Complex Variables II: Homework 8

Read Chapter 14 in Stewart and Tall.
I. Exercises 14: $\# 2, \# 5, \# 7, \# 9, \# 20$
II.:

1. Prove that $\prod_{k=0}^{\infty}\left(1+z^{2^{k}}\right)$ converges uniformly to $\frac{1}{1-z}$ in $|z|<1$.
2. Define a function that is analytic in $|z|<1$ such that $f(z)=0$ if and only if $z=1-\frac{1}{k}$ for all $k=1,2,3, \ldots$
3. Prove that

$$
\cos (\pi z)=\prod_{k=0}^{\infty}\left(1-\frac{4 z^{2}}{(2 k+1)^{2}}\right)
$$

4. Let $f(z)$ be a function with genus 0 or 1 and assume that $f(z)$ has only real zeros and also that $f(z)$ is real on the real axis. Prove that all the zeros of $f^{\prime}(z)$ are real. Hint: Consider $\operatorname{Im}\left(\frac{f^{\prime}(z)}{f(z)}\right)$.
