## Helena McGahagan

Webwork problems from Stewart (5th. ed.).

### **1.**(1 pt)

*e* is defined as the value of *a* such that the slope of the tangent line at x = 0 on the graph of  $y = a^x$  is exactly 1. What is the approximate value of *e* accurate to five decimal places?

#### 2.(1 pt)

Which of the following explains how to obtain the graph of  $y = 4^{x-3}$  from the graph of  $y = 4^x$ ?

(a) Shift the graph of  $y = 4^x$  up 3 units.

(b) Shift the graph of  $y = 4^x$  down 3 units.

(c) Shift the graph of  $y = 4^x$  to the left 3 units.

(d) Shift the graph of  $y = 4^x$  to the right 3 units.

#### **3.**(1 pt)

Which of the following explains how to obtain the graph of  $y = -2^{-x}$  from the graph of  $y = 2^{x}$ ?

(a) Reflect the graph of  $y = 2^x$  about the y-axis and then reflect this result about the x-axis.

- (b) Reflect the graph of  $y = 2^{-x}$  about the y-axis.
- (c) None of the above.

#### **4.**(1 pt)

Find the domain of each function. If the answer is all real numbers, enter "r" below.

(a)  $f(x) = \frac{1}{1+e^{x}}$ (b)  $f(x) = \frac{1}{1-e^{x}}$ (a) x =\_\_\_\_\_ (b)  $x \neq$ 

**5.**(1 pt)

Find the domain of each function. If the answer is all real numbers, enter "r" below.

(a)  $g(t) = \sin e^{-t}$ 

(b)  $g(t) = \sqrt{1 - 2^t}$ 

(a) 
$$x =$$

**6.**(1 pt)

Find the exponential function  $f(x) = Ca^x$  whose graph is given below.



# Math 3A Section 2 Fall 2010

WeBWorK assignment 1 due 10/2/05 at 11:59 PM.

**7.**(1 pt) If  $f(x) = 5^x$ , find  $\frac{f(x+h) - f(x)}{h}$ .

### **8.**(1 pt)

How can you tell from the graph of a function whether it is one-to-one?

(a) Use the Vertical Line Test.

(b) Use the Horizontal Line Test.

(c) None of the above.

#### **9.**(1 pt)

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one. If it is one-to-one, enter "y" below. If not, enter "n" below.

 $f(x) = \frac{1}{2}(x+5)$ 

## **10.**(1 pt)

A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one. If it is one-to-one, enter "y" below. If not, enter "n" below.

$$f(x) = 1 + 4x - x^2$$

11.(1 pt) If f is a one-to-one function such that f(2) = 4, what is  $\frac{f(2)}{f(2)} = 4$ .

**12.**(1 pt)  
If 
$$g(x) = 3 + x + e^x$$
, find  $g^{-1}(4)$ .

**13.**(1 pt)

Find the exact value of each expression.

(a)  $\log_2 64$ (b)  $\log_6 \frac{1}{36}$ (a) \_\_\_\_\_(b) \_\_\_\_\_(b) \_\_\_\_(c) = 0.000

(b)

x <

**14.**(1 pt) Find the exact value of each expression.

(a) 
$$\log_8 2$$
  
(b)  $\ln e^{\sqrt{2}}$   
(a) \_\_\_\_\_  
(b) \_\_\_\_\_

**15.**(1 pt)

Find the exact value of each expression.

(a)  $2^{\log_2 3 + \log_2 5}$ (b)  $e^{3 \ln 2}$ (a) \_\_\_\_\_ (b) \_\_\_\_\_

**16.**(1 pt)

Express the given quantity as a single logarithm.

 $2\ln 4 - \ln 2$ 

## **17.**(1 pt)

Express the given quantity as a single logarithm.

 $\ln x + 6 \ln y - 5 \ln z$ 

**18.**(1 pt)

Solve each equation for *x*.

(a)  $5 \ln x = 1$ 

(b)  $e^{-x} = 9$ 

(a) \_\_\_\_\_

(b)\_\_\_\_\_

## **19.**(1 pt)

Solve each equation for *x*.

(a)  $e^{2x+3} = 2$ 

(b)  $\ln(5-2x) = -9$ 

(a) \_\_\_\_\_

(b)\_\_\_\_\_

**20.**(1 pt) Solve each equation for *x*.

(a)  $\ln(\ln x) = 1$ (b)  $e^{8x} = 7e^{-x}$ (a) \_\_\_\_\_\_ (b) \_\_\_\_\_

## **21.**(1 pt)

If a ball is thrown into the air with a velocity of 40 ft/s, its height in feet after t seconds is given by  $y = 40t - 16t^2$ .

(a) Find the average velocity for the time period beginning with t = 2:

(1) .5 second

(2) .1 second

(3) .05 second

(4) .01 second

(b) Find the instantaneous velocity when t = 2.

| (1) | ft/s |
|-----|------|
| (2) | ft/s |
| (3) | ft/s |
| (4) | ft/s |
| (b) | ft/s |

## **22.**(1 pt)

The position of a car is given by the values in the table.

| t (seconds) | 0 | 1  | 2  | 3  | 4   | 5   |
|-------------|---|----|----|----|-----|-----|
| s (feet)    | 0 | 10 | 32 | 70 | 119 | 178 |

Find the average velocity for the time period beginning when t = 2 and lasting

(1) 3 seconds, (2) 2 seconds, (3) 1 second

(Using the graph, one can estimate the instantaneous velocity when t = 2 to be about 28 ft/s.)

| (1) | ft/s |
|-----|------|
| (2) | ft/s |
| (3) | ft/s |