From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T^* is defined as the unique linear operator on V such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for every $x, y \in V$ – see Theorems 6.8 and 6.9.) When V is infinite dimensional, the adjoint T^* may or may not exist.

One useful fact (Theorem 6.10) is that if β is an orthonormal basis for a finite dimensional inner product space V, then $[T^*]_\beta = [T]_\beta^\dagger$. That is, the matrix representation of the operator T^* is equal to the complex conjugate of the matrix representation for T.

For a general vector space V, and a linear operator T, we have already asked the question “when is there a basis of V consisting only of eigenvectors of T?” – this is exactly when T is diagonalizable. Now, for an inner product space V, we know how to check whether vectors are orthogonal, and we know how to define the norms of vectors, so we can ask “when is there an orthonormal basis of V consisting only of eigenvectors of T?” Clearly, if there is such a basis, T is diagonalizable – and moreover, eigenvectors with distinct eigenvalues must be orthogonal.

Definitions Let V be an inner product space. Let $T \in \mathcal{L}(V)$.

(a) T is **normal** if $T^*T = TT^*$

(b) T is **self-adjoint** if $T^* = T$

For the next two definitions, assume V is finite-dimensional: Then,

(c) T is **unitary** if $F = \mathbb{C}$ and $\|T(x)\| = \|x\|$ for every $x \in V$

(d) T is **orthogonal** if $F = \mathbb{R}$ and $\|T(x)\| = \|x\|$ for every $x \in V$

Notes

1. Self-adjoint \Rightarrow Normal (Clearly, if $T^* = T$, then T^* and T commute!)

2. Unitary or Orthogonal \Rightarrow Invertible (Show that $N(T) = \{0\}$.)

3. Unitary or Orthogonal \Rightarrow Normal (This is because, when T is unitary (or orthogonal), we must have $T^*T = TT^* = I$, the identity operator on V – see Theorem 6.18.)
A simple example of an orthogonal operator is the rotation operator T_θ on \mathbb{R}^2. In the standard basis,

$$A_\theta = [T_\theta]_\beta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Notice that A is orthogonal. Also, $A^* = A^T \neq A$, so A is not self-adjoint. However, it is easy to check that $AA^* = A^*A = I$, so A is normal. If the matrix A were over the complex field, it would have an orthonormal basis of eigenvectors by the spectral theorem (see below)! However, over the reals, we see that the characteristic polynomial of A does not split (unless $\sin \theta = 0$) – therefore, there are no real eigenvalues and therefore no eigenvectors at all for the operator T_θ on \mathbb{R}^2.

Spectral Theorem 1 Let T be a linear operator on a finite dimensional complex inner product space V. Then, T is normal if and only if there exists an orthonormal basis (for V) consisting of eigenvectors of T.

Spectral Theorem 2 Let T be a linear operator on a finite dimensional real inner product space V. Then, T is self-adjoint if and only if there exists an orthonormal basis (for V) consisting of eigenvectors of T.

We’ll prove the simple direction first: Assume that there is an orthonormal basis β consisting of eigenvectors of T. Then, we know that $[T]_\beta$ is diagonal, and also that $[T^*]_\beta = [T]_\beta^*$ is diagonal. Since diagonal matrices commute, we have that

Hence, $T^*T = TT^*$, so T is normal. This holds whether $F = \mathbb{C}$ or $F = \mathbb{R}$.

We’ll see in the lemmas below that T normal implies that every eigenvector of T with eigenvalue λ is also an eigenvector of T with eigenvalue $\overline{\lambda}$. Since β is a basis of eigenvectors of either T or T^*, we have that both $[T]_\beta$ and $[T^*]_\beta$ are diagonal matrices with their eigenvalues on the diagonal. In the case $F = \mathbb{R}$, every eigenvalue of T is real, so $\lambda = \overline{\lambda}$, and we must have that $[T^*]_\beta = [T]_\beta$. Therefore, in the case of a real inner product space, we know that T is not only normal, but also self-adjoint!

Lemma (pg. 269) Let V be a finite-dimensional inner product space and $T \in \mathcal{L}(V)$. If T has an eigenvector with eigenvalue λ, then T^* has an eigenvector with eigenvalue $\overline{\lambda}$.

See the book for the proof. Note that the above lemma is true for any linear operator T – but we do not know that the eigenvectors for T and T^* are related! The next theorem states that when T is normal, we know the eigenvectors for T and T^* are the same – this is the fact we used in the proof of the spectral theorem above.
Theorem 6.15 (pg. 371) Let V be an inner product space and $T \in \mathcal{L}(V)$ be a normal operator. Then,

(c) If $T(x) = \lambda x$ (for some $x \in V$ and some $\lambda \in F$), then $T^*(x) = \bar{\lambda}x$.

(d) If λ_1 and λ_2 are distinct eigenvalues of T with eigenvectors x_1 and x_2, then $\langle x_1, x_2 \rangle = 0$.

Sketch of proof: First prove that, since T is normal, $\|T(x)\| = \|T^*(x)\|$ for every $x \in V$. Then, since $U = T - \lambda I$ is normal, and $U^* = T^* - \bar{\lambda}I$, we know that $U(x) = 0$ if and only if $U^*(x) = 0$. In other words, $T(x) = \lambda x$ if and only if $T^*(x) = \bar{\lambda}I$.

For (d), Simply compute $\lambda_1 \langle x_1, x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle$. Since $\lambda_1 \neq \lambda_2$, we must have $\langle x_1, x_2 \rangle = 0$.

We’re almost ready to finish the proof of the first spectral theorem, but first, we’ll need the following theorem:

Schur’s Theorem Let T be a linear operator on a finite-dimensional inner product space V. Suppose the characteristic polynomial of T splits. Then, there exists an orthonormal basis β for V such that the matrix $[T]_{\beta}$ is upper triangular.

Proof: Induct on $n = \dim V$. Of course, if $n = 1$, take any basis $\beta = \{x\}$ with $\|x\| = 1$. Then, $[T]_{\beta} = (a)$ (where $a = T(x)$) is upper-triangular. Now, assume the result for $n - 1$: that is, suppose that if V is any finite-dimensional inner product space with dimension $n - 1$ and if T is any linear operator such that the characteristic polynomial splits, then there exists an orthonormal basis for V such that $[T]_{\beta}$ is upper triangular. We wish to show this result for n.

Fix an $n-$dimensional inner product space V and a $T \in \mathcal{L}(V)$ such that the characteristic polynomial of T splits. This implies that T has an eigenvalue λ. Therefore, T^* has an eigenvalue $\bar{\lambda}$ (by Lemma, pg. 369). Let z be a unit eigenvector of T^*, so $T^*z = \bar{\lambda}z$. Consider the space $W = \text{span}\{z\}$. Clearly, W^\perp is $n - 1$ dimensional, and T_{W^\perp} is a linear operator on W^\perp, so by the induction hypothesis, there exists a basis γ such that $[T_{W^\perp}]_{\gamma}$ is upper-triangular. (Notice that we know that T_{W^\perp} splits since W^\perp is T–invariant! Check this fact below.)

Let $y \in W^\perp$. We want to show that $T(y)$ is in W^\perp. For every ______, compute

Finally $\beta = \gamma \cup \{z\}$ is orthonormal, and $[T]_{\beta}$ is upper-triangular: Letting $[Tz]_{\beta} = a \in F^n$,

$$[T]_{\beta} = \begin{pmatrix} [T_{W^\perp}]_{\gamma} & | & a \\ 0 & | & 0 \end{pmatrix}. \quad \square$$

Proof of Spectral Theorem 1 Assume T is normal. Since $F = \mathbb{C}$, we know (from the fundamental theorem of algebra) that the characteristic polynomial of T splits. By Schur’s theorem, we can find an orthonormal basis $\beta = \{v_1, v_2, \ldots, v_n\}$ such that $A = [T]_\beta$ is upper-triangular. Clearly v_1 is an eigenvector of T (since $T(v_1) = A_{11}v_1$.) The fact that T is normal will imply that v_2, \ldots, v_n are also eigenvectors!

Assume $v_1, v_2, \ldots, v_{k-1}$ are all eigenvectors Let $\lambda_1, \lambda_2, \ldots, \lambda_{k-1}$ be the corresponding eigenvalues. Then, since A is upper-triangular, look at the k^{th} column of A and note $A_{mk} = 0$ if $m > k$: This lets us compute

$$T(v_k) = A_{1k}v_1 + A_{2k}v_2 + \ldots A_{kk}v_k$$

From Theorem 6.15, the fact that T is normal implies that $T^*(v_j) = \bar{\lambda}_j v_j$. Since the basis is orthonormal, we have the formula $A_{jk} = \langle T(v_k), v_j \rangle$ for the coefficients in the equation above. Computing,

$$A_{jk} = \langle T(v_k), v_j \rangle = \langle v_k, T^*(v_j) \rangle = \langle v_k, \bar{\lambda}_j v_j \rangle = \lambda_j \langle v_k, v_j \rangle = 0.$$

Therefore, we have simply that $T(v_k) = A_{kk}v_k$, so v_k is an eigenvector for T.

By induction, we have shown that v_1, v_2, \ldots, v_n are all eigenvectors of T, so β is an orthonormal basis consisting of only eigenvectors of T, and the spectral theorem is proven. □

Before we can prove the second version of the spectral theorem, for $F = \mathbb{R}$, we need the following lemma:

LEMMa (pg. 373) Let T be a self-adjoint operator on a finite-dimensional inner product space V. Then the following two facts hold (whether we have $F = \mathbb{R}$ or $F = \mathbb{C}$)

(a) Every eigenvalue of T is real.

(b) The characteristic polynomial of T splits.

Proof of (a): From Theorem 6.15, if x is an eigenvalue of T, we have both $T(x) = \lambda x$ for some $\lambda \in F$ and $T^*(x) = \bar{\lambda} x$. However, since T is self-adjoint, $T(x) = T^*(x)$. Therefore, $\lambda x = \bar{\lambda} x$. Since $x \neq 0$, we have that $\lambda = \bar{\lambda}$; i.e., λ is real.

Proof of (b): When $F = \mathbb{C}$, we already know the characteristic polynomial splits. Let β be any orthonormal basis for V; we know that $A = [T]_\beta$ satisfies $A^* = A$. Define, for every $x \in \mathbb{C}^n$,

$$S(x) = Ax.$$

S has the same characteristic polynomial as T, but since S is a linear operator on a complex inner product space, we know the characteristic polynomial of S splits. Moreover, since S is self-adjoint, each eigenvalue $\lambda_1, \ldots, \lambda_n$ is real, and the polynomial $p_T(t) = p_S(t) = (\lambda_1 - t)(\lambda_2 - t)\ldots(\lambda_n - t)$ splits over the field $F = \mathbb{R}$. □
Proof of Spectral Theorem 2: Assume $F = \mathbb{R}$ and T is a self-adjoint linear operator on V. Then, the characteristic polynomial of T splits, and Schur’s theorem implies that there exists an orthonormal basis β for V such that $A = [T]_\beta$ is upper-triangular. The same proof as for the first spectral theorem now works since $T^* = T$, we know that both A and $A^T = A^* = A$ are upper triangular. Therefore, A is diagonal.

Finally, we will show the next theorem, which includes the fact that unitary (and orthogonal) operators must be normal!

Theorem 6.18 Let V be a finite dimensional inner product space and $T \in \mathcal{L}(V)$. The following are equivalent:

(a) $T^*T = TT^* = I$

(b) $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for every $x, y \in V$

(c) $\|T(x)\| = \|x\|$ for every $x \in V$

Proof:

(a) \Rightarrow (b) Assume (a) $T^*T = TT^* = I$.

Given $x, y \in V$, since $T^*T(x) = I(x) = x$, we have $\langle x, y \rangle = \langle T^*T(x), y \rangle = \langle T(x), T(y) \rangle$.

(b) \Rightarrow (e) Assume (b) $\langle x, y \rangle = \langle T(x), T(y) \rangle$ for every $x, y \in V$

Let $\beta = \{v_1, v_2, ..., v_n\}$ be an orthonormal basis for V. Then $T(\beta) = \{T(v_1), T(v_2), ..., T(v_n)\}$ is an orthonormal basis for V (since, from (b), $\langle T(v_i), T(v_j) \rangle = \langle v_i, v_j \rangle = \delta_{ij}$).

Given any $x \in V$, write $x = \sum_{i=1}^{n} a_i v_i$, we can easily compute $\|x\|^2 = \sum_{i=1}^{n} |a_i|^2$.

Since T is linear, $T(x) = \sum_{i=1}^{n} a_i T(v_i)$; the same computation shows $\|T(x)\|^2 = \sum_{i=1}^{n} |a_i|^2$.
(e) ⇒ (a) Assume (e) $\|T(x)\|^2 = \|x\|^2$ for every $x \in V$.

For all $x \in V$,

$$\langle x, x \rangle = \|x\|^2 = \|T(x)\|^2 = \langle T(x), T(x) \rangle = \langle x, T^*T(x) \rangle$$

This implies, for all $x \in V$, that

$$\langle x, (I - T^*T)(x) \rangle = 0.$$ \hspace{1cm} (\star)

Let $U = I - T^*T$. Check that U is self-adjoint: $U^* = I^* - (T^*T)^* = I - T^*T$. Then, by the spectral theorem there exists an orthonormal basis β consisting of eigenvectors of U.

For all $x \in \beta$, $U(x) = \lambda x$. By (\star), $0 = \langle x, U(x) \rangle = \bar{\lambda} \langle x, x \rangle$. Since $x \neq 0$, we must have $\lambda = 0$. This implies that $[U]_\beta$ is the zero matrix! Hence, $U = I - T^*T = T_o$ (the zero transformation on V), so $T^*T = I$. Since V is finite dimensional, this proves that T^* must be the inverse of T and therefore $TT^* = I$. \square