Complex Variables II: Homework 6

Read Chapter 13 in Stewart and Tall.
I. Exercises 13: \#1; \#12; \#13(i), (iii), (vi); \#14; \#15
II.:

1. Find a conformal map f that maps the domain between the circles $|z|=1$ and $\left|z-\frac{1}{4}\right|=\frac{1}{4}$ onto an annulus $a<|z|<1$.
2. Find a conformal map f between the domain D onto the domain S.
(i) $D=\{z=x+i y:-2<x<1\} ; S=N_{1}(0)$
(ii) $D=S=\{z=x+i y: y>0\}$; also choose f s.t. $f(-2)=-1, f(0)=0, f(2)=2$.
(iii) $D=\left\{z=r e^{i \theta}: r>0\right.$ and $\left.0<\theta<\frac{\pi}{4}\right\} ; T=\{x+i y: 0<y<1\}$
(iv) $D=N_{1}(0) \backslash\{z=x+i y: y=0$ and $x>0\} ; S=N_{1}(0)$
3. Suppose f_{1} and f_{2} are both conformal maps from a domain D onto the unit disc. Also assume that for some $z_{o} \in D$, we know that $f_{1}\left(z_{o}\right)=f_{2}\left(z_{o}\right)=0$ and $f_{1}^{\prime}\left(z_{o}\right), f_{2}^{\prime}\left(z_{o}\right)$ are both real and strictly positive. Prove that $f_{1} \equiv f_{2}$.
4. Fix any four distinct points $z_{1}, z_{2}, z_{3}, z_{4}$. Show you can find a value k and a linear fractional transformation such that $z_{1}, z_{2}, z_{3}, z_{4}$ are mapped into $1,-1, k,-k$. How many solutions are there?
5. Let $z_{1}, z_{2}, z_{3}, z_{4}$ be four distinct points. Prove that the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle or on a straight line.
6 . Let a be a complex number with $|a|<1$. Define

$$
L(z)=\phi_{a}(z)=\frac{z-a}{1-\bar{a} z} .
$$

Consider the sequence $L_{1}=L ; L_{n+1}=L \circ L_{n}$ for $n \geq 1$. Assuming $L_{\infty}=\lim _{n \rightarrow \infty} L_{n}$ exists, find the function L_{∞}.

