Math CS-120: Homework 5

Read Chapter 6 in Stewart and Tall.
I. Exercises 6: $\# 2, \# 4, \# 5, \# 9, \# 10, \# 12, \# 15$
II.:

1. Let $f(z)=|z|^{2}$. Use the Cauchy-Riemann equations to prove that f does not have an antiderivative. Compute the integrals $\int_{\gamma} f$ and $\int_{\alpha} f$ where γ is the path $[1, i]$ and α is the contour $[1, i+1]+[i+1, i]$.
2. Let $D \subseteq \mathbb{C}$ be a domain and let γ be a contour in D. If $f_{n}: D \rightarrow \mathbb{C}$ is a sequence of continuous functions such that $f_{n} \rightarrow f$ converges uniformly on D , show that

$$
\int_{\gamma} f(z) d z=\lim _{n \rightarrow \infty} \int_{\gamma} f_{n}(z) d z
$$

3. Let $\gamma_{r}(t)=r e^{i t}$ for $t \in[0, \pi]$. Prove that

$$
\lim _{r \rightarrow \infty} \int_{\gamma_{r}} \frac{e^{i z}}{z} d z=0
$$

4. If f is a continuous, real-valued function on a domain containing the circle $|z|=1$, and if $|f(z)| \leq 1$, prove that

$$
\left|\int_{\gamma} f\right| \leq 4
$$

(where γ is a simple, closed path whose image is the unit circle.)
5. Assume $f(z)$ is analytic (and that $f^{\prime}(z)$ is continuous) in a domain D. Let γ be a closed path in D.
(a) Show that $\int_{\gamma} \overline{f(z)} f^{\prime}(z) d z$ is imaginary.
(b) Show that, if $|f(z)-1|<1$ for all $z \in D$, then $\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0$.
6. We can define integration with respect to $d \bar{z}$ by $\int_{\gamma} f(z) d \bar{z}=\overline{\int_{\gamma} \overline{f(z)}} d z$

This allows us to define regular path integrals in terms of complex integrals by the formulas

$$
\int_{\gamma} f d x=\frac{1}{2}\left(\int_{\gamma} f d z+\int_{\gamma} f d \bar{z}\right) ; \quad \int_{\gamma} f d y=\frac{1}{2 i}\left(\int_{\gamma} f d z-\int_{\gamma} f d \bar{z}\right) .
$$

Let $p(z)$ be a polynomial, and γ be a simple, closed path whose image is the (counterclockwise oriented) circle $\left|z-z_{o}\right|=r$. What is the value of $\int_{\gamma} p(z) d \bar{z}$?

