Complex Variables II: Optional Final Homework

1. (a) Classify the types of isolated singularities of a function in terms of the limiting behavior of the function near the singularity.
(b) Let $R(z)$ be a rational function. Assume f is a meromorphic function, with poles at $a_{1}, a_{2}, \ldots, a_{n}$. Prove that if $|f(z)| \leq|R(z)|$ for all z at which both functions are defined, then $f \equiv c R$ for some constant $c \in \mathbb{C}$. (State the names of any theorems you use to prove this!)
2. Find the Taylor series of $\frac{z-1}{z^{2}}$ around $z_{o}=1$. What is the radius of convergence? Outside the circle of convergence, find the Laurent series for this function.
3. Suppose f is analytic on some deleted neighborhood $N_{r}(0) \backslash\{0\}$. Let $g_{k}(z)=z^{-k} f(z)$. Prove that if $\operatorname{Res}\left(g_{k}, 0\right)=0$ for every $k \in \mathbb{Z}$, then $f \equiv 0$. Give an example of $f \not \equiv 0$ such that $\operatorname{Res}\left(g_{k}, 0\right)=0$ for every $k=0,1,2,3, \ldots$.
4. (a) Find the residue of $\frac{e^{z}}{(z-5)^{4}}$ at $z=5$.
(b) Find the value of the integral $\int_{C} \frac{2 z^{3}-3}{(z-3)\left(z^{2}+9\right)} d z$ around each of the following circles: (i) $|z-2|=2$, (ii) $|z+2|=2$, (iii) $|z|=4$.
5. Calculate the following integral using residues (justify all your steps):

$$
\int_{0}^{\infty} \frac{\cos (x)-1}{x^{2}} d x
$$

6. (a) Find a conformal map from the open unit square $(0,1) \times(0,1)$ to the region in the upper half plane intersected with some annulus $0<r<|z|<R$. (You can choose the values of r and R.)
(b) Find a conformal map from the following infinite strip with a cut to the upper half plane: $S=\{z=x+i y \mid-1<y<1\} \backslash\{z=x+i y: y=0$ and $x \geq 0\}$.
7. State both Picard's little theorem and Picard's big theorem. Assume the big theorem and use it to prove the little theorem.
