Math 108b: Notes 1/14/11

DEFINITIONS:
The A;; minor of an n x n matrix A is defined to be the (n — 1) x (n — 1) matrix defined
by removing the i*" row and the j** column of A.

The determinant of a matrix is a recursively defined function that takes n x n matrices to
scalars:
(i) For n = 1, define, for any matrix A = (aq1), det A = ay;.
(ii) Once the determinant is defined for all (n — 1) x (n — 1) matrices, define it for all
n X n matrices A by

det A = Z(_1>1+ja1j det Alj
j=1

Notice this gives the right definition for 2 x 2 matrices! As you know, you can think of this
definition as an expansion along the first row of A; we can eventually prove that exrpanding
along any row or column gives the same result.

THEOREM 4.3 The determinant is an n—linear function.

This means that for every n x n matrix A over the field F', which we can write as

where the a; are (row) vectors in F", the determinant is linear in each row. In other words,
if a, = u+ kv for some 1 < r <n and some u,v € F™ and some scalar k € F', then

ay ay ay
[ Ar_1 Apr—1

(%) det A=det | u+kv | =det u + kdet v
Qpy1 Qp 41 Qyp 1

ay an, an,

Proof by induction:
Base case: n = 1. Let A € My (F) be given. In this case, A = (a;), where a; € F*.
Suppose that a; = u + kv for some u,v € F'* and some scalar k € F. Then,

det A =ay = u+ kv = det(u) + kdet(v).

Therefore the result () holds for all 1 x 1 matrices.



Inductive step: Assume (IH): for every A € Mpy,—1)xm-1)(F), with rows ay, as, ..., @1, if
1<r<n-1anda =u+ kv for some u,v € F*! and some k € F, then the result (*)
holds.

Now, we shall prove the result for all n x n matrices. Let A € M,x,(F). Write the
rows of A as ay,as,...,a, € F". Suppose that for some r, 1 < r < n, a, = u + kv where
u,v € F™ are (row) vectors and k € F. (Notice this means we can write u = (uq, ug, ..., uy)
and v = (vy, Vg, ..., v,) for u;, v; € F.) We want to show (*); defining the matrices

ay ay
Ar—1 Ar—1
B = u and C = v ,
Q41 Q41
Ay, ap

(%) becomes det A = det B + kdet C. We prove this for the two cases r = 1 and r # 1:

Case 1. r = 1.

In this case, the matrices A, B, and C only differ in the first row. Therefore, the minor
defined by removing the first row are all the same: That is, fllj = Blj = élj for each
1 < j < n. Note that the first row a1 = u + kv = (ug + kv, us + kve, ..., u, + kv,), so
a1; = u; + kvj. Then, computing from the definition of determinant,

det A = Z(—1)1+j(uj + kvj)det Ay; = Z(—l)HjUj det Ay, + Z(—l)lHkUj det A,
j=1 j=1 j=1
= Z(—l)lJrjUj det Blj + k Z(—1>1+j1}j det CN’lj =det B + k det C,

j=1 j=1

since the two sums above represent exactly the definitions of det B and det C', expanding
along the first rows (note the first row of B is the vector u, and the first row of C' is the
vector v).

Case 2. 1 <r<n. 3
In this case, note that for each fixed 1 < j <n, we can write the minor A;; as follows:

where G5 = (1, ..., Qs(j—1); As(j+1)s - Gn) — that is, remove the j™ entry in the column
as. (Similarly, define @ = (w1, ..., uj_1, Ujt1, ..., Up) a0d U = (V1 ..., Vj_1, Vjt1, -0, Up)). 1f
B is the matrix corresponding to replacing the 7" row of A by u and C is the matrix



corresponding to replacing the 7" row of A by v (as above), then clearly removing the
1% row and j* column yields the minors

asz a2
5 dr—l 5 dr—l
Blj = U and Clj = v
Qr41 Q41
an dn

Since Ay is an (n — 1) x (n — 1) matrix with 7" row @, = @ + ko, (IH) implies that
det Alj = det Blj —+ k det élj-

Therefore, computing,

det A = Z(—1)1+j(a1j) det Alj = Z(—l)lﬂalj(det B~1j + k det dlj)

J=1 J=1

= Y (-1)"™u;det By + kY (—1)"Vv;det Cyj = det B+ kdet C. O

J=1 J=1

THEOREM 4.5 The determinant is an alternating function.

This means that interchanging any two rows of a matrix changes its determinant by a minus
sign. In other words, given any A € M, (F), fix 1 <r < s < n. Writing the rows of A as
Ay ey Gy ey gy ey Gy

aq aq

Gy Qs
det A = det : = —det

s a,

ap, ap,

Proof. A full proof is given in the book (using the results of the theorems leading up to
Theorem 4.5). As an exercise, you should be able to write down a direct inductive proof of
this result, at least for the case r # 1!

Notice that the above theorem directly implies that, if two rows of A are identical, then
det A = 0. We can extend this to say that if B is the matrix obtained adding a multiple of
one row of A to another row of A (in other words, B = F'A, for E' an elementary matrix of
type 3!), then det B = det A:

Proof: Given A € M,y (F), write the rows of A as ay,as, ...,a,. Now, suppose B has
TOWS @1, ..., As5_1,0s + Ky, Qsi1, ..., ay, for some 1 < r;s < n (r # s) and some k € F.



Then, by the n-linearity of the determinant:

det B = det

a1
As—1
as + ka,

As41

Qn

= det

a1
As—1
Qs

Qg1

Qn

+ k det

aj
As—1
a?”

Q541

an

=detA+0

since the second matrix has two identical rows (namely, a, must appear twice!) O

Therefore, since the determinant is alternating and n-linear, we have that:

e for elementary matrices of type 1, det £ = —det [ = —1

(recall, for type 1, E is the identity matriz with two rows exchanged)

o for elementary matrices of type 2, det E = kdet I = k
(where k # 0 is the constant multiplying one of the rows of the identity matrix)

e for elementary matrices of type 3, det E = det I = 1.



