Complex Variables II: Homework 6

Read Chapter 13 in Stewart and Tall.

I. Exercises 13: #1; #12; #13(i), (iii), (vi); #14; #15

II.:

1. Find a conformal map f that maps the domain between the circles |z| = 1 and $|z - \frac{1}{4}| = \frac{1}{4}$ onto an annulus a < |z| < 1.

2. Find a conformal map f between the domain D onto the domain S.

(i)
$$D = \{z = x + iy : -2 < x < 1\}; S = N_1(0)$$

(ii) $D = S = \{z = x + iy : y > 0\};$ also choose f s.t. $f(-2) = -1, f(0) = 0, f(2) = 2.$
(iii) $D = \{z = re^{i\theta} : r > 0 \text{ and } 0 < \theta < \frac{\pi}{4}\}; T = \{x + iy : 0 < y < 1\}$
(iv) $D = N_1(0) \setminus \{z = x + iy : y = 0 \text{ and } x > 0\}; S = N_1(0)$

3. Suppose f_1 and f_2 are both conformal maps from a domain D onto the unit disc. Also assume that for some $z_o \in D$, we know that $f_1(z_o) = f_2(z_o) = 0$ and $f'_1(z_o)$, $f'_2(z_o)$ are both real and strictly positive. Prove that $f_1 \equiv f_2$.

4. Fix any four distinct points z_1, z_2, z_3, z_4 . Show you can find a value k and a linear fractional transformation such that z_1, z_2, z_3, z_4 are mapped into 1, -1, k, -k. How many solutions are there?

5. Let z_1, z_2, z_3, z_4 be four distinct points. Prove that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or on a straight line. 6. Let *a* be a complex number with |a| < 1. Define

$$L(z) = \phi_a(z) = \frac{z-a}{1-\bar{a}z}.$$

Consider the sequence $L_1 = L$; $L_{n+1} = L \circ L_n$ for $n \ge 1$. Assuming $L_{\infty} = \lim_{n \to \infty} L_n$ exists, find the function L_{∞} .