about the zeros of $f^{\prime}(z)$?

4*. Prove that if f is analytic on $\overline{N_{1}(0)}$ and f is one-to-one on the boundary $C_{1}(0)$, then f is one-to-one on $\overline{N_{1}(0)}$.

5*. Assume that if f is analytic on a domain D and f is invertible on D. Fix $z_{o} \in \mathbb{D}$ and let $w_{o}=f\left(z_{o}\right)$. Prove that if $\delta>0$ is sufficiently small, then

$$
f^{-1}(w)=\frac{1}{2 \pi i} \int_{C_{\delta}\left(z_{o}\right)} \frac{z f^{\prime}(z)}{f(z)-w} d w
$$

for all $w \in N_{\epsilon}\left(w_{o}\right)$ for some ϵ sufficiently small.
We can use this to find the same Taylor series expansion for $f^{-1}(w)$ that we found on a previous homework: Differentiate the above formula and show that

$$
\left(f^{-1}\right)^{\prime}(w)=\frac{1}{2 \pi i} \int_{C_{\delta}\left(z_{o}\right)}\left(\frac{1}{f(z)-w_{o}}\right)\left(1-\frac{w-w_{o}}{f(z)-w_{o}}\right)^{-1} d z
$$

Use a geometric series to expand the integrand, and integrate term-by term to obtain a sum for $\left(f^{-1}\right)^{\prime}(w)$. Let $f^{-1}(w)=\sum_{n=0}^{\infty} a_{n}\left(w-w_{o}\right)^{n}$, and find a formula for the coefficients a_{n}.

