## Math 108b: Notes on the Spectral Theorem

From section 6.3, we know that every linear operator $T$ on a finite dimensional inner product space $V$ has an adjoint. ( $T^{*}$ is defined as the unique linear operator on $V$ such that $\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle$ for every $x, y \in V$ - see Theroems 6.8 and 6.9.) When $V$ is infinite dimensional, the adjoint $T^{*}$ may or may not exist.

One useful fact (Theorem 6.10) is that if $\beta$ is an orthonormal basis for a finite dimensional inner product space $V$, then $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$. That is, the matrix representation of the operator $T^{*}$ is equal to the complex conjugate of the matrix representation for $T$.

For a general vector space $V$, and a linear operator $T$, we have already asked the question "when is there a basis of $V$ consisting only of eigenvectors of $T$ ?" - this is exactly when $T$ is diagonalizable. Now, for an inner product space $V$, we know how to check whether vectors are orthogonal, and we know how to define the norms of vectors, so we can ask "when is there an orthonormal basis of $V$ consisting only of eigenvectors of $T$ ?" Clearly, if there is such a basis, $T$ is diagonalizable - and moreover, eigenvectors with distinct eigenvalues must be orthogonal.

Definitions Let $V$ be an inner product space. Let $T \in \mathcal{L}(V)$.
(a) $T$ is normal if $\underline{T}^{*} T=T T^{*}$
(b) $T$ is self-adjoint if $T^{*}=T$

For the next two definitions, assume $V$ is finite-dimensional: Then,
(c) $T$ is unitary if $F=\mathbb{C}$ and $\|T(x)\|=\|x\|$ for every $x \in V$
(d) $T$ is orthogonal if $F=\mathbb{R}$ and $\|T(x)\|=\|x\|$ for every $x \in V$

Notes

1. Self-adjoint $\Rightarrow$ Normal (Clearly, if $T^{*}=T$, then $T^{*}$ and $T$ commute!)
2. Unitary or Orthogonal $\Rightarrow$ Invertible (Show that $N(T)=\{0\}$. )
3. Unitary or Orthogonal $\Rightarrow$ Normal (This is because, when $T$ is unitary (or orthogonal), we must have $T^{*} T=T T^{*}=I$, the identity operator on $V$ - see Theorem 6.18.)

EXAMPLE A simple example of an orthogonal operator is the rotation operator $T_{\theta}$ on $\mathbb{R}^{2}$. In the standard basis,

$$
A_{\theta}=\left[T_{\theta}\right]_{\beta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Notice that $A$ is orthogonal. Also, $A^{*}=A^{T} \neq A$, so $A$ is not self-adjoint. However, it is easy to check that $A A^{*}=A^{*} A=I$, so $A$ is normal. If the matrix $A$ were over the complex field, it would have a orthonormal basis of eigenvectors by the spectral theorem (see below)! However, over the reals, we see that the characteristic polynomial of $A$ does not split (unless $\sin \theta=0)$ - therefore, there are no real eigenvalues and therefore no eigenvectors at all for the operator $T_{\theta}$ on $\mathbb{R}^{2}$.

Spectral Theorem 1 Let $T$ be a linear operator on a finite dimensional complex inner product space $V$. Then, T is normal if and only if there exists an orthonormal basis (for $V)$ consisting of eigenvectors of $T$.

Spectral Theorem 2 Let $T$ be a linear operator on a finite dimensional real inner product space $V$. Then, T is self-adjoint if and only if there exists an orthonormal basis (for $V$ ) consisting of eigenvectors of $T$.

We'll prove the simple direction first: Assume that there is an orthonormal basis $\beta$ consisting of eigenvectors of $T$. Then, we know that $[T]_{\beta}$ is diagonal, and also that $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$ is diagonal. Since diagonal matrices commute, we have that

$$
\left[T^{*} T\right]_{\beta}=\left[T^{*}\right]_{\beta}[T]_{\beta}=[T]_{\beta}\left[T^{*}\right]_{\beta}=\left[T T^{*}\right]_{\beta}
$$

Hence, $T^{*} T=T T^{*}$, so $T$ is normal. This holds whether $F=\mathbb{C}$ or $F=\mathbb{R}$.
We'll see in the lemmas below that $T$ normal implies that every eigenvector of $T$ with eigenvalue $\lambda$ is also an eigenvector of $T$ with eigenvalue $\bar{\lambda}$. Since $\beta$ is a basis of eigenvectors of either $T$ or $T^{*}$, we have that both $[T]_{\beta}$ and $\left[T^{*}\right]_{\beta}$ are diagonal matrices with their eigenvalues on the diagonal. In the case $F=\mathbb{R}$, every eigenvalue of $T$ is real, so $\lambda=\bar{\lambda}$, and we must have that $\left[T^{*}\right]_{\beta}=[T]_{\beta}$. Therefore, in the case of a real inner product space, we know that $T$ is not only normal, but also self-adjoint!

Lemma (pg. 269) Let $V$ be a finite-dimensional inner product space and $T \in \mathcal{L}(V)$. If $T$ has an eigenvector with eigenvalue $\lambda$, then $T^{*}$ has an eigenvector with eigenvalue $\bar{\lambda}$

See the book for the proof. Note that the above lemma is true for any linear operator $T$ - but we do not know that the eigenvectors for $T$ and $T^{*}$ are related! The next theorem states that when $T$ is normal, we know the eigenvectors for $T$ and $T^{*}$ are the same - this is the fact we used in the proof of the spectral theorem above.

Theorem 6.15 (pg. 371) Let $V$ be an inner product space and $T \in \mathcal{L}(V)$ be a normal operator. Then,
(c) If $T(x)=\lambda x$ (for some $x \in V$ and some $\lambda \in F$ ), then $T^{*}(x)=\bar{\lambda} x$.
(d) If $\lambda_{1}$ and $\lambda_{2}$ are distinct eigenvalues of $T$ with eigenvectors $x_{1}$ and $x_{2}$, then $\left\langle x_{1}, x_{2}\right\rangle=0$.

Sketch of proof: First prove that, since $T$ is normal, $\|T(x)\|=\left\|T^{*}(x)\right\|$ for every $x \in V$. Then, since $U=T-\lambda I$ is normal, and $U^{*}=T^{*}-\bar{\lambda} I$, we know that $U(x)=0$ if and only if $U^{*}(x)=0$. In other words, $T(x)=\lambda x$ if and only if $T^{*}(x)=\bar{\lambda} I$.

For (d), Simply compute $\lambda_{1}\left\langle x_{1}, x_{2}\right\rangle=\lambda_{2}\left\langle x_{1}, x_{2}\right\rangle$. Since $\lambda_{1} \neq \lambda_{2}$, we must have $\left\langle x_{1}, x_{2}\right\rangle=0$.
We're almost ready to finish the proof of the first spectral theorem, but first, we'll need the following theorem:

Schur's Theorem Let $T$ be a linear operator on a finite-dimensional inner product space $V$. Suppose the characteristic polynomial of $T$ splits. Then, there exists an orthonormal basis $\beta$ for $V$ such that the matrix $[T]_{\beta}$ is upper triangular.

Proof: Induct on $n=\operatorname{dim} V$. Of course, if $n=1$, take any basis $\beta=\{x\}$ with $\|x\|=1$. Then, $[T]_{\beta}=(a)$ (where $a=T(x)$ ) is upper-triangular. Now, assume the result for $n-1$ : that is, suppose that if $V$ is any finite-dimensional inner product space with dimension $n-1$ and if $T$ is any linear operator such that the characteristic polynomial splits, then there exists an orthonormal basis for $V$ such that $[T]_{\beta}$ is upper triangular. We wish to show this result for $n$.

Fix an $n$-dimensional inner product space $V$ and a $T \in \mathcal{L}(V)$ such that the characteristic polynomial of $T$ splits. This implies that $T$ has an eigenvalue $\lambda$. Therefore, $T^{*}$ has an eigenvalue $\bar{\lambda}$ (by Lemma, pg. 369). Let $z$ be a unit eigenvector of $T^{*}$, so $T^{*} z=\bar{\lambda} z$. Consider the space $W=\operatorname{span}(\{z\})$. Clearly, $W^{\perp}$ is $n-1$ dimensional, and $T_{W^{\perp}}$ is a linear operator on $W^{\perp}$, so by the induction hypothesis, there exists a basis $\gamma$ such that $\left[T_{W^{\perp}}\right]_{\gamma}$ is upper-triangular. (Notice that we know that $T_{W^{\perp}}$ splits since $W^{\perp}$ is $T$-invariant! Check this fact below:)

Let $y \in W^{\perp}$. We want to show that $T(y)$ is in $W^{\perp}$. For every $\qquad$ , compute

Finally $\beta=\gamma \cup\{z\}$ is orthonormal, and $[T]_{\beta}$ is upper-triangular: Letting $[T z]_{\beta}=a \in F^{n}$,

$$
[T]_{\beta}=\left(\begin{array}{cc}
{\left[T_{W^{\perp}}\right]_{\gamma}} & \mid \\
0 & \mid
\end{array}\right)
$$

Proof of Spectral Theorem 1 Assume $T$ is normal. Since $F=\mathbb{C}$, we know (from the fundamental theorem of algebra) that the characteristic polynomial of $T$ splits. By Schur's theorem, we can find an orthonormal basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $A=[T]_{\beta}$ is uppertriangular. Clearly $v_{1}$ is an eigenvector of $T$ (since $T\left(v_{1}\right)=A_{11} v_{1}$.) The fact that $T$ is normal will imply that $v_{2}, \ldots, v_{n}$ are also eigenvectors!

Assume $v_{1}, v_{2}, \ldots, v_{k-1}$ are all eigenvectors Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k-1}$ be the corresponding eigenvalues. Then, since $A$ is upper-triangular, look at the $k^{t h}$ column of $A$ and note $A_{m k}=0$ if $m>k$ : This lets us compute

$$
T\left(v_{k}\right)=A_{1 k} v_{1}+A_{2 k} v_{2}+\ldots A_{k k} v_{k}
$$

From Theorem 6.15, the fact that $T$ is normal implies that $T^{*}\left(v_{j}\right)=\bar{\lambda}_{j} v_{j}$. Since the basis is orthonormal, we have the formula $A_{j k}=\left\langle T\left(v_{k}\right), v_{j}\right\rangle$ for the coefficients in the equation above. Computing,

$$
A_{j k}=\left\langle T\left(v_{k}\right), v_{j}\right\rangle=\left\langle v_{k}, T^{*}\left(v_{j}\right)\right\rangle=\left\langle v_{k}, \bar{\lambda}_{j} v_{j}\right\rangle=\lambda_{j}\left\langle v_{k}, v_{j}\right\rangle=0 .
$$

Therefore, we have simply that $T\left(v_{k}\right)=A_{k k} v_{k}$, so $v_{k}$ is an eigenvector for $T$.
By induction, we have shown that $v_{1}, v_{2}, \ldots, v_{n}$ are all eigenvectors of $T$, so $\beta$ is an orthonormal basis consisting of only eigenvectors of $T$, and the spectral theorem is proven.

Before we can prove the second version of the spectral theorem, for $F=\mathbb{R}$, we need the following lemma:

Lemma (pg. 373) Let $T$ be a self-adjoint operator on a finite-dimensional inner product space $V$. Then the following two facts hold (whether we have $F=\mathbb{R}$ or $F=\mathbb{C}$ )
(a) Every eigenvalue of $T$ is real.
(b) The characteristic polynomial of $T$ splits.

Proof of (a): From Theorem 6.15, if $x$ is an eigenvalue of $T$, we have both $T(x)=\lambda x$ for some $\lambda \in F$ and $T^{*}(x)=\bar{\lambda} x$. However, since $T$ is self-adjoint, $T(x)=T^{*}(x)$. Therefore, $\lambda x=\bar{\lambda} x$. Since $x \neq 0$, we have that $\lambda=\bar{\lambda}$; i.e., $\lambda$ is real.

Proof of (b): When $F=\mathbb{C}$, we already know the characteristic polynomial splits. Let $\beta$ be any orthonormal basis for $V$; we know that $A=[T]_{\beta}$ satisfies $A^{*}=A$. Define, for every $x \in \mathbb{C}^{n}$,

$$
S(x)=A x .
$$

$S$ has the same characteristic polynomial as $T$, but since $S$ is a linear operator on a complex inner product space, we know the characteristic polynomial of $S$ splits. Moreover, since $S$ is self-adjoint, each eigenvalue $\lambda_{1}, \ldots, \lambda_{n}$ is real, and the polynomial $p_{T}(t)=p_{S}(t)=$ $\left(\lambda_{1}-t\right)\left(\lambda_{2}-t\right) \ldots\left(\lambda_{n}-t\right)$ splits over the field $F=\mathbb{R}$.

Proof of Spectral Theorem 2: Assume $F=\mathbb{R}$ and $T$ is a self-adjoint linear operator on $V$. Then, the characteristic polynomial of $T$ splits, and Schur's theorem implies that there exists an orthonormal basis $\beta$ for $V$ such that $A=[T]_{\beta}$ is upper-triangular. The same proof as for the first spectral theorem now works since $T$ is normal, but it is easier to note that since $T^{*}=T$, we know that both $A$ and $A^{T}=A^{*}=A$ are upper triangular. Therefore, $A$ is diagonal.

Finally, we will show the next theorem, which includes the fact that unitary (and orthogonal) operators must be normal!

Theorem 6.18 Let $V$ be a finite dimensional inner product space and $T \in \mathcal{L}(V)$. The following are equivalent:
(a) $T^{*} T=T T^{*}=I$
(b) $\langle T(x), T(y)\rangle=\langle x, y\rangle$ for every $x, y \in V$
(e) $\|T(x)\|=\|x\|$ for every $x \in V$

Proof:
(a) $\Rightarrow$ (b) Assume (a) $T^{*} T=T T^{*}=I$.

Given $x, y \in V$, since $T^{*} T(x)=I(x)=x$, we have $\langle x, y\rangle=\left\langle T^{*} T(x), y\right\rangle=\langle T(x), T(y)\rangle$.
$(\mathrm{b}) \Rightarrow(\mathrm{e})$ Assume (b) $\langle x, y\rangle=\langle T(x), T(y)\rangle$ for every $x, y \in V$
Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an orthnormal basis for $V$. Then $T(\beta)=\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}$ is an orthonormal basis for $V$ (since, from (b), $\left.\left\langle T\left(v_{i}\right), T\left(v_{j}\right)\right\rangle=\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}\right)$.

Given any $x \in V$, write $x=\sum_{i=1}^{n} a_{i} v_{i}$, we can easily compute $\|x\|^{2}=\sum_{i=1}^{n}\left|a_{i}\right|^{2}$.

Since $T$ is linear, $T(x)=\sum_{i=1}^{n} a_{i} T\left(v_{i}\right)$; the same computation shows $\|T(x)\|^{2}=\sum_{i=1}^{n}\left|a_{i}\right|^{2}$
$\underline{(\mathrm{e}) \Rightarrow(\mathrm{a})}$ Assume (e) $\|T(x)\|^{2}=\|x\|^{2}$ for every $x \in V$.
For all $x \in V$,

$$
\langle x, x\rangle=\|x\|^{2}=\|T(x)\|^{2}=\langle T(x), T(x)\rangle=\left\langle x, T^{*} T(x)\right\rangle
$$

This implies, for all $x \in V$, that

$$
\left\langle x,\left(I-T^{*} T\right)(x)\right\rangle=0
$$

Let $U=I-T^{*} T$. Check that $U$ is self-adjoint: $U^{*}=I^{*}-\left(T^{*} T\right)^{*}=I-T^{*} T$. Then, by the spectral theorem there exists an orthonormal basis $\beta$ consisting of eigenvectors of $U$.

For all $x \in \beta, U(x)=\lambda x$. By $(\star), 0=\langle x, U(x)\rangle=\bar{\lambda}\langle x, x\rangle$. Since $x \neq 0$, we must have $\lambda=0$. This implies that $[U]_{\beta}$ is the zero matrix! Hence, $U=I-T^{*} T=T_{o}$ (the zero transformation on $V$ ), so $T^{*} T=I$. Since $V$ is finite dimensional, this proves that $T^{*}$ must be the inverse of $T$ and therefore $T T^{*}=I$.

