Math CS-120: Homework 7

Read Chapters 8 and 9 in Stewart and Tall.

I. Exercises 8: #5, #7

II. Exercises 9: #2, #4, #5, #7, #8, #10, #11

III.:

1. Let γ be a closed contour. Suppose ϕ is a continuous function on γ . Prove that, for all $n \geq 1$,

$$F_n(z) = \int_{\gamma} \frac{\phi(w)}{(w-z)^n} \, dw$$

is analytic for all z. (Hint: Show that $F'_n(z) = nF_{n+1}(z)$.)

(Note that this rigorously proves that, for any function f analytic on a general domain, f is infinitely differentiable on the domain! This is because we have already proven Cauchy's integral formula, which implies the representation formula $f(z) = \frac{1}{2\pi i} \int_C \frac{f(w)}{(w-z)} dw$ (for z inside C, where C is a circle inside a disc on which f is analytic.)

2. More generally than #1: Let D be a domain and $\phi(z,t)$ be a continuous function on $D \times [a,b]$. Assume that $\phi_t(z) = \phi(z,t)$ is analytic on D for each fixed t. Prove that

$$F(z) = \int_{a}^{b} \phi(z,t) \, dt$$

is analytic on D, and that

$$F'(z) = \int_a^b \phi_t'(z) \, dt.$$

(*Hint: Use the representation formula to write* ϕ_t *as an integral.*)

3. Define

$$f(z) = \frac{1}{\pi} \int_0^1 r\left(\int_{-\pi}^{\pi} \frac{1}{re^{i\theta} + z} \, d\theta\right) \, dr$$

Show that for |z| < 1, $f(z) = \overline{z}$ and that for $|z| \ge 1$, $f(z) = \frac{1}{z}$. Notice that f is continuous, but not analytic! Why doesn't this contradict #2? (*Hint:* What's $\phi(z, r)$ in this integral?)