Complex Variables II: Homework 8

Read Chapter 14 in Stewart and Tall.

I. Exercises 14: #2, #5, #7, #9, #20

II.:

1. Prove that $\prod_{k=0}^{\infty} (1+z^{2^k})$ converges uniformly to $\frac{1}{1-z}$ in |z| < 1.

2. Define a function that is analytic in |z| < 1 such that f(z) = 0 if and only if $z = 1 - \frac{1}{k}$ for all k = 1, 2, 3, ...

3. Prove that

$$\cos(\pi z) = \prod_{k=0}^{\infty} \left(1 - \frac{4z^2}{(2k+1)^2} \right)$$

4. Let f(z) be a function with genus 0 or 1 and assume that f(z) has only real zeros and also that f(z) is real on the real axis. Prove that all the zeros of f'(z) are real. Hint: Consider Im $\left(\frac{f'(z)}{f(z)}\right)$.