
Math 108b: Notes 2/14/11

We have learned that not every linear operator T on a finite dimensional vector space is
diagonalizable. In other words, we can’t always find a basis of eigenvectors that makes [T ]β
a diagonal matrix. In fact, we know it’s only possible when the characteristic polynomial
splits and the dimensions of the eigenspaces are large enough!

Still, we would like to be able to take any linear operator T on a finite dimensional space and
find a “good” basis – i.e., a basis in which [T ]β is “almost” diagonal. (We will still need the
characteristic polynomial to split to have any hope of being able to do this.) What should
“almost” diagonal mean? Recall our simple example of a matrix that is not diagonalizable
to motivate the following definition:

Definition A matrix J ∈ Mn×n(F ) is in Jordan canonical form if

J =


A1 0 · · · 0
0 A2 · · · 0
...

...
...

...
0 0 · · · Ak

 ,

where each Ai is a Jordan block matrix – that is, each Ai is a square matrix with a constant
λi on the diagonal and 1’s on the off-diagonal:

Ai =


λi 1 0 ... 0 0
0 λi 1 ... 0 0
...

...
0 0 0 ... λi 1
0 0 0 ... 0 λi


Examples
1. A diagonal matrix is in Jordan canonical form – each block is just the 1× 1 matrix (aii).

2. Locate each block matrix in the following matrix A, which is in Jordan canonical form:

A =



2 1 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 3 1 0 0
0 0 0 0 0 3 1 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 5


Notice that we can easily compute the characteristic polynomial of a matrix in Jordan form.
For example, for the above matrix, f(t) = det(A− tI) = (2− t)4(3− t)3(5− t). The diagonal



elements are therefore the eigenvalues! We will see that we can actually tell from looking
at the Jordan canonical form what the dimension of each eigenspace is! For instance, for
A, dim E2 = 3, dim E3 = 1 and dim E5 = 1. For the eigenvalue 2, name three linearly
independent eigenvectors: .

Also, is an eigenvector with eigenvalue 3 and is an eigenvector with eigenvalue
5. Therefore, we’ve found five linearly independent eigenvectors – unfortunately, it’s fairly
easy to show we can’t find any more. Therefore, we don’t have a basis of eigenvectors; this
means A cannot be diagonalized – the best we can do is leave it in the Jordan canonical form.

Jordan block matrices have a special property: If A has λ on the diagonal and 1’s on
the off-diagonal, when we look at A − λI, we have a matrix with zeros everywhere, except
on the off-diagonal! What happens when we raise this matrix to a power? E.g.,

When A is a Jordan block matrix, (A−λI)p = (the ) for some p ∈ N.

Definitions: Let T be a linear operator on a vector space V

A generalized eigenvector is a vector v ∈ V such that and
for some p ∈ N.

The generalized eigenspace corresponding to an eigenvalue λ is

Kλ = {x ∈ V : }

Theorem Properties of Kλ.
Let T ∈ L(V ), and let λ be an eigenvalue of T with multiplicity m.

(a) Kλ is a subspace of V (and, clearly, Kλ ⊇ Eλ.)
(b) Kλ is a T-invariant subspace of V .
(c) Define the operator S = T − µI. If µ 6= λ, then SKλ

(that is, the restriction of S to the
T-invariant space Kλ) is one-to-one.
(d) dim(Kλ) ≤ m
(e) Kλ = N((T − λI)m)

Proof (a) Clearly 0 ∈ Kλ, and Kλ is closed under scalar multiplication. We need only
show that Kλ is closed under vector addition:



(b) Let v ∈ Kλ. This means that . Therefore,

(c) To prove this, show that the null space of SKλ
contains only the 0 vector. For a contra-

diction, assume that

Part (d) follows since the characteristic polynomial of TKλ
is g(t) = (λ − t)d (where d =

dim Kλ) divides the characteristic polynomial of T . By definition of multiplicity, d ≤ m.
Part (e) follows from the Cayley-Hamilton theorem: g(TKλ

) = To. Therefore, for all x ∈ Kλ,
(λI − TKλ

)dx = (λI − T )dx = 0. Hence, Kλ ⊆ N((T − λI)d) ⊆ N((T − λI)m) since d ≤ m.
(From the definition of Kλ, it is clear that N((T − λI)m) ⊆ Kλ.)

Theorem If T is a linear operator on a finite dimensional vector space V such that the
characteristic polynomial of T splits, then there exists a basis β such that [T ]β is in Jordan
canonical form.

The basic idea is that if the characteristic polynomial splits, and so has k distinct eigenvalues
λ1, λ2, ..., λk with corresponding mulitplicities m1, m2, ...,mk that sum up to n = dim(V ),
then the generalized eigenspaces Kλj

will each have the full dimension dim Kλj
= mj. Then,

we can choose a basis βj of generalized eigenvectors for each generalized eigenspace, and the
union of these will be a basis of generalized eigenvectors for all of V .

Of course, [T ]β will only be diagonal if each Kλ = Eλ, so all the generalized eigenvec-
tors are true eigenvectors. This is the only way we will have a basis of all eigenvectors!

It is fairly easy to prove (see Theorems 7.3, 7.4 in your book) that there is a basis of
generalized eigenvectors. The only problem is that we still have to choose each basis βj of
Kλj

carefully in order to make sure that [T ]β will be in Jordan canonical form!

Definitions Let T be a linear operator on a vector space V and let λ be an eigenvalue of
T . Let x be a generalized eigenvector of T corresponding to the eigenvalue λ and let p be
the smallest integer such that (T − λI)p(x) = 0. The set{ }
is the cycle of generalized eigenvectors of T corresponding to λ with initial vector x.
The length of the cycle is p.



Consider Example 2. For λ = 3, note that e5, e6, and e7 are all examples of generalized eigen-
vectors. If we use e5 as the initial vector, then the cycle is simply {e5} (since (A−3I)e5 = 0).
If we use e6 as the initial vector, we find the cycle {e5, e6} (since (A− 3I)e6 = e5). Finally,
if we use e7, we find the cycle {e5, e6, e7}. This is of course the cycle we wish to use as our
basis for K3! It has the right length, and the first element of it is a true eigenvector.

For λ = 2, we would have that {e1, e2} is a cycle of generalized eigenvectors, as is {e3}
and {e4}. We have to union these three cycles together to find a good basis for K2 – this is
because there are three separate Jordan blocks for the eigenvalue 2.

Theorem Let T ∈ L(V ), and let λ be an eigenvalue of T .

(a) Every cycle of generalized eigenvectors of T is linearly independent.

(b) Assume V is finite dimensional. Then, Kλ has an ordered basis that is a union of
disjioint cycles of generalized eigenvectors corresponding to λ. In this basis, [TKλ

] is in Jor-
dan canonical form.

Proof: The proof of part (a) follows by induction on the length of the cycle, and the proof
of part (b) follows by induction on the dimension of Kλ.

(a) Every cycle of length 1 is linearly independent (note that in this case, the initial vector
must have been an eigenvector). Now assume that every cycle of length n − 1 is linearly
independent. Assume that x is a generalized eigenvector that generates a cycle of length n.
(Note this means that (T − λI)n−1(x) 6= 0 and (T − λI)nx = 0.) We want to show that{ }
is linearly independent.

Letting y = , we see that the cycle generated by y is{ }
,

which has length n − 1. Therefore, by assumption it is a linearly independent set. Now,
assume that

(?)

for some scalars a0, a1, ...an−1. We must show that these scalars are all 0. Apply
to the above equation:

Since is linearly independent, we must have that
a0 = ... = an−2 = 0. Then, (?) becomes an−1(T − λI)n−1x = 0, and since (T − λI)n−1(x) 6=
0, we have that an−1 = 0. Hence, we have shown that any cycle of length n is linearly
independent. �


