Math CS-120: Homework 5

Read Chapter 6 in Stewart and Tall.

I. Exercises 6: #2, #4, #5, #9, #10, #12, #15

II.:

1. Let $f(z) = |z|^2$. Use the Cauchy-Riemann equations to prove that f does not have an antiderivative. Compute the integrals $\int_{\gamma} f$ and $\int_{\alpha} f$ where γ is the path [1, i] and α is the contour [1, i + 1] + [i + 1, i].

2. Let $D \subseteq \mathbb{C}$ be a domain and let γ be a contour in D. If $f_n : D \to \mathbb{C}$ is a sequence of continuous functions such that $f_n \to f$ converges uniformly on D, show that

$$\int_{\gamma} f(z) \, dz = \lim_{n \to \infty} \int_{\gamma} f_n(z) \, dz.$$

3. Let $\gamma_r(t) = re^{it}$ for $t \in [0, \pi]$. Prove that

$$\lim_{r \to \infty} \int_{\gamma_r} \frac{e^{iz}}{z} \, dz = 0.$$

4. If f is a continuous, *real-valued* function on a domain containing the circle |z| = 1, and if $|f(z)| \leq 1$, prove that

$$\left|\int_{\gamma} f\right| \le 4.$$

(where γ is a simple, closed path whose image is the unit circle.)

5. Assume f(z) is analytic (and that f'(z) is continuous) in a domain D. Let γ be a *closed* path in D.

(a) Show that $\int_{\gamma} \overline{f(z)} f'(z) dz$ is imaginary.

(b) Show that, if
$$|f(z) - 1| < 1$$
 for all $z \in D$, then $\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$.

6. We can define integration with respect to $d\bar{z}$ by $\int_{\gamma} f(z) d\bar{z} = \int_{\gamma} \overline{f(z)} dz$ This allows us to define regular path integrals in terms of complex integrals by the formulas

$$\int_{\gamma} f \, dx = \frac{1}{2} \left(\int_{\gamma} f \, dz + \int_{\gamma} f \, d\bar{z} \right); \quad \int_{\gamma} f \, dy = \frac{1}{2i} \left(\int_{\gamma} f \, dz - \int_{\gamma} f \, d\bar{z} \right).$$

Let p(z) be a polynomial, and γ be a simple, closed path whose image is the (counterclockwise oriented) circle $|z - z_o| = r$. What is the value of $\int_{\gamma} p(z) d\bar{z}$?