Math 108b: Notes on the Spectral Theorem

From section 6.3, we know that every linear operator 7" on a finite dimensional inner prod-
uct space V has an adjoint. (7" is defined as the wunique linear operator on V' such that
(T'(x),y) = (x,T*(y)) for every z,y € V — see Theroems 6.8 and 6.9.) When V is infinite
dimensional, the adjoint 7™ may or may not exist.

One useful fact (Theorem 6.10) is that if g is an orthonormal basis for a finite dimen-
sional inner product space V, then [T*]s = [T]j;. That is, the matrix representation of the
operator 1™ is equal to the complex conjugate of the matrix representation for 7T'.

For a general vector space V', and a linear operator 7', we have already asked the ques-
tion “when is there a basis of V' consisting only of eigenvectors of 77" — this is exactly when
T is diagonalizable. Now, for an inner product space V', we know how to check whether vec-
tors are orthogonal, and we know how to define the norms of vectors, so we can ask “when
is there an orthonormal basis of V' consisting only of eigenvectors of T?” Clearly, if there is
such a basis, T' is diagonalizable — and moreover, eigenvectors with distinct eigenvalues must
be orthogonal.

DEFINITIONS Let V' be an inner product space. Let T € L(V).
(a) T is normal if T*T = TT*
(b) T is self-adjoint if T* =T

For the next two definitions, assume V' is finite-dimensional: Then,
(c) T is unitary if F' = C and [|T(z)|| = ||z|| for every z € V

(d) T is orthogonal if F =R and ||T(x)|| = ||z|| for every z € V
NOTES

1. Self-adjoint = Normal (Clearly, if T* =T, then T* and T commute!)
2. Unitary or Orthogonal = Invertible (Show that N(T') = {0}.)

3. Unitary or Orthogonal = Normal (This is because, when T is unitary (or orthogonal),
we must have T*T = TT* = I, the identilty operator on V. — see Theorem 6.18.)



EXAMPLE A simple example of an orthogonal operator is the rotation operator Ty on R2. In
the standard basis,

sinf  cosf

Ag = [Tplp = (

Notice that A is orthogonal. Also, A* = AT # A, so A is not self-adjoint. However, it is
easy to check that AA* = A*A = I, so A is normal. If the matrix A were over the complex
field, it would have a orthonormal basis of eigenvectors by the spectral theorem (see below)!
However, over the reals, we see that the characteristic polynomial of A does not split (unless
sinf = 0) — therefore, there are no real eigenvalues and therefore no eigenvectors at all for
the operator Ty on R2,

cosf) —sind )

SPECTRAL THEOREM 1 Let T be a linear operator on a finite dimensional complex in-
ner product space V. Then, T is normal if and only if there exists an orthonormal basis (for
V') consisting of eigenvectors of T'.

SPECTRAL THEOREM 2 Let T be a linear operator on a finite dimensional real inner prod-
uct space V. Then, T is self-adjoint if and only if there exists an orthonormal basis (for V)
consisting of eigenvectors of T

We’ll prove the simple direction first: Assume that there is an orthonormal basis § con-
sisting of eigenvectors of T'. Then, we know that [T is diagonal, and also that [T*]s = [T}
is diagonal. Since diagonal matrices commute, we have that

[T"Tp = [T7]6[T]p = [T]6[T"]s = [TT"]s.
Hence, T*T = TT*, so T is normal. This holds whether F' = C or F' = R.

We’ll see in the lemmas below that 7" normal implies that every eigenvector of T with
eigenvalue A is also an eigenvector of T with eigenvalue . Since 3 is a basis of eigenvectors
of either T" or T*, we have that both [T]g and [T™|s are diagonal matrices with their eigen-
values on the diagonal. In the case F = R, every eigenvalue of 7T is real, so A = ), and we
must have that [T7]3 = [T]3. Therefore, in the case of a real inner product space, we know
that T is not only normal, but also self-adjoint!

LEMMA (pg. 269) Let V be a finite-dimensional inner product space and 7' € L(V). If

T has an eigenvector with eigenvalue A, then 7™ has an eigenvector with eigenvalue A

See the book for the proof. Note that the above lemma s true for any linear operator T
— but we do not know that the eigenvectors for T and T* are related! The next theorem
states that when T is normal, we know the eigenvectors for T and T™* are the same — this is
the fact we used in the proof of the spectral theorem above.



THEOREM 6.15 (pg. 371) Let V' be an inner product space and 7' € L(V) be a normal
operator. Then,

(c) If T(x) = \x (for some z € V and some \ € F), then T*(x) = Ax.
(d) If A; and Ag are distinct eigenvalues of 7" with eigenvectors x; and xo, then (zq, x9) = 0.
Sketch of proof: First prove that, since T' is normal, ||T(z)|| = ||T*(z)|| for every = € V. Then,

since U = T — Al is normal, and U* = T* — Al we know that U(z) = 0 if and only if
U*(xz) = 0. In other words, T'(z) = Az if and only if T*(z) = AI.

For (d), Simply compute A\ (x1,x9) = Ao (x1,x2). Since A\; # Ay, we must have (x1, z5) = 0.

We’re almost ready to finish the proof of the first spectral theorem, but first, we’ll need
the following theorem:

SCHUR’S THEOREM Let T be a linear operator on a finite-dimensional inner product space
V. Suppose the characteristic polynomial of T" splits. Then, there exists an orthonormal
basis § for V' such that the matrix [T is upper triangular.

Proof: Induct on n = dim V. Of course, if n = 1, take any basis § = {z} with ||z|| = 1. Then,
[T = (a) (where a = T'(x)) is upper-triangular. Now, assume the result for n — 1: that is,
suppose that if V' is any finite-dimensional inner product space with dimension n — 1 and if
T is any linear operator such that the characteristic polynomial splits, then there exists an
orthonormal basis for V such that [T is upper triangular. We wish to show this result for n.

Fix an n—dimensional inner product space V and a T" € L(V) such that the character-
istic polynomial of 7" splits. This implies that 7" has an eigenvalue A. Therefore, T™ has
an eigenvalue A (by Lemma, pg. 369). Let z be a unit eigenvector of T*, so T%z = Az.
Consider the space W = span({z}). Clearly, W= is n — 1 dimensional, and Ty . is a linear
operator on W+, so by the induction hypothesis, there exists a basis v such that [Ty1], is
upper-triangular. (Notice that we know that Ty, . splits since W+ is T—invariant! Check
this fact below:)

Let y € W+. We want to show that T'(y) is in W+. For every , compute

Finally f = v U {z} is orthonormal, and [T is upper-triangular: Letting [T'z]s = a € ™™,
[TWl]v |
[T]ﬁ = a . O
0



Proof of Spectral Theorem 1 Assume T is normal. Since F' = C, we know (from the fun-
damental theorem of algebra) that the characteristic polynomial of 7" splits. By Schur’s
theorem, we can find an orthonormal basis 5 = {vy, vs, ..., v, } such that A = [Tz is upper-
triangular. Clearly vy is an eigenvector of T' (since T'(vy) = Aj1v;.) The fact that 7" is normal
will imply that vs, ..., v, are also eigenvectors!

Assume vy, v, ..., vp_1 are all eigenvectors Let Aq, As, ..., A\z_1 be the corresponding eigen-
values. Then, since A is upper-triangular, look at the k' column of A and note A,,;, = 0 if
m > k: This lets us compute

T(Uk) = Alkvl -+ Agk’Ug -+ ---Akkvk

From Theorem 6.15, the fact that 7' is normal implies that 7*(v;) = Ajv;. Since the basis
is orthonormal, we have the formula A;;, = (T'(vy),v;) for the coefficients in the equation
above. Computing,

Aji = (T(vr), v5) = (g, T*(v;)) = (v, Ajvy) = Ay (vg, v5) = 0.
Therefore, we have simply that T'(vy) = Aggvk, S0 v is an eigenvector for T.

By induction, we have shown that wvq,vs,...,v, are all eigenvectors of T, so (3 is an or-
thonormal basis consisting of only eigenvectors of T', and the spectral theorem is proven. [

Before we can prove the second version of the spectral theorem, for F' = R, we need the
following lemmoa:

LEMMA (pg. 373) Let T' be a self-adjoint operator on a finite-dimensional inner product
space V. Then the following two facts hold (whether we have F =R or F = C)

(a) Every eigenvalue of T is real.
(b) The characteristic polynomial of T" splits.

Proof of (a): From Theorem 6.15, if x is an eigenvalue of T, we have both T'(r) = Az
for some A\ € F' and T*(z) = Az. However, since T is self-adjoint, T'(x) = T"(x). Therefore,
Axr = Az. Since x # 0, we have that A\ = \; i.e., A is real.

Proof of (b): When F = C, we already know the characteristic polynomial splits. Let 3
be any orthonormal basis for V; we know that A = [T']s satisfies A* = A. Define, for every
x e Cn,

S(z) = Ax.

S has the same characteristic polynomial as 7', but since S is a linear operator on a com-
plex inner product space, we know the characteristic polynomial of S splits. Moreover,
since S is self-adjoint, each eigenvalue Aq, ..., \, is real, and the polynomial pr(t) = ps(t) =
(A —t)( Ay — t)...(\, — t) splits over the field FF =R. O



Proof of Spectral Theorem 2: Assume F' = R and T is a self-adjoint linear operator on
V. Then, the characteristic polynomial of T" splits, and Schur’s theorem implies that there
exists an orthonormal basis 3 for V' such that A = [T is upper-triangular. The same proof
as for the first spectral theorem now works since T' is normal, but it is easier to note that
since T* = T, we know that both A and AT = A* = A are upper triangular. Therefore, A
is diagonal.

Finally, we will show the next theorem, which includes the fact that unitary (and orthog-
onal) operators must be normal!

THEOREM 6.18 Let V be a finite dimensional inner product space and 7' € L(V'). The
following are equivalent:

(a) T"T = TT* = I
(b) (T(), T(y)) = (x,y) for every z,y € V
(e) [T ()] = ||| for every z € V
Proof
(a) = (b) Assume (a) T*T = TT* = I.
Given 2,y € V, since T*T(z) = I(x) = x, we have (z,y) = (T*T(z),y) = (T(z), T(y)).
(b) = (¢) Assume (b) (z,y) = (T(), T(y)) for every z,y € V

Let 5 = {vy, va, ..., v, } be an orthnormal basis for V. Then T'(5) = {T'(v1), T(v2), ..., T'(v,) }
is an orthonormal basis for V' (since, from (b), (T'(v;), T(v;)) = (vi, v;) = d;5).

Given any x € V, write z = Y | a;v;, we can easily compute ||z]|? = Y0, |a;|*.

Since T is linear, T'(z) = >.1" | a;T(v;); the same computation shows ||T'(z)[|* = Y i, |a;|?



(e) = (a) Assume (e) ||T'(z)]|*> = ||z|]? for every x € V.

For all x € V,
(x,2) = ||l2]]* = |T(2)|* = (T(2), T(x)) = (2, T"T(x))

This implies, for all x € V, that
(%) (z,(I =T"T)(x)) = 0.

Let U = I —T*T. Check that U is self-adjoint: U* = I* — (T*T)* = I — T*T. Then, by the
spectral theorem there exists an orthonormal basis # consisting of eigenvectors of U.

For all x € 3, U(z) = Ar. By (%), 0 = {(x,U(x)) = X{w,x). Since z # 0, we must
have A = 0. This implies that [U]z is the zero matrix! Hence, U = [ — T*T = T, (the zero
transformation on V'), so T*T = I. Since V is finite dimensional, this proves that 7% must
be the inverse of 1" and therefore 77" = I. [



